

Supplemental Materials and Methods

RNA extraction, reverse transcription (RT) and real-time PCR. Total RNA from cultured cells was extracted using the Trizol reagent (Invitrogen, Carlsbad, CA) as the manufacturer instructed. cDNAs were amplified and quantified in Bio-Rad CFX qRT-PCR detection system (Applied Biosystems Inc., Foster City, CA, USA), using FastStart Universal SYBR Green Master (ROX; Roche, Toronto, ON, Canada). Expression data were normalized to the geometric mean of housekeeping gene *GAPDH* to control the variability in expression levels and calculated as $2^{-(C_t \text{ of gene}) - (C_t \text{ of } GAPDH)}$, where C_t represents the threshold cycle for each transcript.

Immunohistochemistry (IHC). Paraffin-embedded tissues were analyzed using IHC with AGK antibody (Epitomics, Burlingame, CA, 1:500), p-STAT3 (Tyr705) antibody (Cell Signaling, Danvers, MA, 1:400), p-JAK2 (1007-1008) antibody (Epitomics, Burlingame, CA, 1:200). The degree of immunostaining of formalin-fixed, paraffin-embedded sections were reviewed and scored separately by two independent pathologists uninformed of the histopathological features and patient data of the samples. The scores were determined by combining the proportion of positively-stained tumor cells and the intensity of staining. The scores given by the two independent pathologists were combined into a mean score for further comparative evaluation. Tumor cell proportions were scored as follows: 0, no positive tumor cells; 1, <10% positive tumor cells; 2, 10%–35% positive tumor cells; 3, 35%–75% positive tumor cells; 4, >75% positive tumor cells. Staining intensity was graded according to the following standard: 1, no staining; 2, weak staining (light yellow); 3, moderate staining (yellow brown); 4, strong staining (brown). The staining index (SI) was calculated as the product of the staining intensity score and the proportion of positive tumor cells. Using this method of assessment, we evaluated protein expression in benign esophageal epithelia and malignant lesions by determining the SI, with possible scores of 0, 2,

3, 4, 6, 8, 9, 12, and 16. Samples with a $SI \geq 8$ were determined as high expression and samples with a $SI < 8$ were determined as low expression. Cutoff values were determined on the basis of a measure of heterogeneity using the log-rank test with respect to overall survival.

Primers and Oligonucleotides

Used for subcloning and plasmid construction:	
HA tagged JAK2 and JAK2 fragments	
JAK2-UP	GCCGGATCCGCCATGTACCCATACGACGTCCCAGACT ACGCTGGAATGGCCTGCCTTACGAT
JAK2-DN	GGCGCGGCCGCTCATCCAGCCATGTTATCCCTTATTG GATCCAC
JH1-UP	GCCGGTACCGCCATGTACCCATACGACGTCCCAGACT ACGCTTGTTACTCCAGATTA
JH1-DN	GGCGAATTCTCATCCAGCCATGTTATCCC
JH2-UP	GCCGGATCCGCCATGTACCCATACGACGTCCCAGACT ACGCTGTGTTCACAAAATCAG
JH2-DN	GGCGAATTCTCAACTGTTAAGATCTCGTATG
JH3-7-UP	GCCGGTACCGCCATGTACCCATACGACGTCCCAGACT ACGCTATGGGAATGGCCTGCCTTAC
JH3-7-DN	GGCGGATCCTCACATTGGTTCATATGAGTAGG
Flag tagged AGK	
pSin Flag-AGK-up	GCCGGATCCGCCATGGACTACAAGGACGACGATGA CAAGACGGTGTCTTTAAAACGCT
pSin Flag-AGK-dn	GGCACTAGTTCACTGGTGGGCTTGTGAGCATC
shRNA	
pSuper Retro AGK-RNAi#1-up	GATCCCCGGAGAGACCAGTAGTTGATTCAAGAGAT CAAACACTGGTCTCTCCTTTTA
pSuper Retro AGK-RNAi#1-dn	AGCTTAAAAAGGAGAGACCAGTAGTTGATCTCTTG AATCAAACACTGGTCTCTCCGGG
pSuper Retro	GATCCCCGAGGCTACCTCAGTAAGATTCAAGAGAT

AGK-RNAi#2-up	CTTACTGAAGGTAGCCTCTTTA
pSuper Retro AGK-RNAi#2-dn	AGCTTAAAAGAGGCTACCTCAGTAAGATCTCTG AATCTTACTGAAGGTAGCCTCGGG
pSuper Retro JAK2-RNAi#1-up	GATCCCCGAAATATATTGGTGGAGAATTCAAGAGAT TCTCCACCAATATATTCTTTA
pSuper Retro JAK2-RNAi#1-dn	AGCTTAAAAGAAATATATTGGTGGAGAATCTCTG AATTCTCCACCAATATATTCTCGGG
pSuper Retro JAK2-RNAi#2-up	GATCCCCGCCAGAAACTTGAAACTTATTCAAGAGAT AAGTTCAAGTTCTGGCTTTA
pSuper Retro JAK2-RNAi#2-dn	AGCTTAAAAGCCAGAAACTTGAAACTTATCTCTG AATAAGTTCAAGTTCTGGCGGG
pSuper Retro STAT3-RNAi-up	GATCCCCGCACAATCTACGAAGAATCAATTCAAGAG ATTGATTCTCGTAGATTGTGCTTTA
pSuper Retro STAT3-RNAi-dn	AGCTTAAAAGCACAATCTACGAAGAATCAATCTCT TGAATTGATTCTCGTAGATTGTGCGGG
AGK G126E mutation	
pSin Flag-AGK-G126E-up	GATCATTGTTGCAGGAGGAGATGAGACACTGCAGGA GGTTGTTACTG
pSin Flag-AGK-G126E-dn	CAGTAACAAACCTCCTGCAGTGTCTCATCTCCTCCTGC AACAAATGATC
His-tagged AGK	
pET-19b AGK-up	GCCCATATGATGACGGTGTCTTAAAACGCTTCG
pET-19b AGK-dn	GGCGGATCCTCACTGGTGGGCTTGTGAGCATCTG
Luciferase reporter	
pTAL STAT3-Luc-up	CGCGTGCTTCCGAATTCCGAATTCCGAATTCCC GAATTCCCGAATTCCCGAACGTG
pTAL STAT3-Luc-dn	GATCCACGTCGGGAATTGGGAATTGGGAATT GGAATTGGGAATTGGGAAGCA
Used for qPCR	
AGK-up	CTTGACAGGCTGCTCTCCTT
AGK-dn	GGAAGAAAACACAGCTGGC
ABCG2-up	TGGTGTTCCTGTGACACTG
ABCG2-dn	TGAGCCTTGGTAAGACCG
SOX2-up	GCTTAGCCTCGTCGATGAAC
SOX2-dn	AACCCCAAGATGCACAACTC

OCT4-up	GGTTCTCGATACTGGTTCGC
OCT4-dn	GTGGAGGAAGCTGACAACAA
NANOG-up	ATGGAGGAGGGAAAGAGGAGA
NANOG-dn	GATTGTGGCCTGAAGAAA
BMI1-up	TCGTTGTTCGATGCATTCT
BMI1-dn	CTTCATTGTCTTCCGCC
ABCB7-up	TTGCCTTCCCAATCTCTG
ABCB7-dn	AGTGGAGGCCACATCAACTC
TLS-up	TCATGACGTGATCCTGGTC
TLS-dn	CAGCAGTGGTGGCTATGAAC
RPA1-up	AGCTTCCATTCTGCCGC
RPA1-dn	GGCAATCCAGTGCCCTATAA
IGF2BP1-up	TTTCGGATTGAATTTCCG
IGF2BP1-dn	AGGCCATCGAAACTTCTCC
IGF2BP2-up	CAGGTGAGGAGGGATGTTTC
IGF2BP2-dn	AAAGTGGAATTGCATGGAA
SLC25A6-up	GATGCCCTGTACTGCTTGT
SLC25A6-dn	GCCGCCATCTCCAAGAC
C14orf166-up	TGCATTGTCAGCAGTTTG
C14orf166-dn	TGACTGGCTTCTGGTTAGC
siRNA	
siABCB7	CGGTGGAGAACTAGATT
siTLS	CGAACAGGATAATTCA
siRPA1	GTCATCAACATCCGTCCCATT
siIGF2BP1	CCTGGCCCATAATAACTTGT
siIGF2BP2	CGGATCTTGGAACTGAAA
siSLC25A6	CGACAAGCAGTACAAGGGCAT
siC14orf166	GCAGTTGCTAAGGCAAATCAA
Used for EMSA probe	
STAT3-up	TCGACATTCCGTAAATC
STAT3-dn	GATTACGGGAAATGTCGA
OCT-1-up	TGTCGAATGCAAATCACTAGAA
OCT-1-dn	TTCTAGTGATTGCATTGACA

Supplemental Figure Legends

Supplemental Figure 1. Mass-spectrometric peptide sequencing of JH2-interacting proteins and identification of their effects on STAT3 transcriptional activity. (A)

Representative mass spectrometry plots and sequences of the peptides from potent JH2-interacting proteins identified from the JH2 precipitate presented in Figure 1A. (B) Expression of mRNA and STAT3 luciferase reporter activity following silencing of potent JH2-interacting proteins identified from the JH2 precipitate presented in Figure 1A. Error bars represent the mean \pm SD of three independent experiments, * $P < 0.05$.

