Cholestenoic acids regulate motor neuron survival via liver X receptors

Spyridon Theofilopoulos,1 William J. Griffiths,2 Peter J. Crick,2 Shanzheng Yang,1 Anna Meljon,2 Michael Ogundare,2 Satish Srinivas Kitambi,3 Andrew Lockhart,3 Karin Tuschi,4 Peter T. Clayton,4 Andrew A. Morris,5 Adelaida Martinez,6 M. Ashwin Reddy,1 Andrea Martinuzzi,8 Maria T. Bassi,9 Akira Honda,10 Tatsuki Mizuochi,11 Akihiko Kimura,11 Rebecca Schüle,15,16 Ludger Schöls,15,16 Andreas W. Sailer,17 Jens Kuhle,18 Matthew J. Fraidakis,19 Jan-Åke Gustafsson,20,21 Knut R. Steffensen,22 Ingemar Björkhem,22 Patrik Ernfors,1 Jan Sjövall,1 Ernest Arenas,2 and Yuqin Wang2

1Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 2College of Medicine, Swansea University, Swansea, United Kingdom. 3The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom. 4Translational Medicine, GlaxoSmithKline R&D China, Addenbrookes Hospital, Cambridge, United Kingdom. 5Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, United Kingdom. 6Paediatric Neurology and 7Department of Ophthalmology, Barts Health NHS Trust, London, United Kingdom. 8Scientific Institute IRCCS Eugenio Medea, Conegliano Research Centre, Conegliano, Italy. 9Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Lecco, Italy. 10Tokyo Medical University, Ibaraki Medical Center, Ami Ibaraki, Japan. 11Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan. 12Junshin Clinic, Bile Acid Institute, Tokyo, Japan. 13Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy. 14Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom. 15Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany. 16German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany. 17Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland. 18Neurology, University Hospital Basel, Basel, Switzerland. 19Rare Neurological Diseases Unit, Department of Neurology, University Hospital “Attikon,” Medical School of the University of Athens, Athens, Greece. 20Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA. 21Department of Biosciences and Nutrition, Center for Biosciences, Stockholm, Sweden. 22Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.

Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diiHCA) promoted maturation of precursors into islet-1+ cells, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3β,7α-diiHCA and 3βH,7O-CA, 3β-hydroxycholest-5-en-26-oic acid (3β-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paraparesis type 5 (SPGS) and cerebrotendinous xanthomatosis (CTX), respectively. SPGS is characterized by spastic paraparesis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPGS revealed an excess of the toxic LXR ligand, 3β-HCA, while patients with CTX and SPGS exhibited low levels of the survival-promoting LXR ligand 3β,7α-diiHCA. Moreover, 3β,7α-diiHCA prevented the loss of motor neurons induced by 3β-HCA in the developing mouse midbrain in vivo. Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death.

Introduction

The vertebrate CNS is composed of a wide variety of neurons that are generated following tightly regulated developmental programs. Characterization of the function and specificity of molecules working on distinct neuronal populations is thus essential in order to enhance our understanding of how such complexity is achieved in the developing brain and how it is maintained in the adult brain. One means of developmental and adult regulation is via nuclear receptors. Examples of nuclear receptors expressed in embryonic and adult brain having both a developmental role (1) and a function in the adult brain (2) are the liver X receptors (LXRs and LXRβ), which are activated by oxysterols (3, 4). Analysis of double-knockout Lxra+/−Lxrb−/− mice revealed that LXRs are required for neurogenesis during ventral midbrain (VM) development (1). Moreover, adult male Lxrb−/− show progressive accumulation of lipids in the brain and loss of spinal cord motor neurons, suggestive of a neuroprotective role of LXRs and their ligands on adult motor neurons (5). Similarly, the number of islet-1+ oculomotor neurons is lower in the developing midbrain of Lxra+/−Lxrb−/− mice, indicating a role of LXRs not only in the maintenance of...
adult motor neurons, but also in their development (1). In agreement with these findings, enzymes involved in the synthesis of cholesterol and oxysterols, such as 2,3-oxidosqualene-lanosterol cyclase, are localized in islet-1’ oculomotor neurons in the mouse VM at E11.5 (1). In addition to the above, we recently found that oxysterols and other endogenous brain LXR ligands are sufficient to regulate neurogenesis in the developing VM (1, 6). While endogenous brain LXR ligands have been identified and found to regulate the development of midbrain dopamine neurons and red nucleus neurons (6), to date, no endogenous ligand capable of regulating the survival of motor neurons in vivo has been identified. In a recent study, we found that cholesterol metabolites that had the capacity to activate LXRs can be identified in human cerebrospinal fluid (CSF) (7). In order to identify novel LXR ligands that regulate motor neuron function, we delved deeper into the human CSF sterolome and examined plasma of patients with 2 different human diseases associated with upper motor neuron degeneration, hereditary spastic paraparesis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX). These diseases result from mutations in the cytochrome P450 (CYP) genes CYP7B1 and CYP27A1, respectively (8-17). The enzymes coded by these genes are responsible for 7α-hydroxylation of oxysterols and (25R,26)-26-hydroxylation of sterols, respectively, reactions that generate further oxysterols and ultimately cholestenic acids (Figure 1A and ref. 18). Note that we have adopted the sterol nomenclature recommended by the lipid maps consortium: 26-hydroxycholesterol (26-HC) refers to cholest-5-ene-3β,7α-hydroxycholesterol (7α-H,3O-CA), 3β-hydroxycholest-5-en-26-oic acid (3β-H,26-OH,3O-CA) and novel identified metabolites in CSF, 3β,7α-diHCA and 3β,7β-dihydroxycholesterol-5-en-26-oic acid (3β,7β-diHCA). Precursors of these acids, including 26-HC and newly identified 7α,26-dihydroxycholesterol (7α,26-dihC; cholesterol-5-ene-3β,7α,26-triol) and 7α,26-dihydroxycholesterol-4-en-3-one (7α,26-dihCO), were also found, but at lower levels (0.15-0.03 ng/ml). Our results thus identified 4 novel oxysterol metabolites in human CSF that were downstream of 26-HC (Figure 1A). 26-HC is metabolized via 7α,26-dihHC and 7α,26-dihCO, or via 3β-HCA and 3β,7α-dihC, to 7α-OH,3O-CA. While 26-HC can cross the blood-brain barrier (BBB) and enter the brain from the circulation (25), 7α-OH,3O-CA traverses the BBB and is exported from the brain (26). Very low levels of 24S-hydroxycholesterol (24S-HC; cholest-5-ene-3β,24S-diol), 25-hydroxycholesterol (25-HC; cholesterol-5-ene-3β,25-diol), and newly identified 7α,25-dihydroxycholesterol (7α,25-dihC; cholesterol-5-ene-3β,7α,25-triol) and 7α,25-dihydroxycholesterol-4-en-3-one (7α,25-dihCO) were also found in CSF (0.08-0.03 ng/ml).

