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Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects 
many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus 
pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of 
LDD is largely unknown. Here we report the findings from linkage and association studies on a total of  
32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sul-
fotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. 
The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family–based data 
set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using mul-
tiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding 
site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of 
rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression 
of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the 
A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an 
interplay between genetic risk factors and miRNA.

Introduction
Low back pain (LBP) is one of the most common symptoms of 
spinal abnormalities, with an annual point prevalence averaging 
30% (1). It is a major factor affecting quality of life and has a sig-
nificant social and economic impact worldwide (2). One cause of 
LBP is lumbar disc degeneration (LDD) (3–6), a subset of inter-

vertebral disc (IVD) degeneration (IDD; OMIM 603932), which 
includes lumbar disc herniation (LDH) and sciatica (7).

The etiology of LDD is not fully understood. While factors such 
as body weight, mechanical loading, physical activities, and smok-
ing may have a role (8–11), familial predisposition (12, 13) and 
twin studies (6, 14–16) have demonstrated a significant genetic 
contribution, with heritability estimates as high as 74% (16).

LDD presents with a complex cascade of degenerative events. 
The current gold standard for phenotype analysis is an assess-
ment from T2-weighed MRI of the spine, which provides key 
information on disc dehydration as an indicator of degeneration,  
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and associated changes such as reduced disc height, hernia-
tions of cartilaginous end-plate (Schmorl’s nodes), or hernia-
tions of the nucleus pulposus (NP) characterized by sciatica. 
Numerous genetic risk factors for LDD have been reported and 
recently reviewed (17–19). There is moderate statistical evidence 
for ASPN (20), COL11A1 (21), GDF5 (22), SKT (23), THBS2 (24), 
and MMP9 (24), based on criteria for the assessment of genetic 
outcomes (25), with studies performed in cohorts of reason-
able sample size and/or follow-up via replication or functional 
studies. Most of the genetic risk factors identified so far are 
from candidate gene studies, selected on the basis of our lim-
ited understanding of IVD biology in health and disease. PARK2 
was recently identified as a risk factor through meta-analysis of 
4,600 northern European subjects (26).

The present study is the largest-scale investigation thus far of the 
genetic determinants of LDD. We considered evidence from both 

a genome-wide linkage analysis of families with early-onset LDD 
and a large genome-wide association study (GWAS) meta-analysis 
using several population samples. From these studies, we identified 
a novel candidate gene for LDD, carbohydrate sulfotransferase 3 
(CHST3), which we followed up with functional analyses that linked 
the putative risk allele with the function of microRNAs (miRNAs).

Results
A region in chromosome 10 with significant linkage to early-onset LDD. 
To identify genetic loci associated with LDD, we first carried out a 
2-stage linkage analysis in families of Southern Chinese origin with 
early-onset LDD. The first-stage genome-wide linkage analysis was 
performed with 89 individuals from families 1–10 (Supplemental 
Figure 1; supplemental material available online with this article; 
doi:10.1172/JCI69277DS1), using 400 microsatellite markers with 
an average resolution of 10 cM. Cases and controls were defined 

Figure 1
Linkage and association analyses for LDD. (A) NPL Z-score plot of the 2-stage genome-wide linkage analysis. Scores of the first-stage 
analysis using 10 Southern Chinese families are plotted against the position of the microsatellite markers across the different chromosomes  
(gray dotted line). Suggestive regions (gray arrows) were then analyzed in the second stage using additional markers and an additional  
8 families; the total scores of these markers are denoted by blue circles. A score of 3 was used as the threshold for significance. (B) Workflow 
of the 4-stage GWAS and the 3-stage fine-mapping of CHST3 in the identification of potential causal variants reaching genome-wide (GW) 
significance. The number of SNPs selected for analysis at each stage, the cohort used, and the total number of cases and controls in the study 
are indicated. (C) Position of the SNPs in relation to CHST3. Purple diamonds, –log10(P) values; red squares, P values of the 2 significant 
SNPs within the 3′UTR in a meta-analysis using 3 population cohorts; blue circle, original SNP from the GWAS and replication studies. The 
physical map of the gene structure of CHST3 is shown in relation to the physical position in chromosome 10. The LD map (r2) was generated 
from the 13 SNPs genotyped from the SC-1 + SC-2 cohort (n = 2,999).
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based on the age-adjusted LDD score (20): individuals with age-
adjusted LDD scores 0.5 SD above the mean value for their age 
group were assigned as cases; all others were assigned as controls. 
Nonparametric linkage (NPL) analysis of the data identified candi-
date regions on chromosomes 1, 5, 8, 10, and 20 (Figure 1A).

