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Patients with ovarian cancer are at high risk of tumor recurrence. Prediction of therapy outcome may provide 
therapeutic avenues to improve patient outcomes. Using reverse-phase protein arrays, we generated ovarian 
carcinoma protein expression profiles on 412 cases from TCGA and constructed a PRotein-driven index of 
OVARian cancer (PROVAR). PROVAR significantly discriminated an independent cohort of 226 high-grade 
serous ovarian carcinomas into groups of high risk and low risk of tumor recurrence as well as short-term 
and long-term survivors. Comparison with gene expression–based outcome classification models showed a 
significantly improved capacity of the protein-based PROVAR to predict tumor progression. Identification 
of protein markers linked to disease recurrence may yield insights into tumor biology. When combined with 
features known to be associated with outcome, such as BRCA mutation, PROVAR may provide clinically useful 
predictions of time to tumor recurrence.

Introduction
Ovarian cancer is the deadliest gynecologic cancer in the United 
States, with 22,240 new cases and 14,030 deaths in 2013 (1). High-
grade serous cancer is the most common ovarian epithelial malig-
nancy, accounting for approximately 70% of all cases of epithelial 
ovarian cancer (2). Most cases are diagnosed at an advanced stage, 
with this being a key contributor to an overall 5-year survival rate 
of less than 40% (3, 4). Although the initial response rate to stan-
dard surgery and platinum-based chemotherapy is high, 30%–40% 
of patients relapse within 12 months and do not respond to fur-
ther platinum therapy (5, 6). Early detection of high-grade serous 
ovarian cancer is thus a key to reducing morbidity and mortality 
from ovarian cancer (7). Several clinicopathologic factors, such as 
age, stage, histologic grade, and tumor residuum, are considered 
prognostic indicators in patients with ovarian cancer, but these 
factors are used only in a small number of patients to guide treat-
ment decisions, due to insufficient sensitivity and specificity (8).

With the development of microarray technologies, several stud-
ies have identified genetic markers or gene expression profiles that 
are associated with the prognosis of high-grade ovarian cancer 
(9–12). However, these signatures often contain large numbers of 
genes, which reduces their applicability in clinical practice. Impor-
tantly, despite the significant association of gene signatures with 
overall survival (OS), their predictive value of treatment response 
and time to tumor recurrence is limited.

The reverse-phase protein arrays (RPPA) platform allows 
high-throughput measurements of protein expression levels in 

a large number of samples. RPPA profiles have been successfully 
used to identify protein markers of pharmacological response and 
to predict prognosis in breast cancer (13, 14).

Here, we used the RPPA technology to define a PRotein-driven 
index of OVARian cancer (PROVAR) and show that it is able to 
predict time to recurrence in an independent validation cohort, 
outperforming several gene expression–based approaches. Our 
work illustrates the potential of protein-driven treatment response 
predictions.

Results
Patient characteristics. Patient characteristics are described in Table 
1, and detailed patient information is provided in Supplemental 
Table 4; supplemental material available online with this article; 
doi:10.1172/JCI68509DS1. All patients included in this study had 
serous epithelial ovarian carcinoma. More than 95% of tumors 
were classified as high grade (G2 or G3). Approximately 60% of 
patients in TCGA and 40% of patients in the validation set under-
went optimal surgical cytoreduction (<1 cm residual disease at the 
end of surgery). The median progression-free survival (PFS) for 
TCGA samples (14.9 months) was shorter than that for validation 
samples (19.4 months), and the difference was statistically signifi-
cant (log-rank test, P < 0.001; see Supplemental Figure 1). There 
was no statistically significant difference in OS between TCGA 
and validation sets, although the P value was trending toward sig-
nificance (log-rank test, P = 0.101; Supplemental Figure 1).

Identification and validation of protein markers. The logic flow chart 
shown in Figure 1 summarizes the procedure used to construct and 
validate a protein-based index of PFS; a comparison is also shown 
of the protein-driven model and several gene-driven models.
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We used the least absolute shrinkage and selection operator (lasso) 
to identify protein markers most associated with PFS. After apply-
ing an L1-constrained Cox regression to the 222 TCGA samples with 
nonmissing annotation on PFS, with a tuning parameter chosen by 
10-fold cross-validation, we identified 9 protein markers significantly 
associated with PFS (Table 2 and Figure 2) and termed the predictive 
protein set PROVAR. The expression patterns of the 9 protein mark-
ers across ovarian carcinoma are shown in Figure 2. Five proteins (AR, 
BID, phosphorylated TAZ [pTAZ], phosphorylated EGFR [pEGFR], 
and HSP70) were associated with longer PFS in the Cox regression 
analysis and were highly expressed in the low-risk group, and 4 pro-
teins (STAT5α, phosphorylated PKCα [pPKCα], phosphorylated 
MEK1 [pMEK1], and EEF2) were associated with shorter PFS and 
increased expression in the high-risk group (Table 2).

PROVAR scores were defined as a linear combination of the 
expression levels of the 9 proteins weighted by the Cox regression 
coefficients, and those scores were calculated for each sample in 
the training set. Values ranged from –0.57 to 0.44 (median = –0.02) 
across the 222 samples and were distributed unimodally within 
this range. Based on PROVAR, the samples were classified into 
high-risk (i.e., high PROVAR score) and low-risk (i.e., low PROVAR 
score) groups. The median score (–0.02) was used as a cutoff.

Kaplan-Meier survival analysis showed a significant difference in 
PFS between the high- and low-risk groups in the training set (n = 
222, P = 0.001; Figure 3A). While PROVAR was constructed based 
on PFS, we additionally performed Kaplan-Meier analysis of OS 
in order to assess the capacity of PROVAR to differentiate patients 
by OS. The data set used in this analysis was comprised of 387 
patients with available OS data, including 165 patients not used 
to construct the model. A significant difference in OS was found 
between risk groups (n = 387, P < 0.001; Figure 3B) but also when 
limiting the analysis to the 165 OS-only patients not included in 
the training set (n = 165, P = 0.032; Supplemental Figure 2). The 
same cutoff was used as in the analysis of PFS. The median PFS 

times of the high- and low-risk groups were 12.5 months and 18.3 
months, respectively, and median OS times of the 2 risk groups 
were 36.9 months and 52.8 months, respectively.