Reduced levels of 7α-hydroxylated cholestenic acids in CSF and plasma/serum of human patients with SPG5. SPG5 presents with upper motor neuron signs and results from mutations in CYP7B1, encoding the oxysterol 7α-hydroxylase responsible for 7α-hydroxylation of side-chain oxidized sterols that is required for extrahepatic synthesis of 7α-OH,3O-CA and its precursor, 3β,7α-diHCA (Figure 1A and ref. 18). In order to examine the pathogenic role of such mutations, we sought to identify alterations in oxysterol and cholestenic acid profiles in CSF and plasma from these patients and then examine the biological activities of the altered metabolites. We first studied the CSF from 3 patients with SPG5 (see Supplemental Table 3 for patient clinical data). Elevated levels of the CYP7B1 substrates 25-HC (P < 0.10), 26-HC (P < 0.07), and 3β-HCA (P < 0.02), as well as reduced levels of its products, 3β,7α-diHCA (P < 0.03) and 7α-H,3O-CA (P < 0.001), were found compared with 18 individual control subjects; similar results were found when the SPG5 patients were compared with 2 healthy carrier heterozygotes with a single mutation in CYP7B1 (Figure 1, F-I, and Supplemental Table 1). When plasma was analyzed from 9 SPG5 patients (8, 10, 14), significantly elevated 25-HC (P < 0.03), 26-HC (P < 0.001), and 3β-HCA (P < 0.02) and reduced 3β,7α-diHCA (P < 0.001) and 7α-H,3O-CA (P < 0.02) were found compared with control subjects (Figure 1, B-E, and Supplemental Table 2). Similar differences were found between patient samples and 3 healthy carriers. This indicates that for these metabolites, plasma represents a good surrogate for CSF. However, while 3β,7α-diHCA and 7α-H,3O-CA in the CNS is normally derived from 26-HC, that found in the circulation can be derived via either the 26-HC or the 7α-hydroxycholesterol (7α-HC; cholest-5-ene-3β,7α-diol) pathway (acidic and neutral, respectively) of bile acid biosynthesis (18). Thus, in SPG5 patients (CYP7B1 mutation), the liver-specific 7α-hydroxylase CYP7A1 (neutral pathway) accounts for the residual content of 3β,7α-diHCA and 7α-H,3O-CA found in the

Results
Specific cholestenic acids are abundant in human CSF. We have previously shown that cholestenic acids are abundant in human plasma (23, 24) and that human CSF also contains specific cholestenic acids (7). Surprisingly, in CSF, the levels of cholestenic acids were higher than those of oxysterols. In this study, we delved deeper into the CSF sterolome, particularly into the cholestenic acid portion, using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis. We hereby report the exact identity of 16 oxysterols and downstream metabolites, including cholestenic acids, found in human CSF (Supplemental Table 1; supplemental material available online with this article; doi:10.1172/JCI68506DS1). The most abundant of these metabolites (19.48-0.40 ng/ml; Supplemental Figure 1) were 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7α-H,3O-CA), 3β-hydroxycholest-5-en-26-oic acid (3β-HCA), and 2 newly identified metabolites in CSF, 3β,7α-diHCA and 3β,7β-dihydroxycholesterol-5-en-26-oic acid (3β,7β-diHCA). Precursors of these acids, including 26-HC and newly identified 7α,26-dihydroxycholesterol (7α,26-dihC; cholesterol-5-ene-3β,7α,26-triol) and 7α,26-dihydroxycholesterol-4-en-3-one (7α,26-dihCO), were also found, but at lower levels (0.15-0.03 ng/ml). Our results thus identified 4 novel oxysterol metabolites in human CSF that were downstream of 26-HC (Figure 1A). 26-HC is metabolized via 7α,26-dihHC and 7α,26-dihCO, or via 3β-HCA and 3β,7α-dihC, to 7α-OH,3O-CA. While 26-HC can cross the blood-brain barrier (BBB) and enter the brain from the circulation (25), 7α-OH,3O-CA traverses the BBB and is exported from the brain (26). Very low levels of 24S-hydroxycholesterol (24S-HC; cholest-5-ene-3β,24S-diol), 25-hydroxycholesterol (25-HC; cholesterol-5-ene-3β,25-diol), and newly identified 7α,25-dihydroxycholesterol (7α,25-dihC; cholesterol-5-ene-3β,7α,25-triol) and 7α,25-dihydroxycholesterol-4-en-3-one (7α,25-dihCO) were also found in CSF (0.08-0.03 ng/ml).

...
levels of toxic 3β-hydroxy-5-ene acids, may contribute to the pro-
gressive liver disease in these patients at an early age.

CTX is a second human disease that may present with signs
of motor neuron loss. It is characterized by mutations in
CYP27A1.

We found that the plasma of patients with CTX was essentially
devoid of 26-HC and the downstream cholestenoic acids (Fig-
ure 1, B–E, and Supplemental Table 2). As reported previously
(33), elevated levels of 7α-HC plus 7α-hydroxycholest-4-en-3-
one (7α-HCO) and/or 7α,12α-dihydroxycholesterol (7α,12α-diHC;
cholest-5-ene-3β,7α,12α-triol) plus 7α,12α-dihydroxycholest-4-
en-3-one (7α,12α-diHC0) were observed (Supplemental Table 2).

The absence of cholestenoic acids in plasma indicates an inabil-
ity to biosynthesize C27 acids in extrahepatic steroidogenic tissue,
including the CNS.

circulation. We previously investigated the plasma oxysterol and
cholestenoic acid profile of 3 infants with mutations in
CYP7B1 (Supplemental Table 2) resulting in oxysterol 7α-hydroxy-
dehydrogenase deficiency (O7AHD) and neonatal liver disease (27–30), as well
as SPG5 in adults (31). The first identification of CYP7B1 muta-
tions were found in a child with severe cholestasis (32), defining
a new inborn error of bile acid biosynthesis. As expected by the
absence of functional CYP7B1 in these patients, we found very low
plasma levels of 3β,7α-diHCA (P < 0.001; Figure 1D and Supple-
mental Table 2), as described above for SPG5. These patients also
had considerably elevated plasma levels of 24S-HC, 25-HC, and
high levels of hepatotoxic 3β-hydroxychol-5-en-24-
oic acid (3βH-Δ5-BA) compared with SPG5 patients and controls.

level of toxic 3β-hydroxy-5-ene acids, may contribute to the pro-
gressive liver disease in these patients at an early age.

CTX is a second human disease that may present with signs
of motor neuron loss. It is characterized by mutations in
CYP27A1.

We found that the plasma of patients with CTX was essentially
devoid of 26-HC and the downstream cholestenoic acids (Fig-
ure 1, B–E, and Supplemental Table 2). As reported previously
(33), elevated levels of 7α-HC plus 7α-hydroxycholest-4-en-3-
one (7α-HCO) and/or 7α,12α-dihydroxycholesterol (7α,12α-diHC;
cholest-5-ene-3β,7α,12α-triol) plus 7α,12α-dihydroxycholest-4-
en-3-one (7α,12α-diHC0) were observed (Supplemental Table 2).

The absence of cholestenoic acids in plasma indicates an inabil-
ity to biosynthesize C27 acids in extrahepatic steroidogenic tissue,
including the CNS.

Figure 1. Biosynthesis of cholestenoic acids in brain and levels of cholestenoic acids in the circulation and CSF. (A) Suggested metabolic pathway for
the biosynthesis of 3β-HCA, 3β,7α-diHCA, 3β,7β-diHCA, and 7αH,3β-CA. Sterols are abbreviated according to cholesterol (C), cholest-4-en-3-one (CO), and
cholesten-26-oic acid (CA) structures; numbers (with Greek letters) indicate the location of hydroxy (H) and oxo (O) groups. The enzymes in the pathway
are indicated. With the exception of the epimerase, each enzyme is known to be expressed in brain. Enzyme defects in CTX and SPG5 are depicted by solid
bars across arrows. Metabolites that are toxic toward neurons (red) or neuroprotective (green) are indicated. (B–E) Levels of (B) 26-HC, (C) 3β-HCA, (D)
3β,7α-diHCA, and (E) 3β,7β-diHCA in plasma/serum from control subjects (Cn; n = 50), CTX patients (n = 4), SPG5 patients (Sp; n = 9), SPG5 carriers (Sc;
n = 3) and infants with O7AHD (7α; n = 3). (F–I) Levels of (F) 26-HC, (G) 3β-HCA, (H) 3β,7α-diHCA, and (I) 3β,7β-diHCA in CSF from control subjects (n = 18),
SPG5 patients (n = 3), and SPG5 carriers (n = 2). Measurements were made by LC-ESI-MS (see Supplemental Tables 1 and 2). *P < 0.05, **P < 0.01,
***P < 0.001 vs. control, Dunnett T3 test.
In summary, our data showed specific changes in 7α-hydroxylated cholestenoic acids in plasma of CTX and SPG5 patients; we thus decided to examine their effect on neural function.