In the second-stage linkage analysis, we added 37 individuals 
from 8 new families (families 11–18; Supplemental Figure 1),  
with 19 new microsatellite markers added at 5-cM intervals around 
the candidate regions. Only markers in the chromosome 10  
region showed a substantial increase in NPL Z-score, while 
markers in other chromosomal regions showed no change or a 
decrease in NPL Z-score (Figure 1A). The maximum NPL Z-score 
was 3.72 at 98.96 cM (D10S569) within the 10q21.2-q23.1 region 
(72.065–79.223 Mb on chromosome 10).

Case-control GWAS identified variants in CHST3 (in 10q21.2-q23.1) at 
P < 5 × 10–8. We performed case-control association studies using 
7 independent cohorts (Table 1) in a GWAS composed of 4 stag-
es, in which the number of SNPs was reduced and the sample size 
increased at each stage (Figure 1B). In stage 1, we examined a Japa-
nese cohort (J1; 366 LDD cases, 3,331 controls) using the Human-
Hap550v3 Genotyping BeadChip (Illumina). After data quality 
assessment, we performed the Cochran-Armitage trend test on 
these case-control data at 464,775 SNPs genome-wide. Princi-
pal component analysis found no strong genetic heterogeneity  
(Supplemental Figure 2A), and the genomic control inflation 
factor (λGC) was 1.03 (Supplemental Figure 2B), indicative of 
weak population substructure. We then selected the top 1,500 
SNPs according to P value (7.59 × 10–7 ≤ P ≤ 3.53 × 10–3) for stage 
2, which consisted of genotyping in a second independent Japa-
nese cohort (J2; 544 cases, 15,800 controls), and analyzed 1,349 
SNPs after data quality assessment. However, none of the SNPs 
achieved genome-wide significance after meta-analysis using 
Mantel-Haenszel combined minimum P. Therefore, we took 
the top 10 SNPs according to P value to stage 3, which included 
an additional Japanese cohort (J3; 242 cases, 622 controls) and 
a Northern Chinese cohort (NC; 572 cases, 776 controls). The 
smallest P value from stage 3 was for rs1245582 (P = 1.46 × 10–6; 
Table 2). While the association at rs1245582 was not genome-wide  

significant, the SNP lies within the 10q21.2-q23.1 region identi-
fied by the linkage study, so we took this SNP forward for geno-
typing in stage 4.

Additional samples for stage 4 of the GWAS included a subset of 
the first Southern Chinese cohort (SC-1) containing individuals 
with severe LDD (SC-1S; 270 cases, 271 controls), and 2 Finnish  
cohorts (F1; 281 cases, 393 controls, ref. 27; and F2; 118 cases, 
4,642 controls, ref. 28). Meta-analysis of the stage 4 data gave a 
genome-wide significant association with LDD at rs1245582 
(odds ratio, 1.20; 95% CI, 1.13–1.29; P = 3.73 × 10–8). There was no 
evidence for heterogeneity in the stage 4 results (P = 0.63).

rs1245582 is located within an LD block of approximately 85 kb,  
according to the Japanese information in the International Hap-
Map Project database (release 24) (Supplemental Figure 3A). 
Only 3 SNPs (rs1245582, rs751450, and rs4148917) in the region 
showed low P values (P < 2.10 × 10–4) in stage 2 of our study, and 
each is located within the LD block, which overlaps with CHST3. 
Carbohydrate sulphotransferase-3 catalyzes the transfer of sul-
phate from 3′-phosphoadenosine 5′-phosphosulphate (PAPS) to 
position 6 of the N-acetylgalactosamine (GalNAc) residue of chon-
droitin (29). The genome-wide significant association observed 
here was supported by our family linkage study, which found 
CHST3 within the strongest linkage peak genome-wide.