Unlike gene expression profiles, in which the number of features 
vastly outnumbers the size of the sample cohort, the limited number 
of features included on the protein array reduces the risk of over-
fitting when correlating expression with outcome (15). To further 
reduce the possibility of a significant difference in outcomes as a 
result of an overfitted predictive model, we sought to validate the 
performance of PROVAR in an independent sample cohort and 
performed RPPA profiling on a set of 226 ovarian cancer samples 
that were not included in TCGA. For each patient, PROVAR was 
computed and patients were classified into 1 of the 2 risk groups 
according to the index. The same cutoff was used as that found while 
analyzing the TCGA set to separate the validation set into high-risk 
and low-risk groups. In the validation set, median PFS times were 
15.1 months and 24.0 months, respectively, between high- and low-
risk groups (Figure 3C), while median survival time of the high-risk 
group was 39.6 months. The median survival was for the low-risk 
group exceeded 60 months (Figure 3D).

To test whether this result was independent of known predic-
tive variables, such as age and stage, we applied multivariate anal-
ysis using a Cox proportional hazards model with PROVAR and 
clinicopathologic factors (age, stage, grade, and surgery status) as 
covariates. PROVAR was the only factor consistently significant 
for both OS and PFS across different data sets (Table 3). Age was a 
significant factor for the TCGA set but not for the validation set. 
Stage was not significant for any set, and more advanced grade was 
associated with a decrease in PFS in TCGA samples but not with 
others. Surgery status was found to be predictive of PFS or OS in 
the validation set but not in the TCGA set. BRCA1/2 mutation was 
a significantly favorable factor of progression and survival in the 
training set, but no mutation status data were available for our 
validation set. A 5% of significance level was used for all tests.

Table 1
Clinical characteristics of the training and validation sets

 TCGAA  Validation 

 PFSB OSB PFS OS
Number of patients 222 387 209 226
Age in years, median (range) 58 (26–87) 59 (26–87) 58 (27–84) 58 (27–84)
Stage, N (%)    
II 8 (3.6) 20 (5.2) 4 (1.9) 5 (2.2)
III 183 (82.4) 316 (81.7) 171 (81.8) 184 (81.4)
IV 31 (14.0) 51 (13.2) 34 (16.3) 37 (16.4)
GradeC, N (%)    
Well differentiated, G1 3 (1.4) 5 (1.3) 8 (3.8) 8 (3.5)
Moderately differentiated, G2 28 (12.6) 47 (12.1) 78 (37.3) 80 (35.4)
Poorly differentiated, G3 188 (84.7) 328 (84.8) 122 (58.4) 137 (60.6)
Undifferentiated, G4 1 (0.5) 1 (0.3) 0 (0.0) 0 (0.0)
Surgery status, N (%)
Optimal 135 (60.8) 247 (63.8) 84 (40.2) 88 (42.1)
Suboptimal 87 (39.2) 140 (36.2) 125 (59.8) 138 (66.0)
No. of eventsD, N (%) 212 (95.5) 176 (45.5) 164 (78.5) 119 (52.7)
Median survival in months 14.9 45.6 19.4 50.4

AClinical information of TCGA samples that were analyzed by RPPA was extracted from the TCGA portal (http://cancergenome.nih.gov/) on February 2, 
2012. BBoth PFS and OS were capped at 60 months. CThe tumor grade was unknown for 2 patients among 222 patients who had PFS or 6 patients among 
387 patients who had OS in the TCGA set and unknown for 1 patient in the validation set. DThe number of tumor recurrences for PFS and the number of 
deaths for OS.



research article

3742 The Journal of Clinical Investigation   http://www.jci.org   Volume 123   Number 9   September 2013

Comparison with gene-driven models. For the purpose of compari-
son with the protein-driven model, we implemented 3 gene expres-
sion–based models and tested their ability to predict outcome on 
the subset of validation samples for which both protein and gene 
expression data were available (n = 130, Konstantinopoulos et al., 
ref. 10; Kang et al., ref. 11; Verhaak et al., ref. 12). The difference in 
outcome of high-risk and low-risk groups was compared between 
gene-based models and PROVAR. Kaplan-Meier curves were gen-
erated for all comparisons (Supplemental Figure 3A for PFS; 
Supplemental Figure 3B for OS). All 3 gene-based models failed 

to produce a difference in PFS or OS, whereas PROVAR classifica-
tion resulted in a near significant classification of PFS (P = 0.056) 
as well as OS (P = 0.006). To address possible batch effects when 
comparing models based on different data sets, cutoff values for 
identifying 2 groups were determined for each model separately.

Additionally, we considered a 3-group classification using the 20th 
and 80th percentiles as cutoffs, focusing on more extreme cases in 
the entire sample. Overall, trends in progression or survival patterns 
remained stable in the validation set (Supplemental Figure 4A). On 
the subset of validation samples for which both protein and gene 

Figure 1
Flow chart for construction and validation of PROVAR and for comparison with gene-driven models from Konstantinopoulos et al. (10), Kang et 
al. (11), and Verhaak et al. (12). CV, cross-validation.