Supplemental Figure 2. AGK expression correlates with STAT3 activity in ESCC datasets.

GSEA plot showing significant correlations between AGK expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in a published cohort of ESCC gene expression profiles (statistic performed within tumor tissues from GSE20347/29001/33426, $n = 109$).

Supplemental Figure 3. Overexpression of AGK enhances the strength and duration of STAT3 activation. (A-H)

Western blotting analysis of the expression of p-STAT3 (Tyr705) and total STAT3 in the indicated cells treated with IL-6 (1 ng/ml) for various times (0-480 min). GAPDH was used as a loading control.

Supplemental Figure 4. AGK promotes the stem cell population and stem cell-like phenotype in ESCC.

Representative images of spheres formed by AGK transduced- or AGK silenced-cells taken on day 4, 6, 8, 10. Scale bar: 100 μ m.

Supplemental Figure 5. SP⁺ cells and CD44⁺ cells sorted from ESCC cells display a higher sphere forming efficiency and express higher levels of pluripotency-associated factors. (A)

Flow cytometry analysis of the CD44⁺ population in the indicated cells. (B)

Number of spheres formed by SP⁺ or SP⁻ cells (left panel) or CD44⁺ or CD44⁻ cells (right panel) sorted from the indicated ESCC cells. **(C)** Real-time PCR analysis of the mRNA expression levels of pluripotency-associated factors in the indicated cell populations. Error bars represent the mean \pm SD of three independent experiments, * $P < 0.05$.

Supplemental Figure 6. AGK and JAK2 promote the CD44⁺ population in ESCC. (A) Overexpression of AGK enhanced, whereas silencing AGK decreased, the CD44⁺ population sorted from the indicated ESCC cells. **(B)** Silencing JAK2 decreased the CD44⁺ population sorted from the indicated ESCC cells.

Supplemental Figure 7. JAK2-STAT3 signaling is required for the promoting effect of AGK on cancer stem cell-associated phenotypes. (A) Representative images of spheres formed by AGK overexpressing-cells infected with vector or JAK2 RNAi(s) taken on day 4, 6, 8, 10. Scale bar: 100 μ m. **(B)** Silencing JAK2 decreased the CD44⁺ population sorted from the indicated AGK-transduced ESCC cells. **(C)** Representative images of spheres formed by AGK overexpressing-cells infected with vector or STAT3 RNAi(s) taken on day 4, 6, 8, 10. Scale bar: 100 μ m.

Supplemental Figure 8. Inhibition of JAK2 activity abrogates the ability of AGK to promote cancer stem cell-associated phenotypes. (A and B) Western blotting analysis of p-STAT3 (Tyr705) expression (A) or real-time PCR analysis of the expression of pluripotency associated markers (B) in the indicated cells treated with JAK2 inhibitor III (10 μ M) for the indicated times. **(C and D)** Western blotting analysis of p-STAT3 (Tyr705) expression (C) and real-time PCR analysis of the expression of pluripotency associated markers (D) in the indicated cells treated with the indicated concentrations of JAK2 inhibitor III for 24 h. **(E and F)** Western blotting analysis of p-STAT3 (Tyr705) expression (E) and real-time PCR analysis of the expression of pluripotency associated markers (F) in the

indicated cells treated with JAK2 inhibitor II (100 μ M) for the indicated times. (G and H) Western blotting analysis of p-STAT3 (Tyr705) expression (G) and real-time PCR analysis of the expression of pluripotency associated markers (H) in the indicated cells treated with the indicated concentrations of JAK2 inhibitor II for 16 h. α -tubulin was used as a loading control. Error bars represent the mean \pm SD of three independent experiments, * $P < 0.05$.

Supplemental Figure 9. Expression of AGK mRNA is elevated in ESCC cell lines and tissues. (A) Real-time PCR analysis of *AGK* mRNA in 2 primary cultured human normal esophageal epithelial cells (NEECs) and 11 ESCC cell lines. (B) Real-time PCR analysis of *AGK* mRNA in 8 paired primary ESCC tissues (T) and the matched adjacent non-tumor tissues (ANT) from the same patient.

Supplemental Figure 10. AGK expression and JAK2-STAT3 activity correlate with the expression levels of pluripotency-associated factors in ESCC tissues. (A) Real-time PCR analysis of the mRNA expression of pluripotency-associated factors, including *ABCG2*, *SOX2*, *OCT4*, *NANOG*, *BMII* and *CD44*, in 8 freshly collected human ESCC samples. (B) and (C) AGK expression (B) and JAK2-STAT3 activity (C) correlated significantly with the expression levels of pluripotency associated factors in freshly collected ESCC tissues. (D) GSEA plot showing that AGK levels positively correlated with the expression of pluripotency-associated factors, between normal and tumor tissues (left panel) and within tumor tissues (right panel), through an analysis of published ESCC patient profiles.

Supplemental Figure 11. AGK levels correlate with STAT3 activity in lung cancer and breast cancer datasets. (A-B) GSEA plot showing significant correlations between AGK expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in published lung cancer gene expression profiles (statistic performed within tumor tissues

from GSE10245/19804/28571/31210, $n = 464$) (A) and breast patient gene expression profiles (statistic performed within tumor tissues from E-TABM-1186, $n = 354$) (B).

Supplemental Figure 12. Expression of IL6 does not correlate with STAT3 activation in clinical ESCC specimens. GSEA plot showing no significant correlation between IL6 expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in published ESCC patient gene expression profiles (NCBI/GEO/GSE20347 and GSE29001, $n = 79$).

Supplemental Table 1. Clinicopathological characteristics and expression of AGK in ESCC patients

	Number of cases (%)
Gender	
Male	189(76.5)
Female	58(23.5)
Age (years)	
≤57	132(53.4)
>57	115(46.6)
Clinical stage	
I	36(14.6)
IIA	83(33.6)
IIB	32(13.0)
III	70(28.3)
IV	26(10.5)
T classification	
T1	36(14.6)
T2	63(25.5)
T3	138(55.9)
T4	10(4.0)
N classification	
N0	135(54.7)
N1	110(44.5)
N2	2(0.8)

M classification

M0 221(89.5)

M1 26(10.5)

Tumor grade

G1 76(30.8)

G2 107(43.3)

G3 64(25.9)

Vital status (at follow-up)

Alive 82(33.2)

Death (tumor-related) 163(66.0)

Death (tumor-unrelated) 2(0.8)

Expression of AGK

Low expression 127(51.4)

High expression 120(48.6)

Location

Upper 22(8.9)

Middle 153(61.9)

Lower 72(29.1)

Therapy

Surgery only 218(88.3)

CT or RT or CRT, +Surgery 29(11.7)

Recurrence or uncontrolled

No 117(47.4)