Candidate causal variants in the 3′ untranslated region (3′UTR) of 
CHST3 identified from fine-mapping study. To look for candidate caus-
al variants within CHST3, we performed a 3-stage fine-mapping  
study (Figure 1B). In stage 1, we analyzed all 69 SNPs identified by 
the Japanese HapMap Phase II resource across CHST3 and the rel-
evant LD block (Supplemental Figure 3A) using our SC-1 cohort 
(n = 1,379; Supplemental Table 2 and ref. 20). Similar to the Japa-
nese HapMap data, the LD map of CHST3 from this dense set of 
SNPs in the SC-1 cohort showed 1 large LD block (Supplemental 
Figure 3B). Association testing of the 1,379 SC-1 individuals using 
linear regression at the 69 SNPs identified 14 SNPs with P < 0.05  
(Supplemental Table 2). These were taken forward to stage 2 for 
genotyping in the combined Southern Chinese cohort (SC-1 + SC-2;  
n = 2,999). After data quality control analysis, 13 SNPs were tested 
for association (Supplemental Table 3), which revealed a cluster 

Table 1
Cohorts analyzed at different stages of gene discovery

Cohort Population Phenotype Cases Controls Total Stage of discovery SNPs analyzedA

J1 Japanese LDD with sciatica 366 3,331 3,697 GWAS stage 1 464,755
J2 Japanese LDD with sciatica 544 15,800 16,344 GWAS stage 2 1,349
J3 Japanese LDD with sciatica 242 622 864 GWAS stage 3 10
NC Northern Chinese LDD with sciatica 572 776 1,348 GWAS stage 3 10
SC-1S Southern ChineseB Severe LDD 270 271 541 GWAS stage 4 1
F1 Finnish LDD with sciatica 281 393 674 GWAS stage 4 1
F2 Finnish LDD with sciatica 118 4,642 4,760 GWAS stage 4 1
SC-1 Southern ChineseC LDD – – 1,379 Fine-mapping 1st and 2nd stage 69
SC-2 Southern ChineseD LDD – – 1,620 Fine-mapping 2nd stage 13
SC-1S + SC-2S Southern ChineseE LDD 600 600 1,200 Final stage 2
F3 Finnish LDD with sciatica 420 215 635 Final stage 2
J1′	 JapaneseF	 LDD with sciatica 366 888 1,254 Final stage 2
J2′	 JapaneseG	 LDD with sciatica 544 433 977 Final stage 2

ANumber passing quality-control threshold. BSubset of SC-1, representing the 20th percentile from the 2 ends of the normalized spectrum of the age-
adjusted LDD scores. CFrom the first-stage recruitment between 1999–2006. DFrom the second-stage recruitment between 2007–2011. ECases and controls 
selected from the top and bottom 20th percentiles from a normalized spectrum of age-adjusted LDD score from 2,999 individuals. FSubset of the J1 cohort. 
GSubset of the J2 cohort.
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of 8 SNPs at the 3′ region of the gene with elevated association 
signals; these were contained within an LD block (rs6480592 to 
rs1245582) (Figure 1C) with pairwise correlation (r2 > 0.49). Of 
these SNPs, 5 were within the 3′UTR of CHST3, while the others 
were intronic or downstream of the gene, which suggests that the 
causal variant may be in the 3′UTR.

We hypothesized the involvement of miRNA binding sites 
and performed an analysis using the PolymiRTS database 
(30). We found that rs4148941 and rs4148949 were within 
predicted miRNA binding sites for miR-513a-5p (also known 
as miR-513) and miR-626, respectively. With these SNPs as 
the best candidate causal variants, we performed replica-
tion studies using cohorts from Japan and Finland (J1′, J2′, 
and F3; Table 1). This was followed by a final meta-analysis 
using only severely affected individuals (top 20th percen-
tile) from the SC-1S + SC-2S cohorts as a more appropriate 
subgroup, with both rs4148941 and rs4148949 achieving 
genome-wide significance using an allelic model (Table 3 and 
Figure 1C). Analysis using a dominant model gave similar  
P values, although not genome-wide significance, with a Bonfer-

roni corrected threshold set at 1.07 × 10–7 for a total of 467,709 
SNPs analyzed throughout the study.

Allelic products of CHST3 are expressed differentially in IVD tissues. 
We examined CHST3 expression in various human tissues using 
quantitative RT-PCR and detected high, specific CHST3 expres-
sion in IVD tissues, bone, and cartilage (Supplemental Figure 4). 
Comparison of CHST3 expression in normal and degenerative IVD 
tissues found similar expression in the NP, annulus fibrosus, and 
cartilage end-plates (Figure 2A).