Table 2
Nine proteins composing PROVAR

 Lasso coefficient PA HRB (95% CI) Predicted MW Description
AR –0.096 0.003 0.791 (0.68–0.92) 110 kDa AR
BID –0.075 0.001 0.788 (0.68–0.91) 22 kDa BH3-interacting domain death agonist
EEF2 0.029 0.060 1.137 (0.99–1.30) 95 kDa Eukaryotic translation elongation factor 2
pEGFR –0.052 0.002 0.801 (0.70–0.92) 170 kDa EGFR (phosphorylated Tyr 1173)
HSP70 –0.027 0.002 0.810 (0.71–0.93) 72–73 kDa 70-kDa heat-shock protein
pMEK1 0.025 0.006 1.203 (1.05–1.37) 45 kDa Dual-specificity mitogen-activated 
      protein kinase kinase 1
      (phosphorylated Ser 217 + Ser 221)
pPKCα 0.022 0.023 1.181 (1.02–1.36) 82 kDa PKCα (phosphorylated Ser 657)
STAT5α 0.004 0.030 1.176 (1.02–1.36) 92 kDa STAT5A
pTAZ –0.058 0.053 0.875 (0.76–1.00) 45 kDa Tafazzin (phosphorylated Ser 89)

AWald’s test, P value, computed using univariate Cox’s regression analysis of PFS. BHazard ratio (HR) computed using univariate Cox’s regression analysis of PFS.
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expression data were available (n = 130), no statistically significant 
difference in PFS was found with any of the 4 models, but there was 
an improvement in prediction of OS using PROVAR or CLassifica-
tion of OVARian cancer (CLOVAR) (Supplemental Figure 4, B and C). 
However, we note that the relatively small sample size of each group 
may have limited the statistical power of the 3-group classification, 
because the log-rank test is based on large sample approximations.

Comparative analysis of PROVAR at proteomic and genetic levels. We 
constructed a new index using the genes matching the 9 proteins 
that constructed PROVAR and using the PROVAR coefficient 
weights to evaluate the predictive power of the gene expression 
levels of PROVAR proteins in the TCGA set. The median index 
value, based on the matching genes, was used as a cutoff to sep-
arate the data set into 2 groups. The index at the genetic level did 

Figure 2
Expression signatures of the 9 protein 
markers for the training set (TCGA) and the 
validation set. The first 5 proteins (AR, BID, 
pTAZ, pEGFR, and HSP70) were associ-
ated with longer PFS and the rest (STAT5α, 
pPKCα, pMEK1, and EEF2) were associ-
ated with shorter PFS (see Table 2).

Figure 3
Kaplan-Meier curves for the train-
ing set (TCGA) and the validation 
set after classifying patients into 
2 groups by median split using 
PROVAR. (A) TCGA with PFS, 
(B) TCGA with OS, (C) validation 
set with PFS, and (D) validation 
set with OS. Red and black lines 
indicate high- and low-risk groups, 
respectively.



research article

3744 The Journal of Clinical Investigation   http://www.jci.org   Volume 123   Number 9   September 2013

not preserve the predictive power found when using PROVAR at 
the proteomic level (Supplemental Figure 5; log-rank test, P values 
were 0.199 for PFS and 0.173 for OS).

Robustness of protein marker index. In an attempt to test the robust-
ness of the 9 protein markers, the validation set was used to iden-
tify protein markers with the lasso and then those markers were 
compared with the original 9 markers. By using the validation 
set, we found 7 protein markers, FOXO3A (0.008), CDK1 (0.003), 
VASP (0.055), CYCLINB1 (0.042), pNFKB (–0.034), YAP (0.025), 
and AR (–0.037) (numbers in parentheses are lasso coefficients 
from Cox’s regression). The only protein from the 9 TCGA pro-
tein markers to overlap with the 7 validation set protein markers 
was AR. We identified 4 major protein clusters using a hierarchical 
clustering method on RPPA data for TCGA samples (Figure 4). 
Interestingly, both the 9-protein signature and the 7-protein set 
included representative proteins from each of the 4 clusters.

Additionally, we wanted to assess how similar the patient classi-
fications were using the 9- and 7-protein signatures. The patients 
in the training set were classified by each of 2 signatures, and, more 
specifically, they were split into 2 risk groups using the median as 
a cutoff for each case (Supplemental Table 1). The highly similar 
grouping found when classifying the training set using the 9-pro-

tein set and the 7-protein set suggested a significant association 
between the 2 signatures (χ2, P < 0.001).

Comparison with molecular subtypes of ovarian cancer. Four clusters 
of samples were defined by hierarchical clustering on RPPA data 
for the TCGA set (Figure 4). Cross-tabulation (shown in Sup-
plemental Table 2-1) was used to correlate the 4 clusters with 4 
existing molecular subtypes (12, 16). To test whether there was 
significant enrichment in the overlap, we performed a χ2 test, 
which showed a statistically significant association between RPPA 
clusters and gene expression subtypes (P = 0.001). Interestingly, 
cluster 1 mostly consisted of samples from the mesenchymal gene 
expression subtype, which were entirely classified by PROVAR as 
high risk. Consequently, a decreased PFS was observed in cluster 
1 compared with that in other clusters (Supplemental Figure 7).

We have previously reported that high-grade serous ovarian can-
cer samples often exhibit multiple gene expression–based subtype 
signatures and that the classification into different mutually exclu-
sive subtypes may therefore be less informative than in other can-
cers (12). Hence, we examined, for each subtype signature, whether 
the signature occurred more frequently in certain clusters. As 
shown in Supplemental Table 2-2, both mesenchymal and immu-
noreactive signatures were highly activated in protein cluster 1.