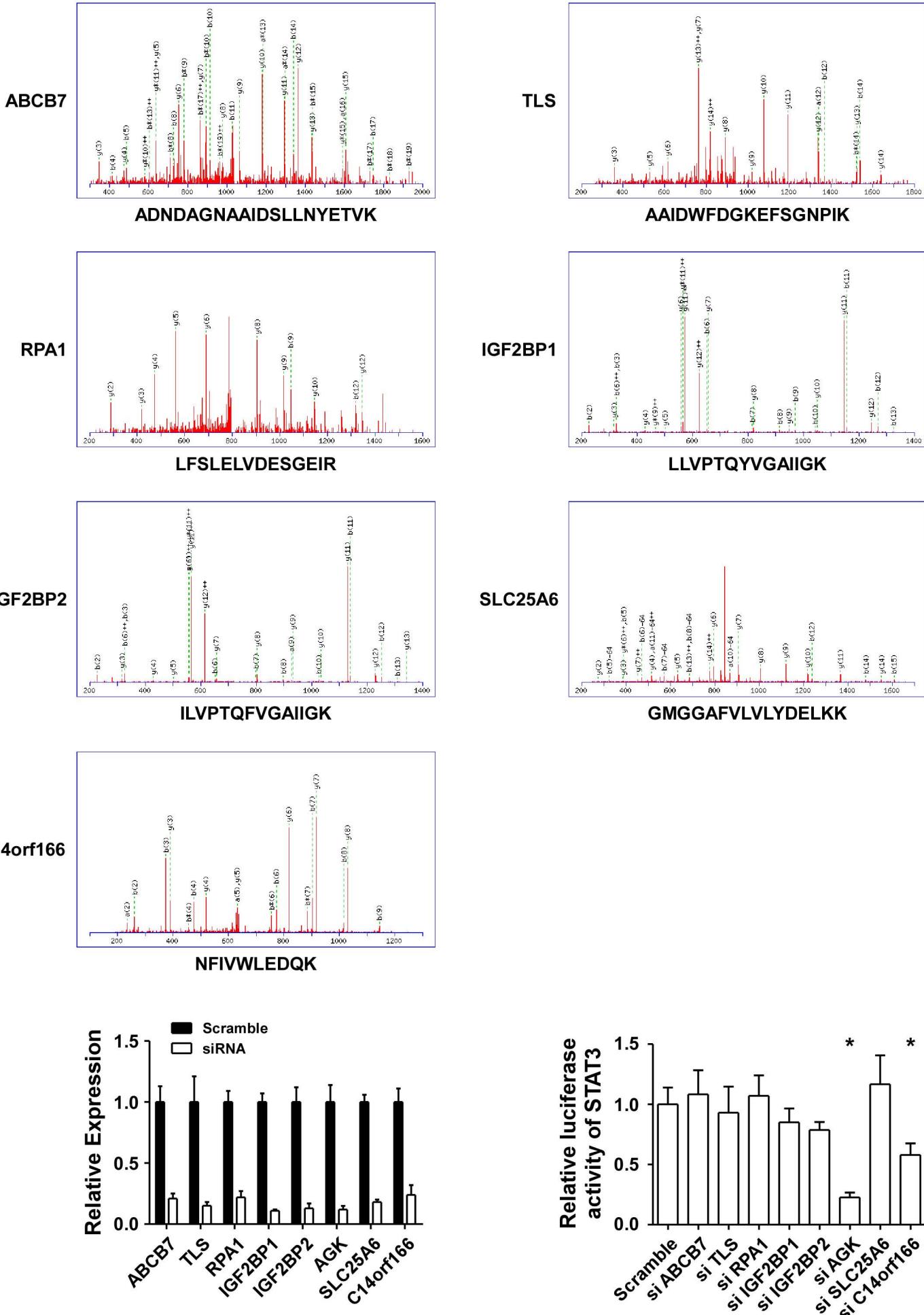
Yes 130(52.6)

Supplemental Table 2. Correlations between AGK expression and clinicopathologic characteristics of ESCC patients

Characteristics	AGK		Chi-square test P-value
	Low No. cases (%)	High No. cases (%)	
Gender	Male	97(76.4)	0.957
	Female	30(23.6)	
Age (years)	≤57	66(52.0)	0.633
	>57	61(48.0)	
Clinical stage	I	27(21.3)	<0.001
	IIA	53(41.7)	
	IIB	15(11.8)	
	III	29(22.8)	
T classification	IV	3(2.4)	0.008
	T1	27(21.3)	
	T2	34(26.8)	
	T3	63(49.6)	
N classification	T4	3(2.4)	<0.001
	N0	86(67.7)	
	N1	40(31.5)	
M classification	N2	1(0.8)	<0.001
	M0	124(97.6)	
	M1	3(2.4)	
	G1	50(39.4)	
Tumor grade	G2	54(42.5)	0.002
	G3	23(18.1)	

	Upper	13(10.2)	9(7.5)	
Location	Middle	74(58.3)	79(65.8)	0.453
	Lower	40(31.5)	32(26.7)	
	Surgery only	111(87.4)	107(89.2)	
Therapy	CT or RT or CRT, +Surgery	16(12.6)	13(10.8)	0.667
Recurrence or uncontrolled	No	70(55.1)	47(39.2)	0.012
	Yes	57(44.9)	73(60.8)	
	Alive	70(55.1)	12(10.0)	
Vital status	Death (tumor-related)	55(43.3)	108(90.0)	<0.001
	Death (tumor-unrelated)	2(1.6)	0(0.0)	

Supplemental Table 3. Univariate and multivariate analyses for 5-year overall survival

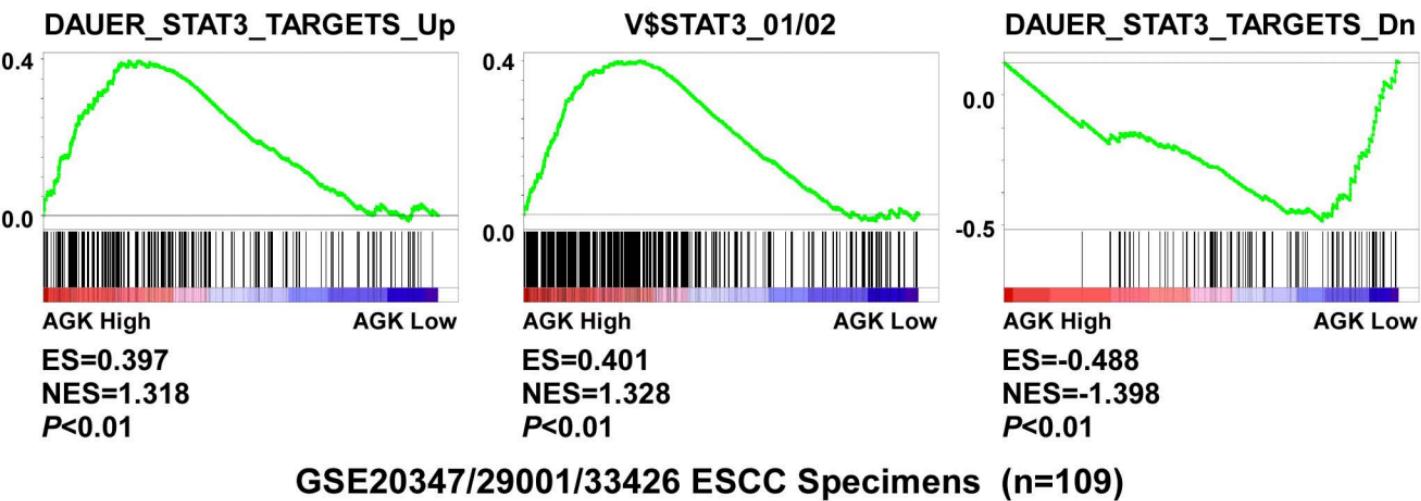

	Univariate analysis		Multivariate analysis		
	P	Regression coefficient (SE)	P	Relative risk	95% confidence
Clinical stage	<0.001	0.883(0.076)	0.002	1.547	1.167-2.051
Expression of AGK	<0.001	1.544 (0.173)	<0.001	3.764	2.617-5.412
T classification	<0.001	0.672(0.113)	0.062	1.298	0.987-1.708
N classification	<0.001	1.524(0.159)	0.004	1.954	1.233-3.097
M classification	<0.001	1.949(0.237)	0.097	1.737	0.904-3.338
Tumor grade	<0.001	0.429(0.107)	0.005	1.383	1.106-1.729
Location	0.428	-0.103(0.130)	0.774	1.043	0.784-1.387
Therapy	0.845	-0.046(0.234)	0.221	0.744	0.463-1.195