We then genotyped the tissue samples, and CHST3 mRNA levels 
were tested against rs4148941 and rs4148949 under both additive 
and dominant models. Differential expression was significant under 
the dominant model, but not the additive model. Individuals with 
the risk genotypes for rs4148941 (AA/AC) and rs4148949 (CC/CT) 
had significantly lower levels of CHST3 mRNA than did individuals 
with the CC and TT genotypes, respectively (Figure 2, B and C), which 
suggests the risk alleles directly affect CHST3 mRNA levels. We detect-
ed no significant difference in expression of COL2A1, another gene 
expressed in disc cells, with respect to the genotypes for rs4148941 
(Figure 2D), which suggests the effect is specific to CHST3.

Figure 2
CHST3 expression in human IVDs and the effect of miRNA on allelic variants. (A–C) Comparison of CHST3 expression by quantitative RT-PCR, 
(A) between control and degenerated samples and between samples differentiated according to genotypes of (B) CC/CT and TT for rs4148949 
and (C) AA/AC and CC for rs4148941. (D) Comparison of COL2A1 for samples differentiated according to genotypes of AA/AC and CC for 
rs4148941. (A–D) Levels are expressed as ΔCt values above GAPDH (endogenous housekeeping gene for mRNA). Data are presented as dot 
plots; red bars denote mean values. (E) Predicted alignment of allelic variation at rs4148941 and rs4148949 as recognition sites for the binding 
of miR-513a-5p and miR-626, respectively. Both SNPs (shaded) occurred in the 7-bp seed sequence of complementarity (underlined) at the  
5′ end of the miRNAs. (F and G) Luciferase reporter assays were performed using C28I2 cells to determine the effect of the A/C allele at 
rs4148941 and C/T allele at rs4148949 in the absence (F) and presence (G) of miR-513a-5p and miR-626, respectively. (H) Relative allelic 
expression difference of CHST3 mRNA, determined by pyrosequencing for human IVD tissues with heterozygous genotype at rs4148941. Data 
are mean ± SD. AF, annulus fibrosus; EP, cartilage end-plate.
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rs4148941 affects the interaction with miR-513a-5p, reducing CHST3 
mRNA levels. rs4148941 and rs4148949 are within potential bind-
ing sites for the seed region of miR-513a-5p and miR-626, respec-
tively (Figure 2E). We hypothesized that the risk allele would 
function through interaction with miR-513a-5p or miR-626. We 
therefore tested the effect of the CHST3 3′UTR sequence contain-
ing rs4148941-A/C or rs148949-C/T alleles using a luciferase 
reporter system (Figure 2F) in an immortalized human chondro-
cyte cell line, C28I2. We detected little or no expression of miR-
513a-5p or miR-626 in C28I2 cells (data not shown), and C28I2 
cells transfected with the rs4148941-A/C or rs1418949-C/T 
reporter constructs showed no differences in luciferase activity 
(Figure 2F). When we repeated the experiments with exogenous 
miR-513a-5p, the luciferase activity for the rs4148941-A reporter 
was 27% less than that in cells transfected with the counterpart 
rs4148941-C reporter (P = 0.02; Figure 2G). In contrast, cells trans-
fected with either the rs4148949-C or -T reporter in the presence 
of miR-626 showed no significant difference in luciferase activity. 
This is consistent with mRNAs transcribed from the risk allele for 
rs4148941 being less stable.

To assess whether this allelic difference occurs in human IVD 
samples, we quantified CHST3 allelic-specific transcripts in indi-
viduals with the AC genotype for rs4148941 by pyrosequencing. 
There was a significant difference between the relative levels 
of the A and C allelic products as a percentage of total CHST3 
mRNA for all tissues of the IVD (Figure 2H). These data sup-
port rs4148941-A being the functional risk allele and causing a 
preferential reduction in CHST3 mRNA. Finally, we showed that  
miR-513a-5p was expressed in the IVD tissues that could influence 
the level of CHST3 mRNA. There was no significant difference in 
the expression level of miR-513a-5p between control and LDD 
samples (Supplemental Figure 5A), nor according to the risk gen-
otype (Supplemental Figure 5B), which suggests that the allelic 
difference is primarily the consequence of the interaction between  
miR-513a-5p and the risk allele of CHST3.

