
Supplemental methods

On prescribed time points (t=0, t=20, t=40, t=60, t=90, t=120, t=180, t=240, t=300 and t=360) after entering the cold room, subjects completed visual analogue scales (VAS-scales), on sensation, thermal comfort and shivering (Supplemental Figure 1). On the scale they were asked to indicate their sensation (How are you feeling now?), their comfort (Do you think this is...?) and shivering was reported (Are you shivering?). The scores were transferred to numeric data (from 0-10 for sensation, from -3.1 to -0.1 and 0.1 to 3.1 for comfort and 0-10 for shivering), so that analyses could be done. Incremental area under the curve was calculated for day 3 (6 hours) and day 10 (6 hours) and these values were compared by means of a paired sample t test.

Supplemental Figure 1: Visual representation of the VAS-scales on sensation, overall comfort and shivering. The questionnaires were presented in either Dutch or English to the subjects through an Internet browser.

mRNA expression levels of several markers were measured both in subcutaneous white fat samples and in skeletal muscle material. No effect of the cold acclimation was found in fat tissue, however PPARgamma and adiponectin were up regulated in the skeletal muscle. The following Real-Time RT-PCR Primer Sequences were used;

Supplemental Table 1: Real-Time-RT-PCR Primer Sequences used for gene expression in both skeletal muscle and white adipose tissue

in both skeletal muscle and white adipose tissue.					
Genes	Sequences				
hUCP1 hCIDEA	AGGTCCAAGGTGAATGCCC GCGGTGATTGTTCCCAGGA				
	TCCGGGTCTCCAACCATGA				
	GGCATCCAGAGTCTTGCTGAT				
	AGACTTCGGATGGGAGCAAAT				
hPRDM16	TCCACGCAGAACTTCTCACTG				
hPGC1a	TCTGAGTCTGTATGGAGTGACAT				
	CCAAGTCGTTCACATCTAGTTCA				
hAP2	ACTGGGCCAGGAATTTGACG				
	CCCCATCTAAGGTTATGGTGCTC				
LDDAD	ACCAAAGTGCAATCAAAGTGGA				
hPPARgamma	AGGCTTATTGTAGAGCTGAGTCT				
h A Jim	TATCCCCAACATGCCCATTCG				
hAdiponectin	TAGGCAAAGTAGTACAGCCCA				
hAdipsin	GACACCATCGACCACGACC				
	GCCACGTCGCAGAGAGTTC				
hLeptin	TGCCTTCCAGAAACGTGATCC				
	CTCTGTGGAGTAGCCTGAAGC				
hFNDC5	AAGCACAAGGACTGACTCAAGC				
	CATGTCCTTGATGGCTGGAT				
hTMEM26	ATGGAGGGACTGGTCTTCCTT				
	CTTCACCTCGGTCACTCGC				
hCD137 hTBP	AGCTGTTACAACATAGTAGCCAC				
	TCCTGCAATGATCTTGTCCTCT CCACTCACAGACTCTCACAAC				
	CTGCGGTACAATCCCAGAACT				
hPPIA	TGGTGTTTGGCAAAGTGAAA				
	TCGAGTTGTCCACAGTCAGC				
	GTGCTCGCGCTACTCTCTCT				
hB2M	TCTCTGCTGGATGACGTGAG				
	10101001110110010110				

Supplemental Table 2: mRNA expression in skeletal muscle and white adipose tissue.

	SKELETAL MUSCLE		WAT	
	PRE	POST	PRE	POST
UCP1	1.14 ± 0.61	1.37 ± 0.83	0.79 ± 0.71	0.61 ± 0.56
CIDEA	1.12 ± 0.67	1.10 ± 0.79	1.13 ± 0.50	1.23 ± 0.66
PRDM16	1.14 ± 0.43	1.45 ± 1.01	1.06 ± 0.29	0.97 ± 0.27
PGC1a	1.03 ± 0.25	1.14 ± 0.37	1.11 ± 0.49	0.98 ± 0.33
AP2	1.03 ± 0.25	1.03 ± 0.39	1.06 ± 0.34	1.04 ± 0.32
PPARgamma	1.03 ± 0.25	$1.19 \pm 0.34*$	1.06 ± 0.32	1.11 ± 0.23
ADIPONECTIN	1.07 ± 0.71	$1.76 \pm 1.42*$	1.07 ± 0.38	0.98 ± 0.17
ADIPSIN	1.08 ± 0.40	1.00 ± 0.43	1.09 ± 0.37	1.10 ± 0.31
LEPTIN	1.08 ± 0.44	1.38 ± 0.91	1.16 ± 0.51	1.07 ± 0.73
FNDC5	1.04 ± 0.30	0.97 ± 0.35	1.04 ± 0.19	1.06 ± 0.34
TMEM26	1.10 ± 0.38	1.02 ± 0.40	1.12 ± 0.44	1.31 ± 0.46
CD137	1.20 ± 0.76	1.58 ± 1.08	1.12 ± 0.83	0.80 ± 0.45

Results are expressed as means \pm SD. * p<0.05 PRE vs. POST. All expression levels are normalized to the average of all subjects PRE cold. The effect of the cold acclimation was tested with a paired samples t test.