Supplemental Table 4. Univariate and multivariate analyses for 5-year disease-free survival

	Univariate analysis		Multivariate analysis		
	P	Regression coefficient (SE)	P	Relative risk	95% confidence
Clinical stage	<0.001	0.960(0.077)	<0.001	2.113	1.589-2.809
Expression of AGK	<0.001	1.510 (0.165)	<0.001	4.077	2.864-5.805
T classification	<0.001	0.678(0.109)	0.308	1.144	0.883-1.482
N classification	<0.001	1.559(0.152)	0.045	1.580	1.009-2.474
M classification	<0.001	1.873(0.234)	0.916	0.967	0.523-1.789
Tumor grade	<0.001	0.390(0.103)	0.016	1.302	1.051-1.614
Location	0.364	-0.114(0.125)	0.457	1.108	0.845-1.453
Therapy	0.952	0.014(0.228)	0.402	0.822	0.519-1.301

Supplemental Figure 1

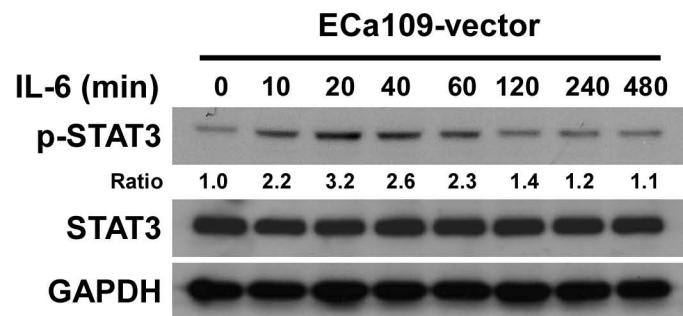
A

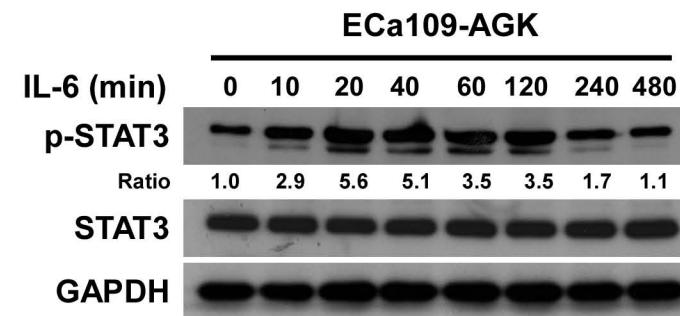

Supplemental Figure 1. Mass-spectrometric peptide sequencing of JH2-interacting proteins and identification of their effects on STAT3 transcriptional activity

(A) Representative mass spectrometry plots and sequences of the peptides from potent IH2-interacting proteins identified from the IH2 precipitate presented in Figure 1A

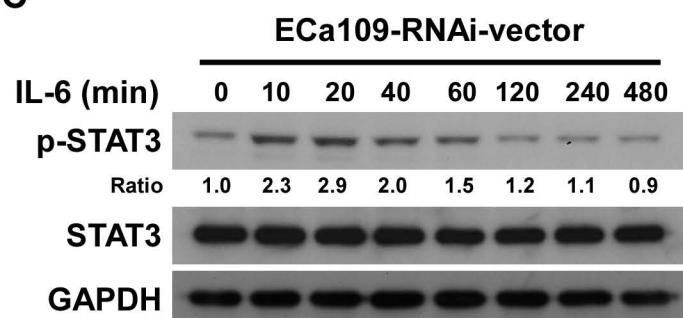
(B) Expression of mRNA and STAT3 luciferase reporter activity following silencing of potent JH2-interacting proteins identified from the JH2 precipitate presented in Figure 1A.

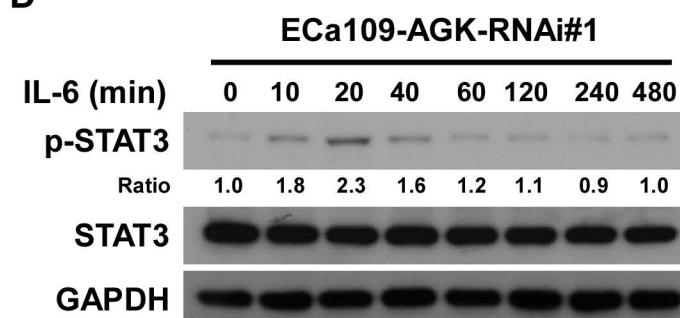
Each bar represents the mean \pm SD of three independent experiments. * $P < 0.05$.

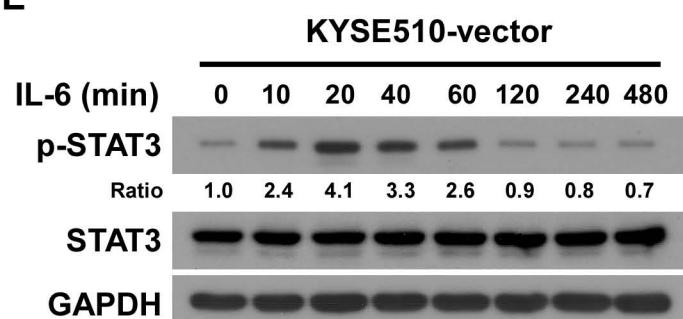

Supplemental Figure 2

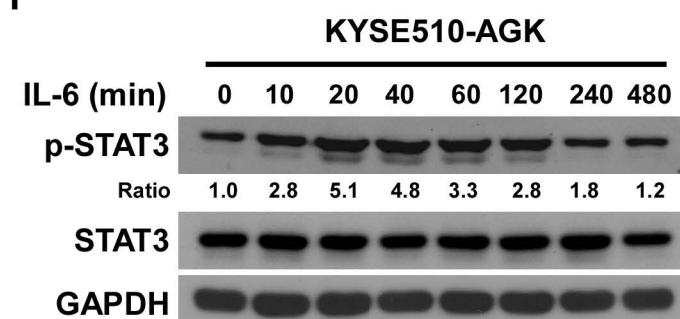

Supplemental Figure 2. AGK expression correlates with STAT3 activity in ESCC datasets. GSEA plot showing significant correlations between AGK expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in a published cohort of ESCC gene expression profiles (statistic performed within tumor tissues from GSE20347/29001/33426, $n = 109$).