Table 3
Univariate and multivariate Cox proportional hazards model analyses

 Univariate analysis  Multivariate analysisA

 HR (95% CI) PB HR (95% CI) PB

TCGA [PFS]    
Age  1.016 (1.00–1.03) 0.016 1.014 (1.00–1.03) 0.045
Stage 0.965 (0.69–1.35) 0.840 1.090 (0.77–1.55) 0.629
Grade 1.396 (1.03–1.90) 0.034 1.427 (1.05–1.94) 0.023
Optimal (vs. suboptimal) surgery status 1.063 (0.81–1.40) 0.660 1.234 (0.93–1.65) 0.152
High (vs. low) PROVAR  1.932 (1.47–2.55) <0.001 1.932 (1.45–2.57) <0.001
Wild-type (vs. mutated) BRCA1/2C 1.830 (1.15–2.92) 0.011  

TCGA [OS]    
Age 1.036 (1.02–1.05) <0.001 1.033 (1.02–1.05) <0.001
Stage 1.135 (0.81–1.59) 0.460 1.175 (0.82–1.68) 0.381
Grade 1.357 (0.94–1.95) 0.100 1.262 (0.87–1.83) 0.218
Optimal (vs. suboptimal) surgery status 0.954 (0.70–1.29) 0.760 1.118 (0.82–1.53) 0.485
High (vs. low) PROVAR 1.805 (1.34–2.44) <0.001 1.699 (1.25–2.31) 0.001
Wild-type (vs. mutated) BRCA1/2D 2.139 (1.25–3.65) 0.005  

Validation [PFS]    
Age 1.006 (0.99–1.02) 0.433 1.001 (0.98–1.02) 0.880
Stage 1.347 (0.94–1.93) 0.109 1.171 (0.81–1.70) 0.410
Grade 1.238 (0.95–1.61) 0.106 1.092 (0.82–1.45) 0.540
Optimal (vs. suboptimal) surgery status 0.565 (0.41–0.78) <0.001 0.611 (0.44–0.86) 0.005
High (vs. low) PROVAR 1.262 (1.08–1.47) 0.003 1.238 (1.06–1.45) 0.007

Validation [OS]    
Age 1.020 (1.00–1.04) 0.032 1.015 (1.00–1.40) 0.140
Stage 1.295 (0.86–1.94) 0.218 1.122 (0.74–1.70) 0.590
Grade 1.144 (0.83–1.57) 0.401 0.953 (0.68–1.34) 0.780
Optimal (vs. suboptimal) surgery status 0.479 (0.32–0.71) <0.001 0.508 (0.34–0.77) 0.002
High (vs. low) PROVAR 1.378 (1.14–1.66) <0.001 1.319 (1.09–1.60) 0.004

ABased on a multivariate Cox’s regression model, including all variables in the table. BWald’s test, P values. COnly 132 patients were analyzed and 90 
patients were excluded due to missing BRCA1/2 mutation data. Because a majority of patients did not have data, we carried out univariate analysis only 
using patients whose mutation data were available. DOnly 208 patients were analyzed and 179 patients were excluded due to missing BRCA1/2 mutation 
data. Because a majority of patients did not have data, we carried out univariate analysis only using patients whose mutation data were available.
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Sample cluster 4 included a subset of 36 samples, which appeared 
to form a separate group, that we classified as a low-risk group. We 
identified 21 significant proteins that were differentially expressed 
between 2 groups (36 low-risk samples vs. 43 remaining samples 
in cluster 4), using t tests and multiple testing correction at a sig-
nificance level of 1%. Among 21 differentially expressed proteins, 

4 were included in the PROVAR signature (AR, BID, HSP70, and 
pEGFR), and those 4 proteins were consequently highly expressed 
in the low-risk samples. This subcluster was potentially a major 
driver of the PROVAR signature.

Biological interpretation of PROVAR. To characterize the biological 
properties of PROVAR, we used the FatiGO tool to associate the 

Figure 4
The heat map of RPPA data for the TCGA set (222 samples and 172 proteins). The row dendrogram indicates unsupervised hierarchical clustering 
of 172 proteins. Colored bars next to the dendrogram represent (a) 8 unique markers found by using the TCGA set; (b) the overlap, AR; and (c) 6 
unique markers found by using the validation set. The clusters were cut into 4 groups as indicated by different colors. Ward’s linkage method and 
absolute distance were used as a group linkage method and a distance measure, respectively. The column dendrogram indicates unsupervised 
hierarchical clustering of 222 patients. Red bars below the dendrogram indicate the high-risk group. The sample size of each cluster and a com-
parison with existing molecular subtypes are provided in Supplemental Table 2.
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index with gene ontology (17) as well as BioCarta (http://www.
biocarta.com/genes/index.asp) annotations. In this analysis, the 
annotation of proteins within the signature is compared to the 
annotation of other proteins on the array. Gene ontology terms 
and BioCarta pathways in which PROVAR proteins were most 
significantly overrepresented are listed in Supplemental Table 
3 (P < 0.05). The top-ranked BioCarta pathway was the EGF 
signaling pathway, in which the EGF binds to the EGFR in the 
cell membrane, starting a cascade of signals. The phosphate sig-
nal activates MAP kinases (also known as ERK), which leads to 
mRNA transcription in the cell nucleus (18, 19). Indeed, pEGFR 
and 3 proteins representing different pathways downstream of 
EGFR are included in the PROVAR signature: STAT5α, pMEK1, 
and pPKCα. However, whereas protein expression of pEGFR was 
associated with favorable outcome, increase in protein levels of 
STAT5α, pMEK1, and pPKCα correlated with high risk. To gain 
more insights in the general patterns of protein expression, we 
applied hierarchical clustering to group proteins by similarity of 
expression in the 222 samples of the training set. We observed 4 
large protein clusters, each representing a general expression trend 
(Figure 4). Interestingly, the 4 proteins included in the PROVAR 
signature as well as the EGF pathway were found to represent each 
of the 4-protein expression clusters. This suggests that protein 
expression of pEGFR, STAT5α, pMEK1, and pPKCα does not cor-
relate and therefore does not reflect a single cellular pathway but 
possible reflects 4 different cellular mechanisms, with different 
mechanisms activating and inactivating each pathway.