Heterozygous individuals with mutations in CHST3 showed early indica-
tion of disc abnormalities consistent with degeneration. Rare mutations 
in CHST3 that disrupt its enzymatic activity have been reported 
in patients with recessive skeletal abnormalities, including spon-
dyloepiphyseal dysplasia Omani type, Larsen syndrome, humero-
spinal dysostosis, and chondrodysplasia with multiple disloca-
tion (31–36). Despite the different diagnostic labels, patients with 
CHST3 mutations have similar clinical characteristics and can be 
generally classified as spondyloepiphyseal dysplasia with congeni-
tal joint dislocation and vertebral changes as the principal features 
(OMIM 603799). By late childhood, these features manifest and 
lead to arthritis of the hips and spine with IVD degeneration, rigid 
kyphoscoliosis, and trunk shortening.

Numerous mutations have been identified, including missense, 
nonsense, small insertions, and deletions. Biochemical analysis 
showed the majority of these mutations result in loss-of-function 
or severe reduction in the enzymatic activity (31, 33–36). Recessive  
inheritance would be consistent with most rare mutations 
that affect enzymes. While detailed clinical information for the 
heterozygous parents was not available, it is conceivable that a 
reduction of 50% or less in CHST3 activity causes a milder pheno-
type that may have preferential defects of the spine, leading to ear-
ly-onset disc degeneration. We obtained and reviewed MRI scans 
of 3 parents with heterozygous missense mutations in CHST3,  
2 of Chinese ethnicity (35) and 1 from Oman (33). Each showed evi-
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dence of IVD degeneration and associated disc abnormalities, such 
as herniation (Schmorl’s nodes) of the cartilaginous end-plate, in 
the lumbar region (Figure 3). With respect to our Southern Chi-
nese population cohort, their LDD scores with age adjustment 
were considered to be mild for their age group (30–35 years old;  
ref. 20). They would therefore be considered to have earlier onset of 
disc degeneration resulting from reduced CHST3 activity. This is 
consistent with our hypothesis that reduced expression of CHST3 
mRNA is a risk factor for LDD. 

Discussion
The phenotype definition for LDD is complex. In the present 
study, because LDH is caused by disc degeneration or other trau-
matic events in the lumbar region of the spine, we included it as 
a subset of LDD. Therefore, when performing the meta-analysis,  
we treated all cohorts as a single population with common heri-
table factors. Diagnostic heterogeneity in the case samples is 
unlikely, because heterogeneity tests were not significant. The 
fact that independent linkage and GWAS studies homed in on 
the same region in chromosome 10 provides strong evidence for 
a susceptibility locus for LDD in the region.

We adopted the strategy of initially searching for linkage and 
association loci by means of genome-wide approaches in more 
severe cases that may have a larger effect on the disease, followed 
by association analysis to fine-tune regions within significant link-
age/association signals. Complex diseases often involve multiple 
genetic variants, each with small or moderate effect, reducing 
the power of linkage analysis compared with association studies 
(37). Our selection of early-onset cases with disc degeneration was 
aimed at reducing the heterogeneity, working on the hypothesis 
that some variants are common within these families. Further-
more, the relatively high heritability from familial aggregation 
and twin studies supports the notion that useful information can 
be obtained from linkage analysis for early-onset families. Our 
2-stage approach enabled the filtering of potential false positives 
and provided a candidate region within chromosome 10.

Using a GWAS comprising 4 stages allowed the identification of 
a SNP (rs1245582) closely associated with LDD, with CHST3 as the 
nearest gene. This approach minimized the possibility of false-pos-

itive associations due to population stratification in stage 1 and 
reduction in number of SNPs required for genotyping in stage 2.  
Although there was an age difference between case and control 
groups in stages 1 and 2 (data not shown), it was not a confound-
ing factor, as association remains significant after adjustment 
for age, gender, and BMI using the logistic regression model. In 
stages 3 and 4, while rs1245582 did not show significant associa-
tion except in the Chinese study of replication 2, when we set the 
significance threshold to P < 0.05, the risk allele frequency in each 
of the cases and controls showed a common trend throughout 
all phases of the association studies. Importantly, this multistep 
association study and meta-analysis provided the first evidence 
associating LDD with rs1245582 by an unbiased approach. The 
fact that rs1245582 was within a large LD block that contained 
only CHST3 provided us with a match in the gene list from our 
linkage analysis and the confidence to carry out a detailed asso-
ciation study that substantiated CHST3 as a novel risk factor with 
genome-wide statistical significance.