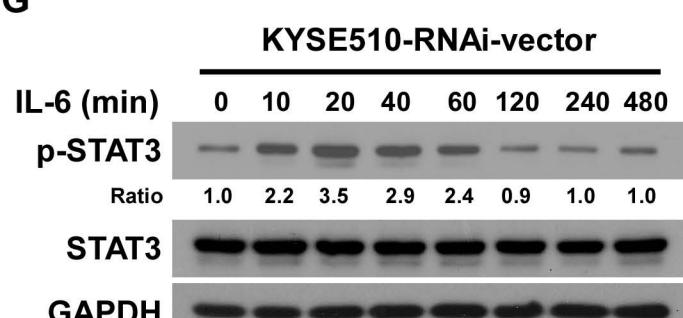
Supplemental Figure 3

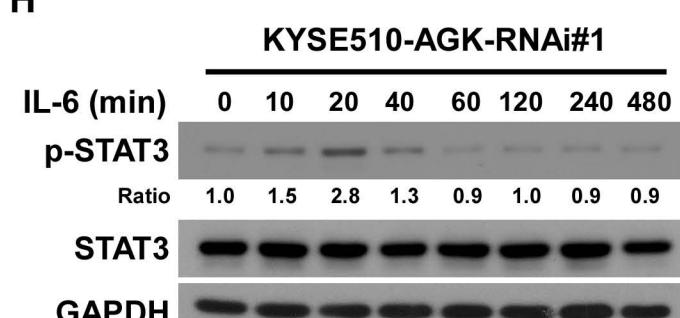

A


B

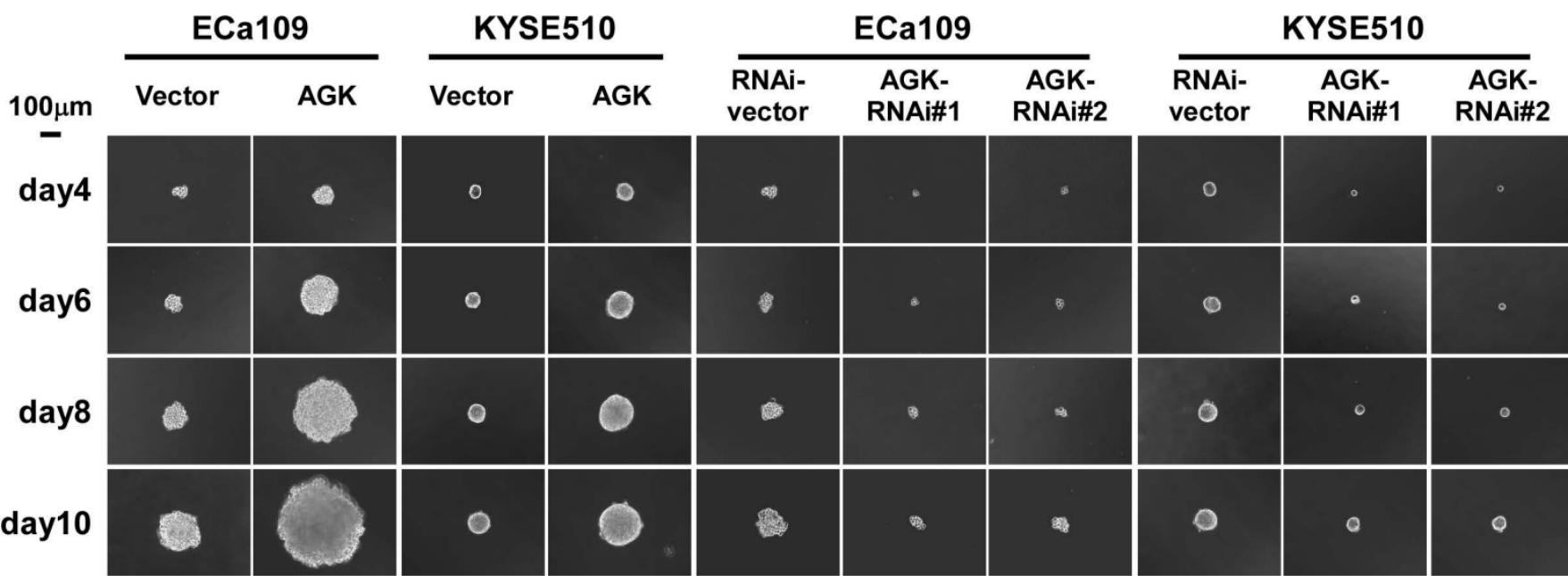

C


D


E

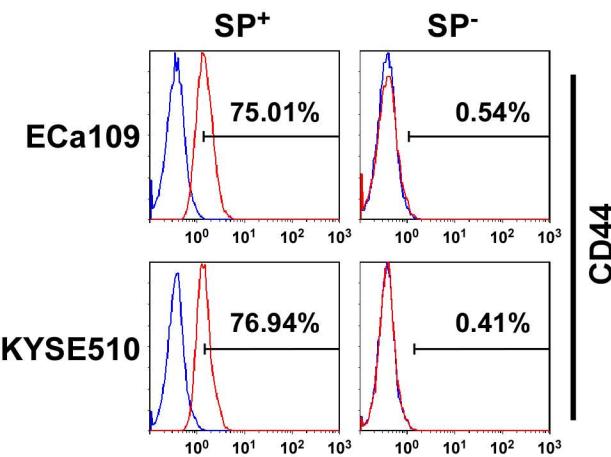

F

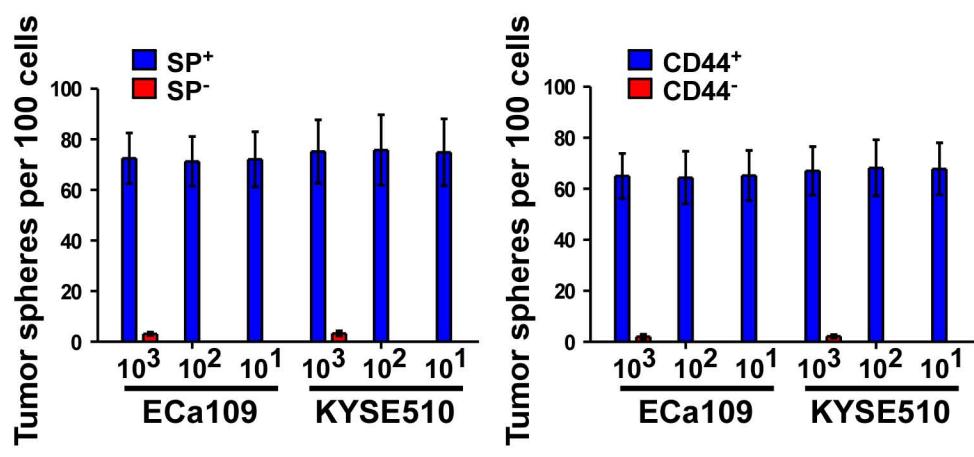
G


H

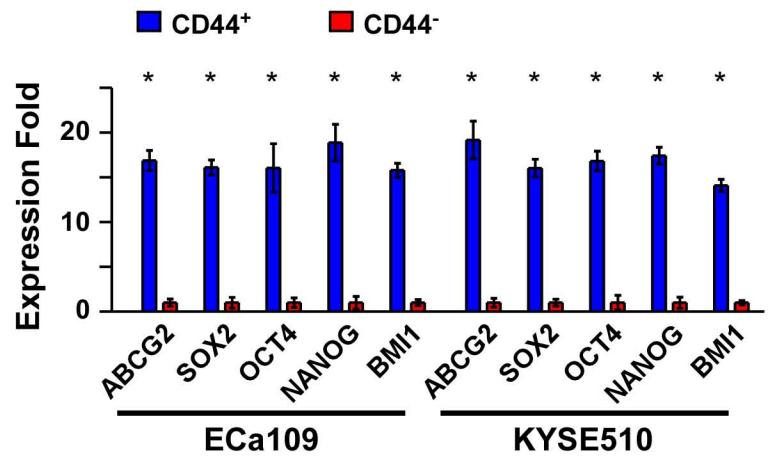
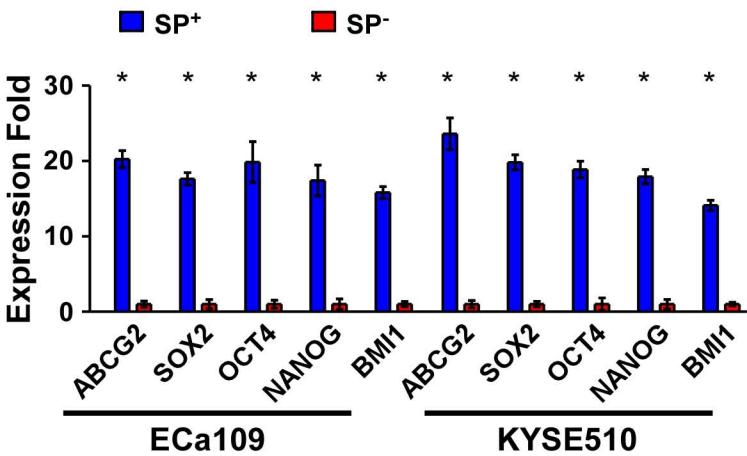
Supplemental Figure 3. Overexpression of AGK enhances the strength and duration of STAT3 activation.

(A-H) Western blotting analysis of the expression of p-STAT3 (Tyr705) and total STAT3 in the indicated cells treated with IL-6 (1 ng/ml) for various times (0-480 min). GAPDH was used as a loading control.


Supplemental Figure 4


Supplemental Figure 4. AGK promotes the stem cell population and stem cell-like phenotype in ESCC.
Representative images of spheres formed by AGK transduced- or AGK silenced-cells taken on day 4, 6, 8, 10. Scale bar: 100 μ m.