Characterization of PROVAR signatures by genomic aberrations. Using 
Welch’s t tests and Mann-Whitney tests, we evaluated whether a 
difference in PROVAR scores was associated with specific genomic 
aberrations. Included in the analysis were TCGA samples for 
which PROVAR scores and genomic data were available (copy 
number alterations, n = 376 samples; mutation events, n = 208 
samples) and genes with alterations in more than 3% of samples 
(1,248 focally deleted genes; 10,181 highly amplified genes; 34 
mutated genes). After multiple testing correction, no copy number 
deletion, amplification, or gene mutation was found to result in 
significantly different PROVAR scores.

Additional predictive value of other prognostics factors. We investigated 
the effects of a combination of PROVAR and other available fac-
tors, such as age, stage, grade, surgery status, and BRCA1/2 muta-
tion (BRCA mutation status was only available in the training set). 
A total of 130 TCGA samples and 208 validation samples had 
complete data for analysis. Three multivariate Cox models were 
considered with the following as covariates: PROVAR only (model 
A); PROVAR plus age, stage, grade, and surgery status (model 
B); PROVAR plus age, stage, grade, surgery status, and BRCA1/2 
mutation (model C). For TCGA samples, we did not observe a sig-
nificant improvement in the 2 extended models (models B and C), 
in terms of the differentiation of survival rates between groups, 
compared with the PROVAR only model (Supplemental Figure 8). 
Similarly, model B, with the addition of clinical factors to model 
A, did not add significant predictive power in the validation set.

Discussion
In this study, we identified 9 protein markers for predicting time 
to recurrence using the protein expression data on 222 TCGA pri-
marily high-grade serous ovarian cancers and developed a PROVAR 
risk classification system and successfully validated its discrimina-
tive ability to predict both PFS and OS in an independent valida-

tion set of 226 high-grade serous ovarian carcinomas. Unfortu-
nately, no targeted therapies are currently approved for treatment 
of ovarian cancer, and gynecologic oncologists cannot choose a 
specific treatment for a subpopulation of patients with ovarian 
cancer like HER2 inhibitors for patients with HER2+ breast cancer. 
In order to improve outcome in ovarian cancer, therapies that are 
potentially more effective but with increased rates of treatment-re-
lated adverse events, such as dose-dense chemotherapy (20) or 
combination of taxane, platinum, and bevacizumab (21, 22), may 
be administered to those patients identified as at high risk of 
early recurrence. A prediction approach based on a small number 
of proteins that can be measured using immunohistochemistry 
may be more practical and accurate in clinical management than 
methods based on gene expression linked to OS (8, 23). Validation 
of PROVAR in a prospective setting is required before it can be 
translated to clinical use.

We found a significant association between PFS (or OS) and the 
classification of patients by PROVAR in an external validation set. 
The training set (TCGA) and the validation set were found to be 
heterogeneous in terms of survival, which emphasizes the rele-
vance of this result. In contrast, several recently proposed gene-
driven models for predicting survival were unable to demonstrate 
significance for the prediction of PFS particularly in the validation 
set. (10–12). OS in ovarian carcinoma is influenced by various fac-
tors, such as differences in therapy after progression. Our model 
presents an advantage in being constructed based on PFS. We pro-
pose that including additional factors, such as BRCA mutation 
status, can further improve the accuracy of our predictions.

Statistical challenges of high dimensionality arise when pre-
dicting survival based on genomics or proteomics data when 
extracting meaningful statistical and biological information from 
high-dimensional data in which each biological sample is assessed 
with a large number of measurements (24). In this study, the lasso 
was used for variable selection and coefficient estimation simul-
taneously. The lasso is known to improve the overall prediction 
accuracy by sacrificing a little bias to reduce the variance of the 
predicted value (25). The highly correlated nature of genomic and 
proteomic data has led to methods that incorporate the correla-
tion structure among variables into a prediction model and to 
select a set of complementary features (24). One such approach 
is the group lasso, a generalization of the lasso that was designed 
to select the same features in all discriminant directions using a 
mixed-norm regularization over regression coefficients (26).

The robustness of the PROVAR signature was investigated 
through comparison of the 9 markers derived from the TCGA set 
and the 7 markers identified from the validation set. Although 
only the androgen receptor (AR) protein was found in both sig-
natures, a similarity in protein expression profiles was observed 
between the 2 sets of markers by hierarchical cluster analysis. 
Presurgical androgen-deprivation therapy is first-line therapy in 
nonmetastatic prostate cancer (27), and the impact of AR expres-
sion in ovarian carcinoma has been the subject of several studies 
(28–30). AR expression was a favorable prognostic factor for sur-
vival, and malignant transformation was found to involve down-
regulation of AR in patients with epithelial ovarian cancer. No 
differences in AR expression were observed between primary and 
metastatic ovarian tumors, suggesting that downregulation of AR 
occurs during early carcinogenesis (29). Transcriptome-based pre-
dictive analysis of treatment response in breast cancer has been 
shown to be highly accurate by multiple gene signatures. Despite 
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the very limited overlap between these signatures, they generally 
identified the same groups of responsive and nonresponsive breast 
tumors (31).

Interestingly, AR has been found to modulate EGFR signaling 
and to promote an aggressive phenotype by increasing the abun-
dance of phosphorylated EGFR and MAPK (30). Gene ontology 
analysis of the protein signature further confirmed the possi-
ble importance of the pEGFR and MEK/ERK signaling cascade. 
STAT5α, pMEK1, and pPKCα proteins, which are representative 
markers of 3 intracellular signaling (STAT signaling, PKC signal-
ing, and MEK/ERK signaling) pathways, play especially important 
roles associated with cell proliferation, survival, and cell invasion 
in cancer cells and the activation of these signaling pathways 
would be expected to be associated with shorter PFS/OS time in 
patients with ovarian cancer. Although inhibition of EGFR has 
not shown clear efficacy in treatment of ovarian carcinoma (32), 
MEK inhibitors have been reported to control low-grade disease, 
and combination therapy may provide a possible avenue toward 
improving outcome of patients with ovarian cancer (33, 34).