CHST3 plays a key role in maintaining the hydration and function 
of cartilaginous tissues. Aggrecan is the most abundant proteogly-
can in the disc matrix and contains abundant chondroitin sulphate 
glycosaminoglycan side chains. Proper sulfation of glycosaminogly-
can side chains is critical for water retention within the disc to main-
tain proper osmotic pressure to resist compressive forces. Thus, the 
activity of CHST3 would be important for IVD function.

CHST3 mutations result in recessive forms of spondyloepiphy-
seal dysplasia with congenital joint dislocation and vertebral 
changes as the principal features (OMIM 603799). Our finding 
that 3 heterozygous parents with previously known mutations in 
CHST3 that disrupt its enzymatic activity showed disc abnormali-
ties is consistent with earlier onset of degeneration in the corre-
sponding age group, providing further support for CHST3 as a 
genetic risk factor for disc degeneration.

Although we did not find a significant difference in the level of 
CHST3 mRNA in IVD tissues from control and LDD patients, this 
could be due to the limited number of samples and consequent 
lack of statistical power or other unknown mechanisms. Clarifica-
tion will require a much large set of IVD samples. However, we did 
find evidence supporting rs4148941-A as a functional risk allele 

Table 3
Meta-analysis of the 2 most significant SNPs of CHST3

CohortA Genotype countB a1 frequency (%) Allelic model (a1 vs. a2) Dominant model (a1a1, a1a2 vs. a2a2)
 Cases Controls Cases Controls Odds ratio (95% CI) P Odds ratio (95% CI) P

rs4148941C

SC-1S + SC-2S 102/293/181 77/240/230 43.14 36.01 1.35 (1.14–1.60) 5.58 × 10–4 1.58 (1.24–2.02) 2.29 × 10–4

J1′ 93/184/89 162/444/280 50.55 43.34 1.34 (1.12–1.59) 9.89 × 10–4 1.44 (1.09–1.90) 1.03 × 10–2

J2′ 118/274/152 74/202/157 46.86 40.42 1.30 (1.09–1.56) 4.27 × 10–3 1.47 (1.12–1.92) 5.58 × 10–3

F3 52/79/29 26/45/17 57.19 55.11 1.09 (0.75–1.58) 6.56 × 10–1 1.08 (0.56–2.10) 8.17 × 10–1

Meta-analysis     1.31 (1.19–1.44) 4.50 × 10–8 1.48 (1.27–1.71) 2.40 × 10–7

rs4148949D

SC-1S + SC-2S 103/289/181 78/241/230 43.19 36.16 1.34 (1.13–1.59) 6.62 × 10–4 1.56 (1.22–1.99) 3.53 × 10–4

J1′ 93/184/89 166/442/279 50.55 43.63 1.32 (1.11–1.57) 1.57 × 10–3 1.43 (1.08–1.89) 1.19 × 10–2

J2′ 120/272/152 75/201/157 47.06 40.53 1.30 (1.09–1.56) 3.90 × 10–3 1.47 (1.12–1.92) 5.58 × 10–3

F3 124/209/55 63/102/37 58.89 56.44 1.11 (0.87–1.41) 4.17 × 10–1 1.36 (0.86–2.14) 1.89 × 10–1

Meta-analysis     1.29 (1.17–1.41) 8.40 × 10–8 1.48 (1.28–1.71) 1.14 × 10–7

ASee Table 1. BData presented as a1a1/a1a2/a2a2. Ca1a2, A/C. Da1a2, C/T.
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that reduces CHST3 mRNA level. We speculate that mild CHST3 
reduction caused by the susceptibility SNP could result in disc 
degeneration in adults in conjunction with other risk factors.

A recent publication has demonstrated that miRNAs are likely to 
be involved in the degenerative process of IVD, with several either 
up- or downregulated in cells isolated from degenerated tissues 
(38). Although miR-513a-5p was not among the reported miRNAs 
with changed expression levels (38), we found that it interacted 
with certain alleles of CHST3, reducing its expression. miR-513a-5p 
also has a negative effect on the mRNA level of B7-H1 (also known 
as CD274 or programmed death receptor-1 [PD-1] ligand-1) in 
biliary epithelial cells (cholangiocytes) (39). B7-H1 is a key member 
of the B7 costimulator family with important regulatory functions 
in cell-mediated immune responses (40). miR-513a-5p binds to a 
site in the B7-H1 3′UTR, resulting in translational repression (39).  
The expression of miR-513a-5p itself can be downregulated by 
IFN-γ (39), a proinflammatory cytokine that can mediate many 
cellular events in cholangiocytes (41). Thus, it is possible that there 
is a dynamic interaction among miR-513a-5p and other miRNAs, 
regulated by proinflammatory cytokines in the degenerative pro-
cess, that cannot be captured readily in disc tissue samples. The 
expression of miR-513a-5p in response to various cytokines needs 
to be studied carefully in disc cells or IVD explants in bioreactors.