Specific cholestenoic acids are ligands to LXRα and LXRβ in neural cells. In order to gain insights into the mechanism by which alterations in cholesterol metabolism causes neurological disease, we studied whether any of the cholestenoic acids present at high levels in control human CSF and deregulated in CSF or plasma of SPG5 or CTX patients work as LXR ligands. We thus focused on 26-HC, 3β-HCA, 3β,7α-diHCA, its isomer 3β,7β-diHCA, and 7αH,3O-CA (Figure 1A) and tested their capacity to activate LXRα and LXRβ in neural cells. We previously found that 3β-HCA activates LXR (7) and here observed that 3β,7α-diHCA, its isomer 3β,7β-diHCA, and the necessary intermediate for the interconversion of the isomers, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA), had the ability to activate both LXRs and therefore act as LXR ligands in neural cells (Figure 2A and Supplemental Figure 2, A and B). 3β,7α-diHCA was the most potent choleste-noic acid, exhibiting 61% activity/efficacy toward LXRα activation compared with the known LXR ligand 22R-hydroxycholesterol (22R-HC; cholest-5-ene-3β,22R-diol), followed by 3β-HCA and 3β,7β-diHCA (Supplemental Figure 2B). However 3β,7β-diHCA
had the lowest 50% effective concentration (EC50), followed by 3β,7α-diHCA and 3β-HCA. In addition, we confirmed in our system the capacity of 24S-HC and 25-HC to activate LXR and observed that 26-HC had no significant effect. We also tested the activation capacity of 7αH,3O-CA, its 7β-isomer, 7β-hydroxy-3-oxocolesterol-4-en-26-oic acid (7βH,3O-CA), and the precursors 7α,26-diHCA and 7α,26-dihCCO, none of which showed significant activity (Figure 2A and Supplemental Figure 2A). Moreover, in order to examine whether the identified acidic ligands exert their effect by binding to LXR, we used the LXR antagonist geranylgeranyl pyrophosphate (GGPP; ref. 34), which blocked their activity (Figure 2C), indicating that the acids are indeed LXR ligands. The activity of the known LXR ligands 22R-HC and 25-HC was similarly blocked. In order to confirm that the cholestenoic acids are indeed agonists to LXR, we tested the LXRβ activational capacity of 3β,7α-diHCA, 3β,7β-diHCA, or 3β-HCA in combination with 22R-HC. No additive effect was observed (Supplemental Figure 3A), which indicates that these cholestenoic acids work, as does 22R-HC, via LXR. To further examine the specificity of the cholestenoic acids described above, farnesoid X receptor (FXR) luciferase reporter assays were performed (Figure 2B). As previously described (35), chenodeoxycholic acid (CDCA; 3α,7α-dihydroxy-5β-cholan-24-oic acid) activated FXR. Interestingly, 3βH-Δ5-BA (36), a cholesterol metabolite identified in plasma (Supplemental Table 2), also activated FXR, but was less potent than CDCA. However, none of the other compounds tested activated the FXR luciferase reporter or modulated the activity of CDCA in neural cells (Figure 2B and Supplemental Figure 3B). Thus, the cholestenoic acids do not exert their effect via modulating the activity of the FXR nuclear receptor or its ligands. Similarly, cholestenoic acids did not activate luciferase reporter assays under the control of a DR5 element (activated by Nur-related factor 1/retinoid X receptor [NURR1/ RXR] heterodimers), whereas 9-cis-retinoic acid (9-cis-RA) activated this reporter (Supplemental Figure 2D). Furthermore, while lithocholic acid (LCA; 3α-hydroxy-5β-cholan-24-oic acid) activated a vitamin D receptor (VDR) luciferase reporter, none of the cholestenoic acids tested showed any significant effect on VDR activation in neural cells (Supplemental Figure 2C). Thus, our results indicate that 3β-HCA (7), 3β,7α-diHCA, and 3β,7β-diHCA are specific LXR ligands in neural cells.

Specific cholestenoic acids bind and activate LXR. In order to show that specific cholestenoic acids directly interact with LXR, we performed a binding and activation fluorescence resonance energy transfer (FRET) assay, in which ligand binding to the ligand binding domain (LBD) of LXRβ (referred to herein as LXRβ-LBD) recruits a fluorescent coactivator. 3β,7α-diHCA induced FRET, in a dose-dependent manner, to a greater extent than the other acids, but to a lesser extent than the known LXR ligands GW3965 and 24S,25-epoxycholesterol (24,25-EC; 3β-hydroxycholest-5-en-24S,25-epoxide) (Figure 2D). The respective efficacy (GW3965-normalized) and EC50 values were 1 and 4.04 μM for GW3965, 0.79 and 4.94 μM for 24,25-EC, 0.41 and 4.16 μM for 3β,7α-diHCA, 0.25 and 4.51 μM for 3β,7β-diHCA, and 0.27 and 3.83 μM for 3β-HCA. To provide further evidence that cholestenoic acids are LXR ligands in neural cells, we treated neural cells with the individual acids for 3 hours and measured Abca1, Abcg1, and Srebf1 transcript levels. 3β,7α-diHCA increased transcripts levels to a similar degree as 22R-HC, while 3β,7β-diHCA and 3β-HCA induced transcription, but to a lesser extent (Figure 2E). These results provide further proof that 3β-HCA, 3β,7α-diHCA, and 3β,7β-diHCA are specific LXR ligands in neural cells.

3β,7α-diHCA and 3βH,7O-CA increase islet-1 expression in islet-1-GFP zebrafish embryos. Having established that cholestenoic acids that are altered in CTX or SPG5 can activate LXRs in vitro, we next sought to identify their effect in vivo. In particular, we focused on the expression of islet-1, a transcription factor expressed in all postmitotic motor neurons (20, 37) and required for multiple aspects of motor neuron development, including motor neuron specification, motor column formation, axonal growth, and maintenance of spinal motor neuron identity (38). We used transgenic zebrafish embryos expressing GFP driven by the isl1 gene promoter/enhancer sequences (Tg isl1:GFP) (39, 40) to screen for biologically active compounds in vivo. Previous studies have indicated that islet-1 protein is required for the formation of zebrafish primary motor neurons and is conserved throughout vertebrate evolution (21). Treatment of Tg isl1:GFP embryos with the weak LXR ligands 3β-HCA and 3β,7β-diHCA, as well as CDCA, the most potent FXR ligand, had a deleterious toxic effect that impaired survival and precluded further in vivo analysis. Interestingly, we found that 2 LXR agonists, 3β,7α-diHCA and 3βH,7O-CA, increased islet-1-GFP expression, but had no significant effect on the number of islet-1 cells, in the different cranial nerves examined (loci III, IV, V, VII, and X; Figure 3, A and B). These effects were specific, as 7αH,3O-CA, which is not an LXR ligand, failed to regulate islet-1-GFP expression (Figure 3B). Notably, the increase in islet-1–GFP expression observed in response to the specific acidic compounds was evident in all cranial nerves studied (Figure 3B). Importantly, the increased islet-1–GFP expression in response to 3β,7α-diHCA and 3βH,7O-CA was also accompanied by an increased level of isl1 mRNA, as assessed by quantitative PCR (Figure 3C). To further verify our results, we examined whether these cholestenoic acids regulated the in vivo expression of endogenous LXR target genes, such as abca1. Our results showed enhanced expression of abca1 by both 3β,7α-diHCA and 3βH,7O-CA, but not by 7αH,3O-CA (Figure 3D). Finally, in order to determine whether these effects are actually mediated by LXRs, we performed kdr morpholino (MO) injections in Tg isl1:GFP zebrafish. Interestingly, we found that kdr MO injections abolished the in vivo increase in islet-1–GFP levels by 3β,7α-diHCA and 3βH,7O-CA, compared with control scrambled MO (Supplemental Figure 4). Thus, our data showed that cholestenoic acids are capable of activating endogenous LXR target genes in vivo and regulate the in vivo expression of islet-1 in brain motor neurons via LXR.