Supplemental Figure 5

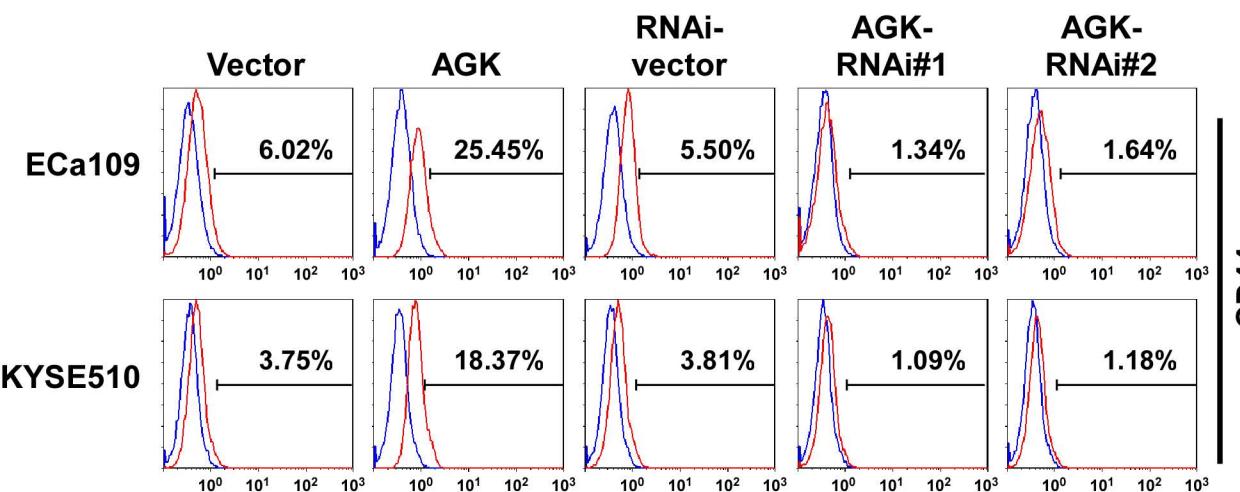


A

B

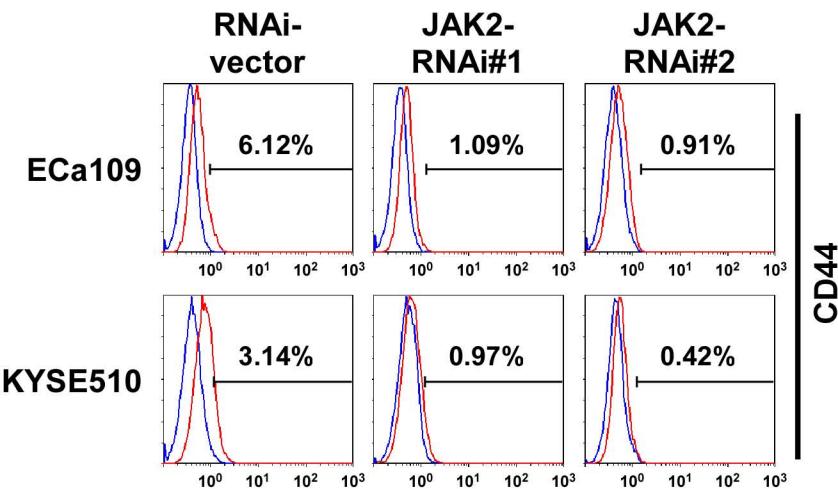
C

Supplemental Figure 5. SP^+ cells and $CD44^+$ cells sorted from ESCC cells display a higher sphere forming efficiency and express higher levels of pluripotency-associated factors.

(A) Flow cytometry analysis of the $CD44^+$ population in the indicated cells.


(B) Number of spheres formed by SP^+ or SP^- cells (left panel) or $CD44^+$ or $CD44^-$ cells (right panel) sorted from the indicated ESCC cells.

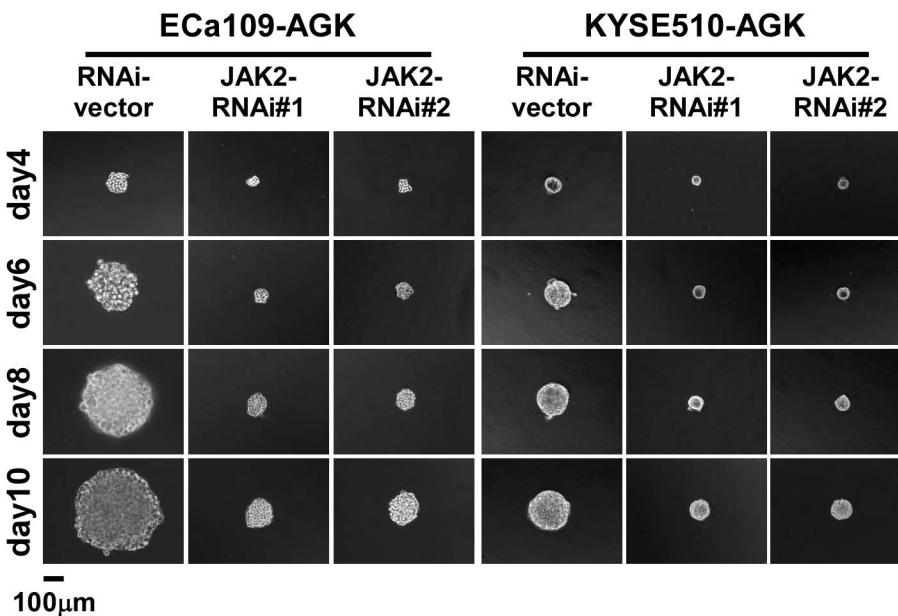
(C) Real-time PCR analysis of the mRNA expression levels of pluripotency-associated factors in the indicated cell populations.


Error bars represent the mean \pm SD of three independent experiments, $* P < 0.05$.

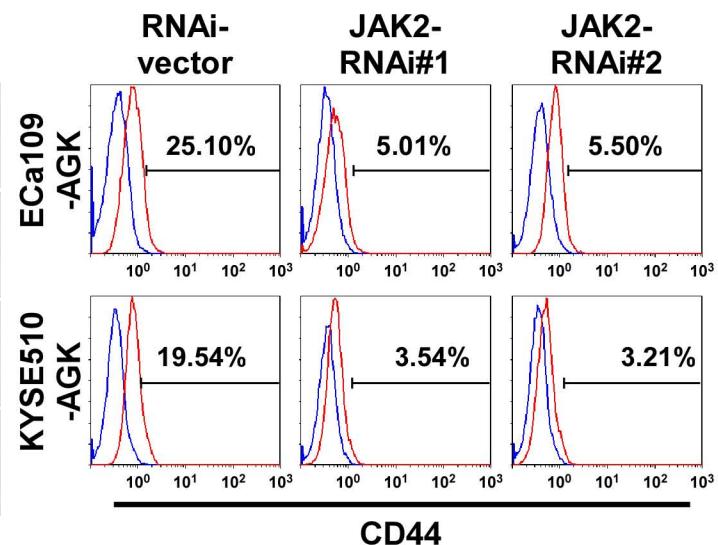
Supplemental Figure 6

A

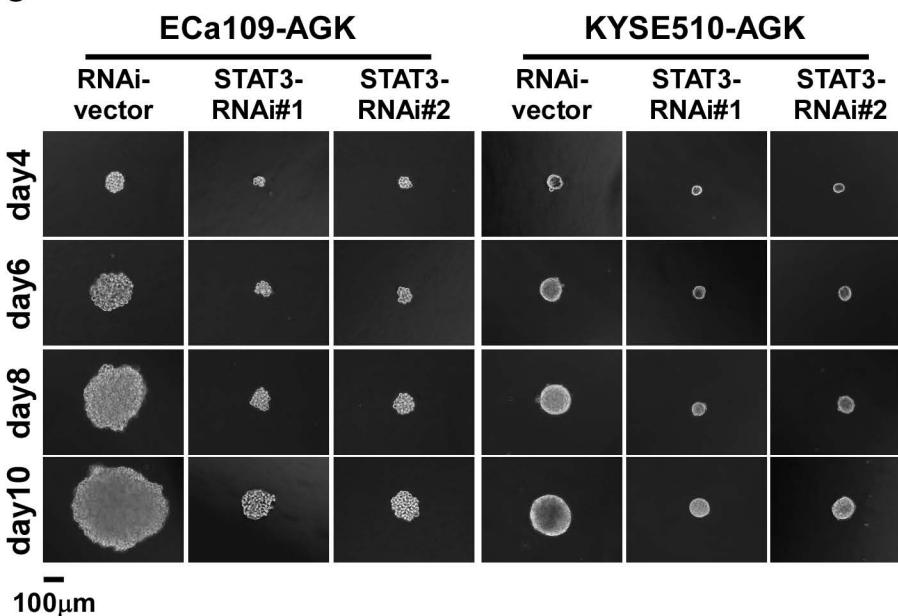
B


Supplemental Figure 6. AGK and JAK2 promote the CD44⁺ population in ESCC.