In conclusion, PROVAR is simple but predictive of time to 
progression and survival, making it potentially useful in clinical 
practice. Application of PROVAR could result in more direct and 
reliable insights into the mechanisms of recurrence after plat-
inum-based chemotherapy in patients with high-grade serous 
ovarian cancer. Integrating the protein signature with genetic 
mutations associated with survival will likely result in the most 
optimal predictive model of outcome. In the era of personalized 
medicine, identification of patients at high risk of early recurrence 
may provide clinicians with opportunities for early interference 
and positively impact survival for a group of patients in dire need 
of improved prospects.

Methods
Patient samples. Fresh-frozen samples were collected from newly diagnosed 
patients with serous ovarian carcinoma who were undergoing surgical 
resection prior to chemotherapy. Ovarian tumors that were diagnosed as 
of the serous histologic type, with at least 70% tumor purity per pathology 
review, were used in the subsequent analyses (9, 16). Specifically, for TCGA 
project, tumor specimens were collected as follows: (a) each tumor speci-
men was approximately 1 cm3 in size and weighed between 100 mg and 
200 mg; (b) each specimen was embedded in optimal cutting temperature 
(OCT) medium, and histologic sections were obtained from top and bot-
tom portions for review. As is the custom for tissues admitted to TCGA, 
all sections were reviewed by a pathologist from both the tissue source site 
and TCGA’s biospecimen core resource, and histology and cellularity were 
confirmed independently. In the validation set, tissue samples were col-
lected and snap frozen in liquid nitrogen immediately after surgical resec-
tion. In addition, adjacent tissues were formalin fixed and paraffin embed-
ded according to standard procedures at the time of primary surgery. The 
histological characteristics of all specimens were assessed on hematoxylin 
and eosin–stained sections by pathology review.

RPPA. RPPA is a high-throughput antibody-based technique for simulta-
neously measuring protein expression levels in a large number of biological 
samples (13, 35). For this study, RPPA analyses were performed at the RPPA 
core facility at MD Anderson Cancer Center using standard operating pro-
cedures and highly validated antibodies (35). Lysates were prepared from 
the frozen tumor samples and spotted in a serial dilution onto nitrocellu-
lose-coated slides. Each slide was then probed with a validated primary anti-
body followed by a secondary antibody. The signal obtained was amplified 
using a Dako Cytomation–catalyzed system (Dako) and visualized by DAB 

colorimetric reaction. The stained slides were scanned, analyzed, and quan-
tified using MicroVigene software (VigeneTech Inc.). Finally, a 3-parameter 
logistic model was assumed for the dependency of the observed intensity 
on the unknown protein expression, and protein expressions were esti-
mated iteratively with the logistic curve parameters using the least-squares 
method. This algorithm is implemented in the R package SuperCurve (36, 
37) (publicly available at http://bioinformatics.mdanderson.org/Software/
supercurve). To correct for batch and sample effects, we applied Z-normal-
ization to RPPA data derived from the training and validation sets before 
subsequent statistical analysis. Z-normalization was performed by sample-
wise median centering, protein-wise median centering, and protein-wise 
scaling (division by the standard deviation).

Validation of antibodies. Antibodies were validated by Western blot, and any 
antibody that did not produce a single predominant band was excluded. 
For proteins whose expression did not show a sufficiently dynamic range 
to facilitate antibody validation, siRNA was used to manipulate the signal 
to allow evaluation of RPPA-immunoblotting correlations. Details on the 
validation process of antibodies and the results on the set of antibodies 
included in RPPA assays have been described elsewhere (38). Results of 
Western blot analyses for our 9 protein markers, which compose PROVAR, 
using the same antibodies and using lysates from several cancer cell lines, 
are provided in Supplemental Figure 6.

Seven markers except pTAZ and HSP70 showed monospecific bands 
with high correlation coefficients between RPPA and Western blot–based 
protein expressions. Although HSP70 had a low correlation coefficient, it 
showed a distinct monospecific band. The low correlation was thought 
to be purely due to a narrow dynamic range of expression levels. Despite 
the relatively poor validation, pTAZ antibody was used for RPPA, because 
pTAZ is one of the markers that we believe may represent damaged 
tumor samples, and, thus, pTAZ antibody, more than being a specifically 
pTAZ-targeting antibody, is a marker for damaged tumor samples. Also, as 
shown in Table 2, pTAZ has a fairly significant association with PFS, which 
has led us to retain pTAZ in our protein pool.

RPPA profiling of TCGA samples. Quantitative protein expression profiles, 
consisting of 172 proteins and phosphoproteins, were generated using 
RPPA (Supplemental Table 5) and are now available at the TCGA portal 
(http://tcga-data.nci.nih.gov/tcga/). In total, 412 serous epithelial ovar-
ian cancer samples from TCGA were included in our data cohort. After 
excluding stage I patients, 222 cases had no missing values for PFS and 387 
cases had no missing values for OS. Patients with no missing values were 
included in the PFS analysis and OS analysis. Clinical information was 
downloaded (as of February 2, 2012) from the TCGA portal (http://tcga-
data.nci.nih.gov/tcga/). PFS was defined as the time from initial surgery 
to the first documented progression or recurrence or the last follow-up 
in the absence of progressive disease. OS was defined as the time between 
surgery and the last follow-up or cancer-related death. Both PFS and OS 
were capped at 60 months as described previously (16). The protein expres-
sion values, normalized by using Z-normalization (see RPPA), for the 387 
samples are provided in Supplemental Table 6.