3β,7α-diHCA and 3βH,7O-CA increase, whereas 3β,7β-diHCA and 3β-HCA decrease, the number of rodent oculomotor neurons in vitro. In order to determine the functional relevance of our findings in mammalian cells, we examined whether any of the cholestenoic acids present in human CSF and implicated in motor neuron loss are also capable of regulating islet-1 expression in mouse primary brain progenitor cultures. We first performed dose-response analysis of the cholestenoic acids of interest, using a wide range of concentrations; whereas 3β,7α-diHCA and 3β-HCA caused loss of islet-1 cells in the cultures, equimolar concentra-
tor cell numbers (Figure 4A). EC_{50} values were 5.21 μM for 3βH,7O-CA, and IC_{50} values were 4.44 μM for 3βH,7O-CA were specific, as they did

not affect the number of other midbrain neurons, such as tyrosine hydroxylase–positive (TH+) dopamine neurons, GABAergic neurons, or red nucleus neurons in the cultures (data not shown). In order to examine whether the effects of 3β,7α-diHCA and 3βH,7O-CA were specifically mediated by LXR receptors in the rodent brain, we performed progenitor cell cultures from Lxra−/−Lxrb−/− mice. Remarkably, the effects of 3β,7α-diHCA and 3βH,7O-CA (at their most efficient concentration) on islet-1− neurons were eliminated (Figure 4C), confirming that they regulate the number of islet-1− cells in the rodent brain through LXRs. Moreover, the effects of these acids were blocked by GGPP (Figure 4D), further suggesting that the observed effects were mediated by LXR receptors.

Interestingly, 26-HC, a precursor of cholestenoic acids in the acidic pathway of bile acid biosynthesis (18) that had no LXR activational effect in luciferase assays in neural cells (Figure 2 and ref. 6), also exhibited no effect on the number of islet-1− cells (data not shown). Furthermore, the effects of 3β,7α-diHCA, 3β,7β-diHCA, and 3βH,7O-CA on islet-1− cells were not altered by the known LXR ligand 22R-HC (Supplemental Figure 3C), which does not show an effect toward islet-1− cells. These findings are very exciting, as none of the previously known endogenous brain LXR ligands selectively regulate neurogenesis and/or survival of other cell populations in the developing midbrain (6). We thus sought to examine the mechanism by which 3β,7α-diHCA and 3βH,7O-CA increase the number of islet-1− cells and studied their role in neurogenesis, proliferation, and motor neuron survival in the developing brain.

3β,7α-diHCA promotes rodent oculomotor neuron survival in vitro, whereas 3β,7β-diHCA and 3β-HCA are toxic. Neurogenesis was examined in BrdU pulse-chase experiments, in which neuronal progenitors in primary cultures are labeled with a pulse of BrdU at the beginning of the experiment and then are examined for their differentiation into motor neurons, as assessed by the acquisition

not affect the number of other midbrain neurons, such as tyrosine hydroxylase–positive (TH+) dopamine neurons, GABAergic neurons, or red nucleus neurons in the cultures (data not shown). In order to examine whether the effects of 3β,7α-diHCA and 3βH,7O-CA were specifically mediated by LXR receptors in the rodent brain, we performed progenitor cell cultures from Lxra−/−Lxrb−/− mice. Remarkably, the effects of 3β,7α-diHCA and 3βH,7O-CA (at their most efficient concentration) on islet-1− neurons were eliminated (Figure 4C), confirming that they regulate the number of islet-1− cells in the rodent brain through LXRs. Moreover, the effects of these acids were blocked by GGPP (Figure 4D), further suggesting that the observed effects were mediated by LXR receptors.

Interestingly, 26-HC, a precursor of cholestenoic acids in the acidic pathway of bile acid biosynthesis (18) that had no LXR activational effect in luciferase assays in neural cells (Figure 2 and ref. 6), also exhibited no effect on the number of islet-1− cells (data not shown). Furthermore, the effects of 3β,7α-diHCA, 3β,7β-diHCA, and 3βH,7O-CA on islet-1− cells were not altered by the known LXR ligand 22R-HC (Supplemental Figure 3C), which does not show an effect toward islet-1− cells. These findings are very exciting, as none of the previously known endogenous brain LXR ligands selectively regulate neurogenesis and/or survival of other cell populations in the developing midbrain (6). We thus sought to examine the mechanism by which 3β,7α-diHCA and 3βH,7O-CA increase the number of islet-1− cells and studied their role in neurogenesis, proliferation, and motor neuron survival in the developing brain.

3β,7α-diHCA promotes rodent oculomotor neuron survival in vitro, whereas 3β,7β-diHCA and 3β-HCA are toxic. Neurogenesis was examined in BrdU pulse-chase experiments, in which neuronal progenitors in primary cultures are labeled with a pulse of BrdU at the beginning of the experiment and then are examined for their differentiation into motor neurons, as assessed by the acquisition