(A) Overexpression of AGK enhanced, whereas silencing AGK decreased, the CD44⁺ population sorted from the indicated ESCC cells.


(B) Silencing JAK2 decreased the CD44⁺ population sorted from the indicated ESCC cells.

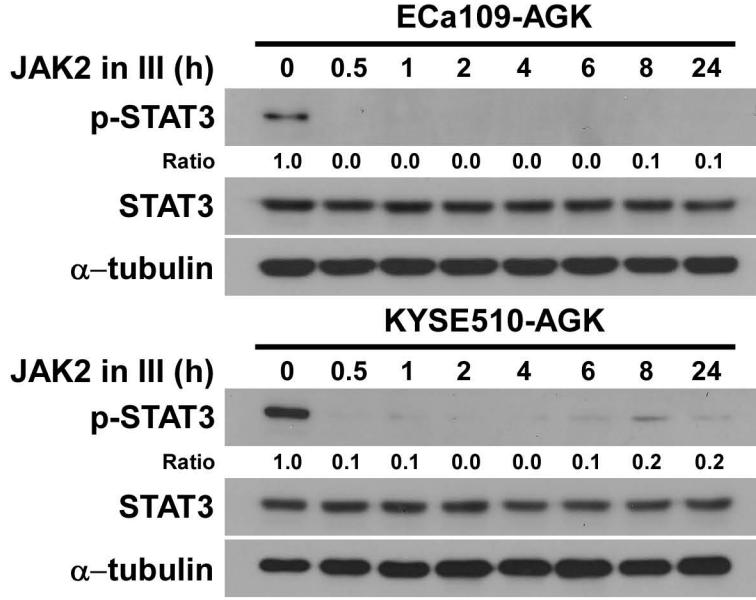
Supplemental Figure 7


A

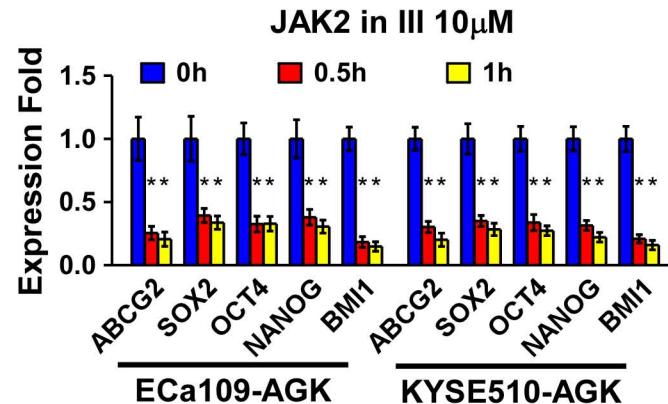
B

C

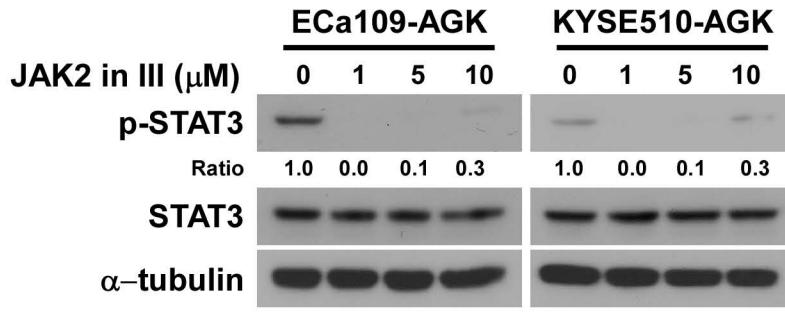
Supplemental Figure 7. JAK2-STAT3 signaling is required for the promoting effect of AGK on cancer stem cell-associated phenotypes.

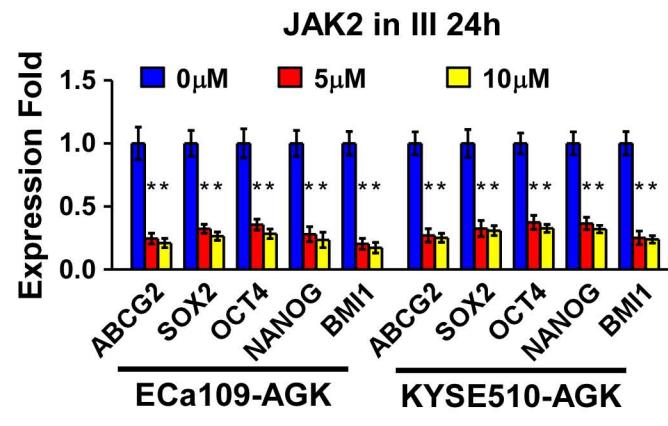

(A) Representative images of spheres formed by AGK overexpressing-cells infected with vector or JAK2 RNAi(s) taken on day 4, 6, 8, 10. Scale bar: 100 μ m.

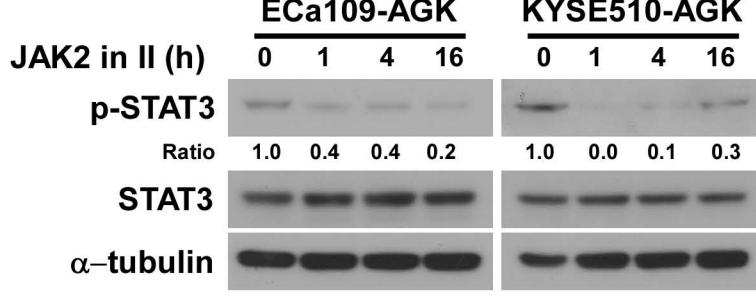
(B) Silencing JAK2 decreased the CD44⁺ population sorted from the indicated AGK-transduced ESCC cells.

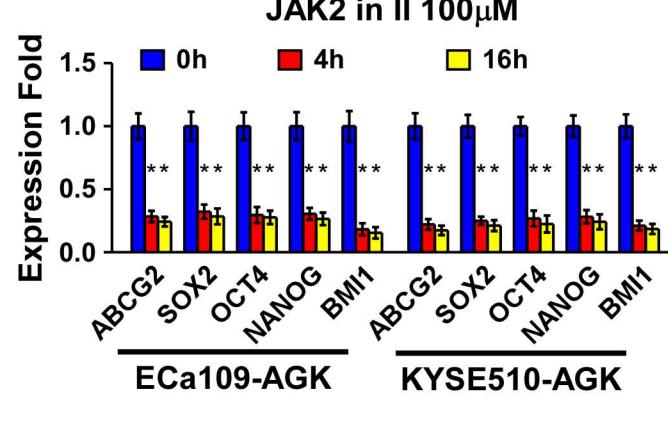

(C) Representative images of spheres formed by AGK overexpressing-cells infected with vector or STAT3 RNAi(s) taken on day 4, 6, 8, 10. Scale bar: 100 μ m.