RPPA profiles of validation cohort. An independent data set of patients with 
advanced-stage serous carcinoma was obtained from Philadelphia, Pennsyl-
vania, USA, and Japan, and the expression levels of overlapping proteins and 
phosphoproteins were measured by RPPA. In total, 144 proteins and phosp-
hoproteins were in common between RPPA data sets used for training and 
validation. All Japanese patients provided written informed consent for the 
collection of samples and subsequent analysis. All Japanese patients were 
treated with taxane and platinum-based chemotherapy as adjuvant che-
motherapy. All patients undergoing surgery, chemotherapy, or other treat-
ment for malignant gynecological and other tumors and patients treated 
for benign gynecologic conditions were eligible to donate biospecimens.
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Potential batch effects were adequately adjusted by using Z-normal-
ization (see RPPA). Tumor patients with nonmissing data on PFS (209 
patients) or OS (226 patients) were used for validation of predictive models 
of PFS or OS. In Supplemental Tables 7-1 and 7-2, the adjusted RPPA data 
are presented, for all validation samples.

Gene expression microarray data. Gene expression data were extracted to 
perform microarray analysis of gene expression profiles in the TCGA set 
for the purpose of comparison with protein markers. Level 3 microarray 
data in TCGA were obtained from the TCGA portal and were generated as 
described previously (16). The data were obtained from the Agilent plat-
form and were lowess normalized. At the time of access, 270 patient sam-
ples with both gene expression data and corresponding PFS times and 500 
patients with gene expression data and OS times were available for analy-
sis. In total, 378 samples had matching RPPA and gene expression profiles.

Gene expression data and clinical annotation are publicly available for 
a subset of validation samples (n = 130), and the data were downloaded 
from the GEO database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE32062). The data were obtained using the Agilent platform and 
were normalized in GeneSpring GX by setting threshold raw signals to 1.0 
and using the percentile shift algorithm to the 75th percentile.

Prediction of survival. In order to identify protein markers most associated 
with PFS, we applied an L1-constrained (lasso) Cox regression via cyclical 
coordinate descent algorithm (39) to the RPPA data in the training set  
(n = 222). The lasso produces sparse interpretable models by shrinking some 
variables to exactly zero (40). The coefficients (β) in Cox’s regression model 
are estimated by maximizing the partial likelihood function subject to a 
constraint on the L1-norm of the coefficients. The lasso estimator (β^ ) max-
imizes the objective function given below:

l(β) – λβ1
   (Equation 1)

Here l(β) is the log partial likelihood in the Cox model, and for the exact 
form of this function, see reference 41. The tuning parameter, λ, in Equa-
tion 1 was chosen by 10-fold cross-validation. For the implementation, we 
used the R package “glmnet” (39).

PROVAR was defined for each of the 222 TCGA samples as the sum of 
the estimated coefficients multiplied by protein expression levels, as shown 
below. Here i represents patients (i = 1,...,222), j represents proteins with 
non-zero coefficients (j = 1, ..., m), βj is the lasso coefficient of the jth protein 
marker, and Xij is the expression level of the jth protein for the ith patient.

PROVA = j = 1mβjXij
   (Equation 2)

Specifically, PROVAR was defined as follows: –0.096 × AR –0.075 × BID + 
0.029 × EEF2 –0.052 × pEGFR –0.027 × HSP70 + 0.025 × pMEK1 + 0.022 × 
pPKCα + 0.004 × STAT5α –0.058 × pTAZ. Each patient was classified into 
1 out of 2 risk groups according to the index (PROVAR), with the median 
value as a cutoff.

The test set was used to validate PROVAR. For each patient, PROVAR 
was computed in a similar way to Equation 2, and then patients were clas-
sified into 1 out of the 2 risk groups based on the index with the same 
cutoff value as for the training set. The log-rank test was used to assess the 
patient risk classification.

In order to evaluate PROVAR as an independent predictor of progression 
and survival, we considered univariate and multivariate Cox proportional 
hazards models with PROVAR and clinicopathologic factors (age, stage, 
grade, and surgery status) as covariates. Among these, age, stage, and grade 
were treated as ordinal continuous variables with natural ordering. Fur-

ther, risk scores were recalculated using regression coefficients from mul-
tivariate models, and patient classification by median split was evaluated 
by the log-rank test.

Gene-driven models. Restoration of DNA repair has been known to pro-
mote resistance to DNA-damaging chemotherapeutic agents (42, 43). In 
recent years, this mechanism has attracted attention (see Konstantinopo-
ulos et al., ref. 10; Kang et al., ref. 11). Also it was reported that a portion of 
ovarian tumors are characterized by high numbers of infiltrating T-lym-
phocytes and stromal cells, and those tumors can be recognized by expres-
sion profiling (44, 45). A very recent work extended this result and identi-
fied subtypes and survival gene expression signatures that could provide 
a prognostic model (Verhaak et al., ref. 12). All these 3 models were gene 
driven, and in comparison with our protein-driven model, the validity of 
the gene-based models was assessed using the subset of validation samples 
with matching protein and gene expression data (n = 130).

In Konstantinopoulos et al., the index of BRCA1/2-deficient phenotype 
was defined as the weighted sum of the expression levels of 60 genes (10). If 
the index was greater than a certain threshold, the sample was classified as 
BRCA-like (BL), and otherwise, the sample was classified as non-BRCA-like 
(NBL). It was concluded that patients with the BL profile had improved PFS 
and OS compared with patients with a NBL profile. Using the 60 genes and 
the weights provided in their study, we were able to compute the index of 
BRCA1/2-deficient phenotype for the subset of validation samples (n = 130). 
Due to potential microarray platform-specific effects with different scales 
and distributions of expression levels, we used the median index value of 
BRCA1/2-deficient phenotype over the 130 patients as a cutoff when divid-
ing patients into BL or NBL groups, instead of using the threshold pro-
posed in Konstantinopoulos et al. (10). It was found in their study that 20 
(29%) of the 70 patient validation cohort demonstrated the BL profile, and, 
similarly, we used the 70th percentile of index value as an additional cutoff 
so that the proportion of BL samples to NBL samples would be 3:7.