Downloaded from http://www.jci.org on February 25, 2018. https://doi.org/10.1172/JCI68506
Figure 4. Specific cholestenoic acids increase the number of islet-1+ oculomotor neurons, promote neuronal survival, or are toxic in mouse E11.5 brain primary cultures. (A) Dose-response curves for quantification of islet-1+ cells in mouse E11.5 brain primary cultures from WT embryos treated with the indicated compounds. *P < 0.05 vs. vehicle for ≥5 μM 3β,7α-diHCA, ≥10 μM 3βH,7O-CA, ≥2 μM 3β,7β-diHCA, and ≥2 μM 3β-HCA, Mann-Whitney test. (B) Representative islet-1- and NKX6.1-stained cell nuclei treated with 3β,7α-diHCA (10 μM), 3βH,7O-CA (10 μM), 3β,7β-diHCA (2 μM), or 3β-HCA (2 μM). (C) Quantification of islet-1+ cells in primary cultures from WT or Lxra–/–Lxrb–/– embryos treated with 3β,7α-diHCA or 3βH,7O-CA (10 μM). *P < 0.05 vs. vehicle, Mann-Whitney test. (D) Effect of 10 μM GGPP on treatment in the WT group. *P < 0.05, Mann-Whitney test. (E) Dose–response curves for quantification of active caspase-3+ cells in mouse E11.5 brain primary cultures. Very high cell death in the cultures is denoted by †. *P < 0.05 vs. vehicle for ≥10 μM 3β,7α-diHCA, ≥2 μM 3β,7β-diHCA, and ≥2 μM 3β-HCA, Mann-Whitney test. (F) Representative active caspase-3- and islet-1-stained cell nuclei treated as in B. (G) Quantification of active caspase-3+ cells in primary cultures (WT group) treated as indicated, with or without 10 μM GGPP. *P < 0.05 vs. vehicle or as indicated by brackets, Mann-Whitney test. All data are mean ± SEM (n = 3). Scale bars: 20 μm.
ber of BrdU+ cells in the cultures (Supplemental Figure 6B), which suggests that they do not modulate proliferation. Finally, we tested whether cholestenoic acids regulate neuronal survival, as assessed by active caspase-3 staining to detect the number of cells undergoing apoptosis in the cultures. Interestingly, treatment with 3β,7α-diHCA rescued the toxic effect of 2 μM 3β,7α-diHCA or 3β-HCA on islet-1+ cells and reduced neuronal cell death induced by these acids, as indicated by the number of active caspase-3+ cells, in mouse E11.5 brain primary cultures. *P < 0.05, **P < 0.01, Mann-Whitney test. (F) Mouse embryos were injected with vehicle or cholestenoic acid into the mesencephalic ventricle in utero at E11.5 and collected at E13.5. (G–N) Midbrain coronal sections showing islet-1+ motor neurons (green) and neighboring TH+ neurons (red) (G–J), and higher magnification of islet-1+ cells (K–N), for embryos injected with vehicle (G and K), 5 μM 3β,7α-diHCA (H and L), 1 μM 3β-HCA (I and M), and 1 μM 3β-HCA plus 5 μM 3β,7α-diHCA (J and N). (O) Quantification of islet-1+ cell number in each group. *P < 0.05, **P < 0.01, 1-way ANOVA with LSD post-hoc test. Scale bars: 100 μm (G–J); 20 μm (K–N). All data are mean ± SEM (n = 3).

of islet-1 expression, a marker for motor neuron fate (41). Surprisingly, none of the cholestenoic acids studied affected the number of double-positive BrdU+islet-1+ cells (Supplemental Figure 6A), which indicates that they do not promote motor neuron neurogenesis. Similarly, none of the cholestenoic acids affected the total number of BrdU+ cells in the cultures (Supplemental Figure 6B), which suggests that they do not modulate proliferation. Finally, we tested whether cholestenoic acids regulate neuronal survival, as assessed by active caspase-3 staining to detect the number of cells undergoing apoptosis in the cultures. Interestingly, treatment with 3β,7α-
diHCA over a wide range of concentrations decreased the number of active caspase-3+ cells, whereas 3β,7o-CA had no effect (Figure 4, E and F). Since proliferation, neurogenesis, and cell death were not affected by 3β,7o-CA, we attribute the increase in islet-1' cells to an increase in differentiation, given the known role of islet-1 in this process (20). Cholestenoic acids that reduced the number of islet-1' cells were also examined for their capacity to induce cell death in oculomotor neuron cultures. Interestingly, low concentrations of either 3β,7a-diHCA or 3β-HCA increased the number of active caspase-3' cells (Figure 4, E and F), with toxicity starting at 1 μM. No surviving cells were detected when cultures were treated with concentrations of 3β,7a-diHCA or 3β-HCA higher than 5 μM. Time-course experiments showed that toxicity was evident after 2 days of incubation (Supplemental Figure 5B).

The survival-promoting effect of 3β,7a-diHCA was completely blocked by coincubation with GGPP (Figure 4G), which indicated that this effect was mediated by LXR. Conversely, the cell death effects of 3β,7a-diHCA or 3β-HCA (at 2 μM) were not blocked by GGPP (Figure 4G), which suggested that the survival-promoting effects of 3β,7a-diHCA, but not the toxic effects of 3β,7β-diHCA or 3β-HCA, were mediated by LXR.

We next examined whether the toxic effects of 3β,7β-diHCA or 3β-HCA could be mediated by receptor blockade or competition. We first performed a binding and activation FRET assay using 3β,7a-diHCA at its most effective concentration and increasing concentrations of 3β,7β-diHCA or 3β-HCA. We found that 3β,7β-diHCA and 3β-HCA reduced the binding of 3β,7a-diHCA in a dose-dependent manner (Figure 5A), which indicates that these toxic cholestenoic acids compete with the neuroprotective 3β,7a-diHCA for binding to the LXRβ-LBD. Kᵣ values were 0.91 μM for 3β-HCA and 1.22 μM for 3β,7β-diHCA.

Furthermore, we performed competition experiments using the known LXR ligand 24,25-EC (at its most effective concentration) and increasing concentrations of each of the cholestenoic acids studied. 3β,7α-diHCA, 3β-HCA, and 3β,7β-diHCA each reduced the binding of 24,25-EC to the LXRβ-LBD in a dose-dependent manner (Figure 5B), which suggests that each of these cholestenoic acids competes with 24,25-EC for binding to the LXRβ-LBD. 3β-HCA had the lowest Kᵣ value (3β,7α-diHCA, 3.56 μM; 3β,7β-diHCA, 3.45 μM; 3β-HCA, 2.43 μM).

In order to further prove that 3β,7a-diHCA, 3β-HCA, and 3β,7β-diHCA are specific LXR ligands in neural cells, we incubated the acids with GGPP (6). This antagonized and inhibited the ligand-dependent induction of FRET by 3β,7α-diHCA, 3β-HCA, and 3β,7β-diHCA as well as by the known LXR ligand 24,25-EC (Figure 5C), which indicates that 3β,7α-diHCA, 3β-HCA, and 3β,7β-diHCA bind to LXRα. The Kᵣ values for the compounds of interest when incubated with GGPP were 3.96 μM for 24,25-EC, 1.95 μM for 3β,7α-diHCA, 2.51 μM for 3β,7β-diHCA, and 2.02 μM for 3β-HCA.

We next tested whether 3β,7α-diHCA could also compete and reduce the toxic effect of 3β,7β-diHCA or 3β-HCA. Treatment with 10 μM 3β,7α-diHCA reversed the loss of islet-1' cells and the increased number of activated caspase-3' cells induced by 2 μM of 3β,7β-diHCA or 3β-HCA (Figure 5, D and E). These observations reinforce the notion of balance between the survival- and death-inducing effects of cholestenoic acids and suggest a new avenue for therapeutic intervention.

3β,7α-diHCA promotes survival of rodent motor neurons in vivo and prevents toxicity by 3β-HCA. In order to examine whether the observed effects of cholestenoic acids on motor neuron survival could also be detected in the mammalian brain in vivo, we performed cholestenoic acid injections into the cerebral aqueduct of E11.5 mice in utero and analyzed brain sections at the midbrain level at E13.5 (Figure 5F). While only occasional double-positive islet-1' activate caspase-3' cells remained at the end of the experiment (Supplemental Figure 7), reliable cell counts could be performed for islet-1' and TH (Figure 5, G–O). 3β,7α-diHCA did not affect the number of TH' neurons, but increased the number of islet-1' oculomotor neurons, indicative of a selective survival effect of 3β,7α-diHCA on oculomotor neurons in vivo. Upon injection of 3β-HCA, the number of islet-1' oculomotor neurons was reduced, showing the toxic effect of this metabolite on motor neurons in vivo. Finally, coinjection of 3β-HCA and 3β,7α-diHCA reversed the loss of oculomotor neurons induced by 3β-HCA, indicating that 3β,7α-diHCA protects oculomotor neurons against cholestenoic acids such as 3β-HCA in vivo. These data further confirm the specificity of the neuronal survival and toxic effects of these cholestenoic acids on islet-1' neurons, but not TH' neurons, as well as the competitive interaction between prosurvival and toxic cholestenoic acids on motor neurons in vivo.