In summary, the present study represents the largest system-
atic investigation thus far of the genetic risk factors for LDD. 
Using a combination of genome-wide linkage analysis and 
association studies, we identified CHST3 as a novel risk factor, 
emphasizing the importance of CHST3 as a musculoskeletal dis-
ease gene, and the involvement of miRNA, shedding light on the 
molecular pathogenesis of LDD.

Methods
Study populations. Case-control association studies were carried out using 
multiple cohorts from 3 different populations consisting of Chinese, Japa-
nese, and Finnish subjects (see Supplemental Table 1 for composition and 
phenotype inclusion criteria). All recruited subjects in the Southern Chi-
nese cohort underwent MRI scanning of the lumbar spine. LDD was diag-
nosed on the basis of signal intensity changes within the NP of the IVDs 

of the lumbar spine and graded using Schneiderman classification (42) 
for signal intensity within the NP (43). Because age is a confounding fac-
tor in LDD, we adjusted for this using a sliding-window method (20, 27). 
In brief, the LDD score based on summation of the Schneiderman score 
in the lumbar region was normalized by logarithmic transformation. The 
age band for each individual was defined as age ± 5 years. The age-adjusted 
LDD score for each individual was calculated by subtracting the mean and 
then dividing by the SD in the individual’s age band.

The NC, J1, J2, J3, F1 (27), and F3 (23) cohorts were recruited on the basis 
of LDH characterized by sciatica or LBP requiring surgical treatment, but 
not necessarily having had surgical treatment. The F2 cohort (28) consisted  
of individuals from the Northern Finland Birth Cohort 1966 (NFBC 66) 
who were hospitalized owing to sciatica. 18 families with early-onset LDD 
identified from recruitment of the Southern Chinese cohort were used for 
whole-genome linkage analysis (Supplemental Figure 1). See Supplemental  
Methods for details of the sample sets.

Laboratory methods. PRISM human linkage mapping set v2.5-MD10 
(Applied Biosystems) was used for the linkage analysis. Illumina Human-
Hap550v3 Genotyping BeadChip was used for stage 1 of the GWAS. For 
genotyping of specific SNPs, multiple methods were used, depending on 
cohort origin (see Supplemental Methods).

Quantitative assessment of gene expression was performed using 
quantitative RT-PCR on total RNA extracted from disc tissues collected 
postoperatively with informed consent, while pyrosequencing was used 
to determine the relative allelic mRNA products. Expression of specific 
miRNA was determined using TaqMan miRNA assays (Applied Biosys-
tems). miRNA binding prediction of SNP variants was performed using 
the PolymiRTS database (30). Luciferase assays were carried out in trans-
fected C28I2 chondrocytes (provided by M.B. Goldring, Hospital for Spe-
cial Surgery, New York, New York, USA). See Supplemental Methods and 
Supplemental Table 4 for details of gene and miRNA expression analyses, 
reporter construct generation, cell transfection, luciferase assay conditions, 
and primer sequences.

Statistics. Multipoint NPL analysis (44) was performed using the Sall scor-
ing function of MERLIN (45); NPL Z-scores and corresponding P values 
are reported. For quantitative-trait linkage analysis, the Deviates method 
of MERLIN was used to test for excess sharing among individuals in the 
same tail of trait distribution, as it makes no assumptions regarding trait 

Figure 3
MRI of heterozygous individuals with known 
mutations in CHST3. T2 MRI of a normal 
individual and parents of patients with 
recessive spondyloepiphyseal dysplasia 
(OMIM 603799) from Oman (Oman-1) and 
Hong Kong (HK-1 and HK-2). Disc degen-
eration with reduced NP intensity (pink 
arrows), abnormal end-plate (yellow arrows) 
consistent with Schmorl’s nodes, and irreg-
ular darkened NP signals (orange arrows) 
were observed.
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