In Kang et al., a score was developed based on the expression levels of 23 
genes in DNA repair pathways (11). Per patient, a point was given for each 
gene associated with better survival if the expression was higher than the 
median expression and, on the other hand, a point was given for each gene 
associated with poorer survival if the expression was lower than the median 
expression across samples. The score was then defined for each patient as a 
simple sum of points. An assessment of whether each of the 23 genes was 
associated with better or poorer survival was provided in their article. Patients 
were classified into high-risk (i.e., low score) groups and low-risk (i.e., high 
score) groups using the median score as a cutoff. They reported that a signifi-
cantly improved survival was observed in the high-scoring group.

In Verhaak et al., a patient classification system, referred to as CLOVAR, 
was developed based on subtype and survival gene expression signatures (12). 
After selecting 100 genes whose expressions were most correlated or anticor-
related with OS, single-sample gene set enrichment analysis was performed 
to generate gene set activation scores for CLOVAR subtype and CLOVAR 
survival signatures. To adjust for batch effects, the scores were normalized 
by conversion into the [0, 1] interval within each data set. Each sample was 
then classified into 3 subtypes (immunoreactive, mesenchymal, and others) 
according to the normalized subtype scores with cutoffs specified (12). To 
combine CLOVAR subtype and CLOVAR survival signatures, a multivariate 
Cox proportional hazards model was considered with subtype classification 
and CLOVAR survival score as covariates. A risk score was computed for each 
sample, defined as a linear combination of covariates weighted by the Cox 
regression coefficients. Patients were classified into high-risk and low-risk 
groups using the median risk score as a cutoff. It was reported in this study 
that this patient classification significantly predicted OS (12). We were able 
to apply this classification scheme to our validation samples (n = 130) using 
the same Cox regression coefficients as found in Verhaak et al. (12).
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A total of 130 TCGA samples were available for testing of models A, 
B, and C, whereas 208 validation samples were included for evaluation 
of models A and B. BRCA1/2 mutation status was unavailable for the 
validation set. To allow comparison, Cox regression coefficients were 
estimated using 130 TCGA samples and all 3 models as well as 208 val-
idation samples for models A and B. Patients were classified into 2 risk 
groups according to their risk scores (i.e., predicted values derived from 
multivariate Cox regressions), with cutoff points at the median risk 
score in each model.

Statistics. Statistical analysis was performed using the R statistical com-
puting environment. The lasso was used to identify protein markers that 
were significantly associated with PFS. Univariate and multivariate Cox 
proportional hazards regression models were used with log-rank tests and 
Wald’s tests to assess differences in survival, and a P value of less than 0.05 
was considered significant.
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PROVAR at the genetic level. In order to see whether matching genes 
showed similar expression patterns to the protein markers, we examined 
whether PROVAR would preserve its predictive power at the genetic level 
by using expressions of the respective genes. A new index was generated by 
replacing expression levels of proteins with those of matching genes and 
retaining the same lasso coefficients. The cutoff was accordingly set at the 
median index value based on the matching genes.

Robustness of protein markers. In an attempt to test the robustness of the 
protein markers identified in the TCGA set, we used the validation set in 
reverse to identify protein markers using the lasso, and then we studied 
how much the 2 sets of protein markers were similar. Hierarchical cluster-
ing was used for this purpose. A χ2 test was used to determine the similarity 
of the patient classifications using the 9- and 7-protein signatures.

Comparison with molecular subtypes of ovarian cancer. A previous study (16) 
identified 4 main molecular subtypes and signatures of ovarian cancer. To 
examine similarity between gene and protein expression–based clustering, 
we performed hierarchical clustering to identify sample clusters using 
RPPA protein expression data and correlated the protein expression–based 
hierarchical clusters with the previously reported gene expression–based 4 
subtypes. To facilitate comparison, 4 clusters were generated by hierarchi-
cal clustering. A cross tabulation and χ2 test of independence were used to 
determine whether a significant association existed between them.

In our previous study (12), we reported that high-grade serous ovarian 
cancer samples do not consist of mutually exclusive expression subtypes 
but that samples often exhibit multiple signatures at different levels of 
activation. We therefore examined, for each subtype, whether the signature 
occurred more frequently in certain clusters.

Functional annotation of protein markers. To determine the functional link-
ages among our protein markers against the rest of the proteins in the 
TCGA set, we compared gene ontology of the PROVAR proteins with the 
remaining proteins of the RPPA platform using FatiGO (http://bioinfo.
cipf.es/babelomicswiki/tool:fatigo; refs. 46, 47). It extracts gene ontology 
terms or pathways that are significantly overrepresented in the gene set (or 
protein set) of interest compared with the genes of reference (or proteins). 
The reference is usually the rest of genes involved in the experiment. The 
statistical significance was evaluated by means of a Fisher’s exact test for 2 
× 2 contingency tables.

Associations of PROVAR signatures with genomic aberrations. We investigated 
whether PROVAR was significantly associated with genomic alterations by 
comparing PROVAR scores of altered samples with PROVAR scores of nonal-
tered samples. Segmented copy number data for 559 TCGA ovarian carcino-
mas were processed using the GISTIC2.0 pipeline, and genes were categorized 
into 1 out of 3 groups as previously described (48): (a) deep loss, (b) neutral, 
(c) high-level gain. Exon sequence data on 18,500 genes and 426 TCGA sam-
ples were available for somatic mutations. Two-sample Welch’s t tests and 
Mann-Whitney tests were performed on genes that showed alterations in at 
least 3% of samples. Correction for multiple testing was carried out using Ben-
jamini and Hochberg (49) or Benjamini and Yekutieli (50).

Combination of PROVAR with other factors. To see whether combining PRO-
VAR with known prognostic factors would enhance the performance in 
prediction, we assessed the additional predictive value of available factors, 
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