In summary, our results indicate that cholestenoic acids regulate the number of islet-1' motor neurons by controlling islet-1 expression (3β,7o-CA) and competitively regulating neuronal survival in a positive (3β,7a-diHCA) or negative (3β,7β-diHCA and 3β-HCA) manner.

Discussion

The results presented herein show that cholestenoic acids are not mere intermediate metabolites of bile acid biosynthesis, but rather represent a diverse family of bioactive compounds capable of regulating nuclear receptor function. Cholestenoic acids were found to specifically activate LXR and elicit an exquisite array of functions, ranging from the regulation of islet-1 expression to the positive and negative regulation of motor neuron survival both in vitro and in vivo. Moreover, our findings identified cholestenoic acids in human CSF to be deregulated in plasma of CTX and SPG5 patients. Importantly, an absence of neuroprotective cholestenoic acids was found in CTX patient plasma, while a combination of decreased neuroprotective and increased toxic cholestenoic acids was detected in SPG5 plasma. These results are consistent with cholestenoic acids being key regulators of motor neuron function in development and disease.

Cholesterol is present at high levels in the CNS of vertebrates and is metabolized in brain predominantly to 24S-HC (42), which accounts for about two-thirds of brain cholesterol metabolism (43). Low levels of 26-HC have been found in human and mouse brain (Supplemental Results and Supplemental Table 4) and in human CSF, where it may be imported from the blood (25, 44–46). Conversely, 7αH,3β-CA, a metabolic product of 26-HC, is exported from brain to blood in humans (26). In the current study, we found 4 intermediates in the biosynthesis of 7αH,3β-CA from 26-HC via CYP27A1 and CYP7B1 to be present in normal CSF: 3β-HCA, 3β,7α-diHCA, 7α,26-diHIC, and 7α,26-diHCO (Figure 1A). While 3β-HCA and 7α,26-diHIC were previously found in human neu-
ral tissue (46, 47), 3β,7α-diHCA and 7α,26-diHCO have not been previously found in neural tissue or CSF. Importantly, the identification of these intermediates in the biosynthesis of 7αH,30-CA lends further support to the hypothesis that 7αH,30-CA is biosynthesized in the human brain (26). This pathway is also conserved in rodents, in which 26-HC is the precursor for the synthesis of 3βHCA in fetal neurons and of 3β,7α-dihCA and 7αH,30-CA in fetal astrocytes (Figure 1A and ref. 48). There have been few studies of specific brain regions for cholestenoic acids; however, human retina has been found to contain 3βHCA at a level of up to 100 pmol/mg protein, about 10% of the level of 24S-HC in brain gray matter (47), whereas in chronic subdural hematoma, 7αH,30-CA has been found at a level of 1.5 μM (49). Future studies will be directed at profiling cholestenoic acids in distinct brain regions.

Surprisingly, Cyp7b1−/− and Cyp27a1−/− mice, unlike human SPG5 patients and some CTX patients, do not suffer from motor neuron disease, despite an absence of 3β,7α-dihCA in brain and plasma (Supplemental Table 4). These findings suggest that other LXR ligands may compensate for the accumulative effect of altered levels of cholestenoic acids in Cyp7b1−/− and Cyp27a1−/− mice.

Classic studies by Lehmann et al. (4) and Janowski et al. (3) defined the general structural requirements of steroidal LXR ligands to be a 3β-hydroxy-5-ene function in the ring system and a hydroxy, oxo, or epoxide function on the C-17 side-chain (3, 4). The side-chain functions have more recently been extended to include a carboxylic acid group (7, 50), a functional group that is also present in the synthetic nonsteroidal LXR ligand GW3965. In the current study, we confirmed the LXR-activational capacity of cholestenoic acids with a 3β-hydroxy-5-ene structure in neural cells and showed that despite the introduction of a 7α-hydroxy, 7β-hydroxy, or 7-oxo group, LXR activity was maintained. On the contrary, the 3-oxo-4-ene equivalents of these acids were not LXR ligands. Thus, 3βHCA, 3β,7α-dihCA, its 7β-isomer (3β,7β-dihCA), and the necessary 7-oxo intermediate in the epimerization reaction (3βH,7O-CA) are all LXR ligands effective at micromolar concentrations. Moreover, none of these acids were found to activate FXR, VDR, or NURR1 in neural cells, thereby confirming the specificity of their effect on LXR.

Numerous studies in recent years have linked LXR to neuronal degeneration (2, 5, 51–53). These studies have used Lxrb−/− and Lxra−/− Lxrb−/− mice. Indeed, both LXR isoforms are expressed in brain (1, 54), and the knockout mice show progressive lipid accumulation in brain, abnormal BBB, increased reactive microglia, astrogliosis, and degeneration of adult spinal cord motor neurons (2, 5). Interestingly, a decrease in the number of oculomotor neurons was also detected during development in Lxra−/−Lxrb−/− mice at E11.5 (1). However, the identity of endogenous brain LXR ligands that regulate motor neuron function was unknown. Here we used zebrafish to study the in vivo function of acidic LXR ligands newly identified in human CSF (i.e., 3β,7α-dihCA and 3β,7β-dihCA), and the 7-oxo intermediate in their epimerization, to study the effect of these molecules on islet-1+ cranial motor neurons. While metabolites that did not activate LXR, such as 7αH,30-CA, did not regulate islet-1 expression, the LXR ligands 3β,7α-dihCA and 3βH,7O-CA enhanced isl1 transcript expression in zebrafish embryos (Figure 3), effects that were abolished by injection of lxr MO (Supplemental Figure 4). These effects were confirmed in rodent primary oculo-motor neuron cultures, which showed that only 3β,7α-dihCA and 3βH,7O-CA increased the number of islet-1+ neurons (Figure 4, A–D). Importantly, their activity was specific to and mediated by LXR, as their biological activities were eliminated in cultures from Lxra−/−Lxrb−/− mice or by the LXR inhibitor GGPP. The effect of 3β,7α-dihCA on WT cultures was accompanied by a decrease in the number of active caspase-3+ cells (Figure 4E), but no change in neurogenesis or proliferation was detected (Supplemental Figure 6), which indicates that the mechanism by which it increased the number of motor neurons was by promoting neuronal survival. In vivo experiments performed on embryonic brain in utero confirmed this neuroprotective effect of 3β,7α-dihCA on oculomotor neurons (Figure 5, G–O). In contrast, 3βH,7O-CA had no effect on cell death, neurogenesis, or survival in WT cultures, but increased the expression of islet-1, which suggested that it promoted the maturation of precursor cells into islet-1+ neurons. Analysis of the function of 3β,7β-dihCA and 3βHCA revealed a toxic effect, manifested by an increase in the number of active caspase-3+ cells at low concentrations (Figure 4E). Thus, our results indicated that only some of the cholestenoic acids capable of activating LXR promote motor neuron development. Intriguingly, our findings also suggested that cholestenoic acids regulate motor neuron number by distinct mechanisms regulating differentiation and survival.

Moreover, we found that the regulation of motor neuron survival could be either positive, as shown by the neuroprotective effect of 3β,7α-dihCA, or negative, as shown by the toxic effect of 3β,7β-dihCA and 3βHCA (Figures 4 and 5). These results were quite unexpected, but correlated very well with the cholestenoic acid profiles in patients with the human diseases CTX and SPG5 (characterized by mutations in CYP27A1 and CYP7B1, respectively) that may present with signs of motor neuron loss. Indeed, we found that 3βHCA, one of the LXR ligands identified to have a toxic effect, was present at higher levels in SPG5 patients than in plasma and CSF (Figure 1, C and G, and Supplemental Tables 1 and 2). At the same time, the LXR ligand found to be neuroprotective, 3β,7α-dihCA, was present at lower levels in SPG5 patients and absent in CTX patients (Figure 1, D and H). These observations suggest a double-hit model for SPG5, in which loss of motor neurons is effected by both mechanisms, whereas for CTX we propose that the predominant mechanism would be loss of neuroprotection. Moreover, our finding that the neuroprotective cholestenoic acid 3β,7α-dihCA prevented the loss of oculomotor neurons induced by 3βHCA, both in vitro and in vivo, suggests a possible application of 3β,7α-dihCA in the treatment of both SPG5 and CTX. The fact that deletion of LXRs results in early developmental motor neuron loss (1), while the onset of disease in SPG5 or CTX is usually in adolescent or adults, indicates that additional endogenous LXR ligands may partially compensate for the loss of 3β,7α-dihCA in SPG5 and CTX patients. Future studies should examine whether 3β,7α-dihCA and other yet-unknown LXR ligands represent useful therapeutic tools to treat these and perhaps other devastating diseases affecting motor neurons.

In summary, we identified 3β,7α-dihCA and 3β,7β-dihCA as LXR ligands present in human CSF. Of these, 3β,7β-dihCA and the previously identified LXR ligand 3βHCA were found to cause cell death, and the latter was present at high levels in patients with SPG5. Instead, 3β,7α-dihCA, which was found at low levels in
SPG5 and absent in CTX patients, promoted motor neuron survival, while βH$_7$-CA regulated islet-1 expression levels. Thus, our results uncovered several novel functions of cholestenoic acids and identified them as LXR ligands and key regulators of motor neuron function in development and disease. We suggest that factors with neuroprotective function, such as βH$_7$-diHCA, may thus find a therapeutic application to prevent motor neuron loss. This suggestion is supported by our finding that βH$_7$-diHCA, a cholestenoic acid that decreased in SPG5, prevented cell loss by β-HCA, a cholestenoic acid that accumulates in SPG5.

Methods

Extraction of sterols. Sterols were extracted from CSF, plasma, or mouse brain into ethanol and fractionated by reversed phase solid phase extraction (SPE) to give a cholestenoic acid– and oxysterol-rich fraction devoid of cholesterol (7, 55, 56).

Charge-tagging of sterols. The sterols were charge-tagged with the GP-hydrazine as described previously (7, 55, 56). This greatly enhances their response when analyzed by LC-ESI-MS and tandem mass spectrometry (MS²).

Reagents. HPLC-grade water and solvents were from Fisher Scientific or Sigma-Aldrich. Authentic sterols, steroids, cholestenoic acids, bile acids, and their precursors were from Avanti Polar Lipids, Steraloids, Sigma-Aldrich, or from previous studies in our laboratories. Girard P (GP) reagent [1-(carboxymethyl)pyridinium chloride hydrate] was from TCI Europe or synthesized in earlier studies, and cholesteroxl oxide from Streptomyces sp. was from Sigma-Aldrich. Certified Sep-Pak C$_18$, 200 mg SPE cartridges were from Waters. Luer-lock syringes were from BD Biosciences.

LC-ESI-MS2 on the LTQ-Orbitrap. LC-ESI-MS and LC-ESI-MS2 were performed using an Ultimate 3000 HPLC system (Dionex) linked to the ESI source of a LTQ-Orbitrap XL or LTQ-Orbitrap Velos (Thermo Fisher) mass spectrometer as described previously (7, 55, 56).

Luciferase reporter assay. The ability of oxysterols and their acidic metabolites to activate several nuclear receptors (i.e., LXRβ, FXR, VDR, and NURR1) was tested in luciferase assays. Transient transfection studies were performed in the mouse neuronal cell line SN4741. This cell line was selected because the oxysterols and acidic metabolites tested were initially identified in CSF. Cells were plated in 24-well plates (5 x 105 cells/well) 24 hours before transfection and transfected with 1 μg plasmid DNA/well complexed with 2 μl Lipofectamine 2000 (Invitrogen). Cells were transfected with 400 ng of a LXRβ, FXR-, VDR-, or NURR1-responsive luciferase reporter construct and 200 ng LXRs, LXRβ, FXR, VDR, or NURR1. A reporter gene expressing the Renilla luciferase (pRL-TK; Promega) was cotransfected in all experiments as an internal control for normalization of transfection efficiency. After a 12-hour incubation, the lipid/DNA mix was replaced with fresh 2.5% serum medium containing vehicle or appropriate ligand (10 μM), as specified in each experiment. The ability of cholestenoic acids to activate LXR was confirmed in experiments with or without the LXR inhibitor GGPP (10 μM) also added to the medium. Luciferase activities were assayed 24 hours later using the Dual-Luciferase Reporter Assay System (Promega), following the manufacturer’s protocol.

LXRβ ligand binding assay. For LXRβ ligand binding activity measurement, we used the Lanthascreen TR-FRET LXRβ Coactivator Assay (Invitrogen). The assay uses a terbium-labeled anti-GST antibody, a fluorescein-labeled coactivator peptide, and the LXRβ-LBD tagged with glutathione-S-transferase (GST). Binding of the agonist/ligand to the LXRβ-LBD causes a conformational change that increases the affinity of LXRβ for the coactivator peptide. Close proximity of the fluorescently labeled coactivator peptide to the terbium-labeled antibody increases the TR-FRET signal intensity. The 520:495 TR-FRET ratio was calculated using a Victor multilabel reader with an excitation wavelength of 340 nm and emission wavelengths of 520 nm and 495 nm. The activational capacity of potential ligands was tested in an 8x24-well polypropylene plate following the manufacturer’s protocol.

Zebrafish experiments. Zebrafish were raised on a 14-hour day/10-hour night cycle and kept at 28.5°C. Tg[isl1-GFP] embryos were obtained via natural spawning and staged in hours postfertilization (hpf) or days post fertilization, according to Kimmel et al. (57). Embryos older than 24 hpf were treated with 0.03% phenylthioleoura (PTU) to inhibit pigmentation. MO injections were performed using splice site–specific zebrashift lr MO, as previously reported (58). MO-injected embryos were immediately dechorionated, transferred to a 96-well plate, and exposed to DMSO- or ligand-treated medium. Tg[isl1-GFP] embryos were collected by natural mating, immediately dechorionated (at the 1-cell stage), and transferred to a 96-well plate. Each compound tested was obtained as 10 mM stock and diluted in embryo medium to a final concentration of 10 μM, and 200 μl was added to each well. DMSO- or propan-2-ol–treated embryo medium was used as control. Ligand solutions were replaced every 12 hours with fresh ligand solution prepared in PTU-treated embryo medium. Embryos were collected at 48 hpf, fixed for 4 hours at room temperature with 4% paraformaldehyde (PFA), and then washed and kept in PBST. Immunocytochemistry was performed using an anti-GFP antibody, and fluorescence was viewed and photographed using a Zeiss Axioplan compound microscope and a Zeiss Axio cam digital camera.

Quantitative PCR. Total RNA was extracted from SN4741 cells and from zebrafish treated with the compounds of interest using the RNeasy Mini Kit (Qiagen); 1 μg was treated with RQ1 RNase-free DNase (Promega) and reverse transcribed using SuperScript II Reverse Transcriptase (Invitrogen) and random primers (Invitrogen) (RT+ reaction). Parallel reactions without reverse transcriptase enzyme were performed as a control (RT– reaction), and Sybergreen real-time quantitative PCR assays were carried out. Expression levels were obtained by normalization to the value of the housekeeping gene encoding actin or 18S, obtained for every sample in parallel assays.

Mice. Mice were housed, bred, and treated according to the guidelines of the European Communities Council (directive 86/609/EEC) and the Society for Neuroscience. Lxra$^{-/-}$Lxrb$^{-/-}$ mouse cell cultures were from the colony at the Department of Biosciences and Nutrition at Novum, Karolinska Institutet. Male and female WT and Lxra$^{-/-}$ Lxrb$^{-/-}$ mice were generated as previously described (59, 60). Mice were backcrossed onto a C57BL/6 background for 10 generations. Male Cyp7b1$^{-/-}$ mouse brain and plasma were from animals generated at the University of Edinburgh. Male mice homozygous for targeted disruption of the Cyp7b1 gene (61) congenic on the C57BL/6 genetic background (>15 generations backcrossed to C57BL/6) and WT littermate controls were generated from Cyp7b1$^{-/-}$ crosses. Male Cyp27al$^{-/-}$ mouse tissue and plasma was purchased from The Jackson Laboratory (strain B6.129-Cyp27a1tm1Jf/J; ref. 62). The Cyp27al$^{-/-}$ colony was backcrossed to C57BL/6J inbred mice for approximately 20 generations.
12 generations by the donating investigator (62) prior to sending to The Jackson Laboratory Repository. Upon arrival, mice were bred to C57BL/6J inbred mice for at least 1 generation to establish the colony. WT animals from the colony were used as controls. Tissue and blood sampling from these mice was performed under the aegis of the UK Scientific Procedures (Animals) Act, 1986.

Primary midbrain cultures. Brains from E11.5 mice were obtained, and the midbrain region was dissected, mechanically dissociated, plated on poly-d-lysine (150,000 cells/cm²), and grown in serum-free N2 media consisting of F12/DMEM (1:1 mixture) with 10 ng/ml insulin, 100 μg/ml apo-transferrin, 100 μM putrescine, 20 nM progesterone, 30 nM selenium, 6 mg/ml glucose, and 1 mg/ml BSA. Cells were treated for 3 days in vitro with the compounds of interest, fixed with 4% PFA, and processed for staining using appropriate antibodies.

Immunocytochemistry. Cells were fixed in 4% PFA, washed in PBS, and blocked in 5% normal goat serum/PBS for 1 hour at room temperature. Primary antibodies were diluted in PBS (pH 7.4), 0.3% Triton X-100, and 1% BSA, and incubations were carried out overnight at 4°C or at room temperature for 2 hours. The antibodies used were anti-BrdU (diluted 1:400; Abcam), anti–islet-1 (1:100; Developmental Studies Hybridoma Bank), anti–cleaved caspase-3 (Asp175) (1:100; Cell Signaling Technology), anti–TH (1:1,000; Pel-Freeze), anti-GABA (1:1,000; Sigma-Aldrich), anti–BRN3A (1:250; Millipore), anti–NKX6.1 (1:200; Novus Biologicals), anti–ChAT (1:500; Millipore), and appropriate secondary antibodies (Jackson ImmunoResearch or Alexa). Cells positive for the corresponding marker were counted directly at the microscope at ×20 magnification. Cells were counted in every well — in 8 consecutive fields (from one side of the well to the other, passing through the center) — in 3 different wells per experiment and 3 different experiments per condition. Random images of the wells were taken for every condition to document the result, and representative images were subsequently selected to represent the quantitative data. Photos were acquired with a Zeiss Axioplan microscope and a Hamamatsu camera C4742-95 using Openlab software.

Intraventricular injections in utero. Female WT CD-1 mice (25–35 g; Charles River Breeding Laboratories) were used for these experiments. For embryo analyses, WT CD-1 mice were mated overnight, and noon of the day the plug was considered E0.5. E11.5 pregnant mC7SH/KA mice were subjected to immunohistochemistry. Sections were preincubated for 1 hour in blocking solution followed by incubation at 4°C overnight with the following primary antibodies: anti–TH (1:750, Pel-Freeze), anti–islet-1 (1:100; Developmental Studies Hybridoma Bank), and anti–cleaved caspase-3 (Asp175) (1:100; Cell Signaling Technology). After washing, slides were incubated for 1–2 hours at room temperature with the appropriate fluorophore-conjugated (Cy2, Cy3, and Cy5, 1:300, Jackson Laboratories; Alexa Fluor 488, Alexa Fluor 555, and Alexa Fluor 647, 1:1,000, Invitrogen) secondary antibodies. Confocal images were taken with a Zeiss LSM5 Exciter or LSM700 microscope.

Statistics. Statistical analyses (Mann-Whitney test, Dunnett T3 test, and 1-way ANOVA with LSD post-hoc test) were performed using Prism 4 (GraphPad Software). All data represent mean ± SEM. A value less than 0.05 was considered significant.

Study approval. Human samples, collected according to the principles of the Declaration of Helsinki, were provided to University Hospital Basel, Barts Health NHS Trust, St. Mary’s Hospital, Institute of Child Health, Conegliano Research Centre, Federico II University, University of Tubingen, Kurume University School of Medicine, and University Hospital “Attikon” with written informed consent and IRB and ethical approval. Ethical approval was granted by Stockholm Norra Djurförsöksnämnden for zebrafish experimentation (nos. N293/09 and N338/10), mouse experimentation (nos. N154/06, N145/09, N370/09, and N273/11), and in utero experimentation (no. N486/12).

Acknowledgments

Work in Swansea was supported by funding from the UK Research Councils BBfsc (BBC5157712, BBC5115561, BB10017351 to W.J. Griffiths, BBH0010181 to Y. Wang, studenthip to A. Meljon) and EPSRC (studenthip to M. Ogundare). The EPSRC National Mass Spectrometry Service Centre is acknowledged for allowing access to the LTQ-Orbitrap XL mass spectrometer. Work in Karolinska Institutet was supported by funding from the Swedish Research Council (DBRM program; VR2011-3116 and VR2011-3318), the European Union (DDPD program), the Swedish Foundation for Strategic Research (DBRM and SRL program), and the Hjärnfonden and Karolinska Institutet (SFO Thematic Center in Stem cells and Regenerative Medicine). S. Theofilopoulos was supported by the Swedish MRC and the Onassis Foundation. P.T. Clayton is funded by Great Ormond Street Hospital Children’s Charity. M.T. Bassi was supported by Italian Ministry of Health funds (grant no. RC2011-2012). Work in Houston was supported by the Robert A. Welch Foundation (grant no. E-0004, to J.-Å. Gustafsson). Work in Edinburgh was supported by the Wellcome Trust (WT734292) and a Carter Fellowship to J.L. Yau from Alzheimer’s Research UK. Work in Tubingen was supported by an EU grant to NEUROMICS (grant no. 2012-30512). Members of the European Network for Oxyester Research are thanked for informative discussions.

Address correspondence to: William J. Griffiths, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom. Phone: 44.1792295562; E-mail: w.j.griffiths@swansea.ac.uk. Or to: Yuqin Wang, College of Medi-
The Journal of Clinical Investigation

Research Article