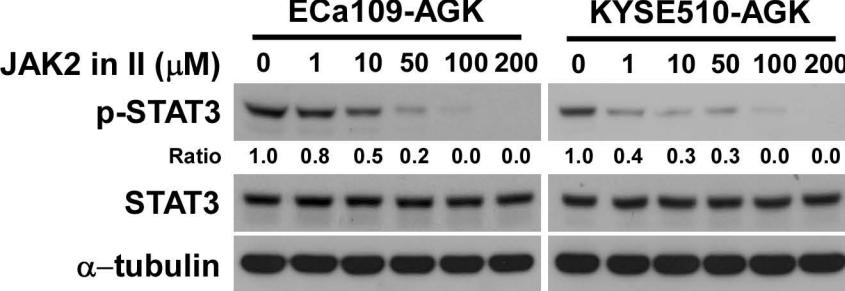
Supplemental Figure 8

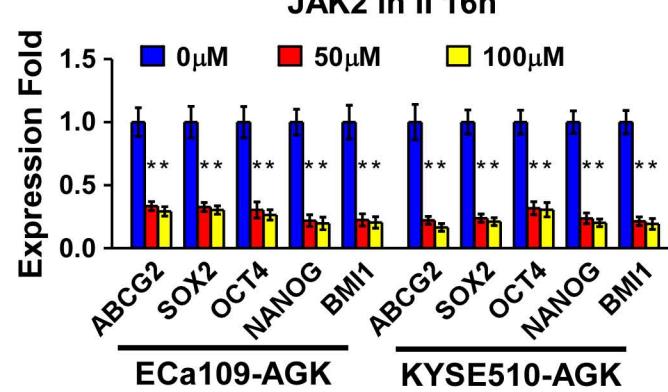

A


B


C


D


E


F

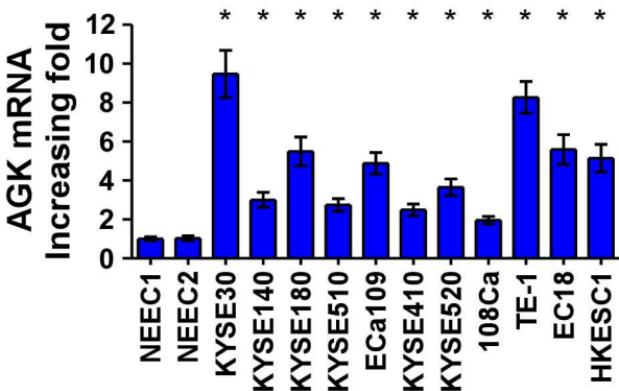
G

H

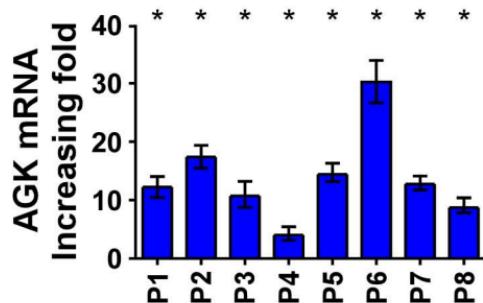
Supplemental Figure 8. Inhibition of JAK2 activity abrogates the ability of AGK to promote cancer stem cell-associated phenotypes.

(A and B) Western blotting analysis of p-STAT3 (Tyr705) expression (A) or real-time PCR analysis of the expression of pluripotency associated markers (B) in the indicated cells treated with JAK2 inhibitor III (10 μ M) for the indicated times.

(C and D) Western blotting analysis of p-STAT3 (Tyr705) expression (C) and real-time PCR analysis of the expression of pluripotency associated markers (D) in the indicated cells treated with the indicated concentrations of JAK2 inhibitor III for 24 h.


(E and F) Western blotting analysis of p-STAT3 (Tyr705) expression (E) and real-time PCR analysis of the expression of pluripotency associated markers (F) in the indicated cells treated with JAK2 inhibitor II (100 μ M) for the indicated times.

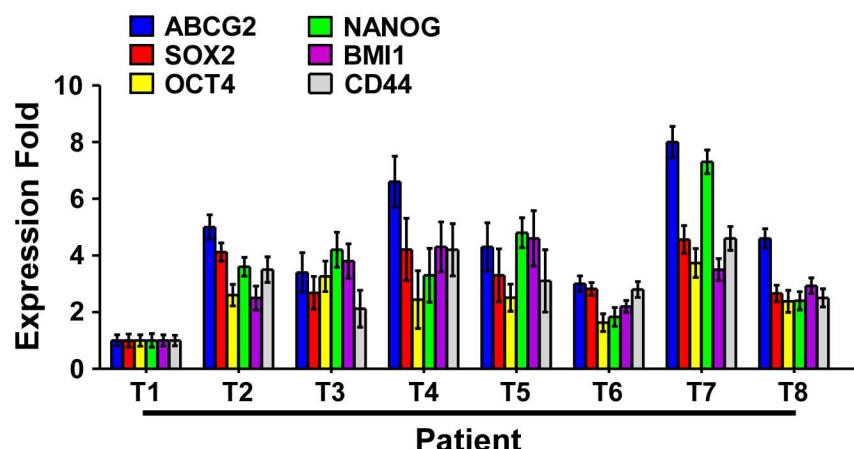
(G and H) Western blotting analysis of p-STAT3 (Tyr705) expression (G) and real-time PCR analysis of the expression of pluripotency associated markers (H) in the indicated cells treated with the indicated concentrations of JAK2 inhibitor II for 16 h.


α -tubulin was used as a loading control. Error bars represent the mean \pm SD of three independent experiments, * P < 0.05.

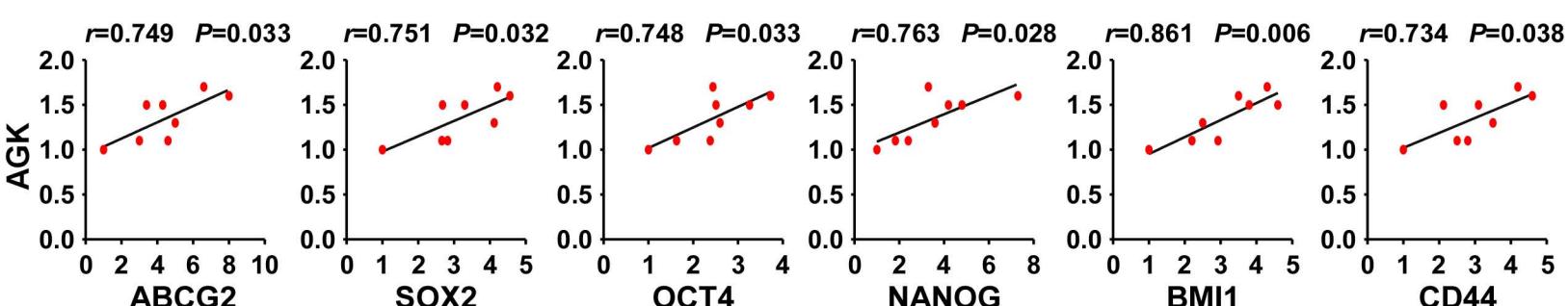
Supplemental Figure 9

A

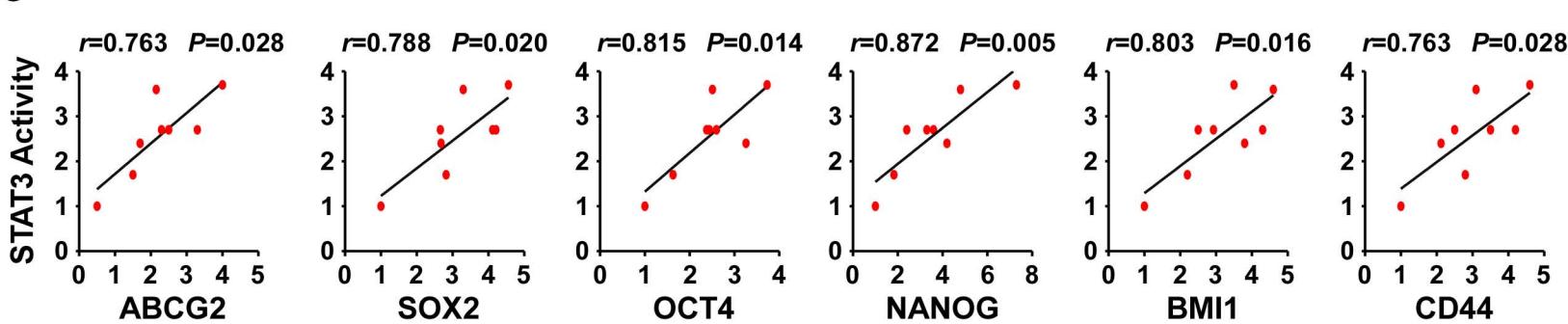
B

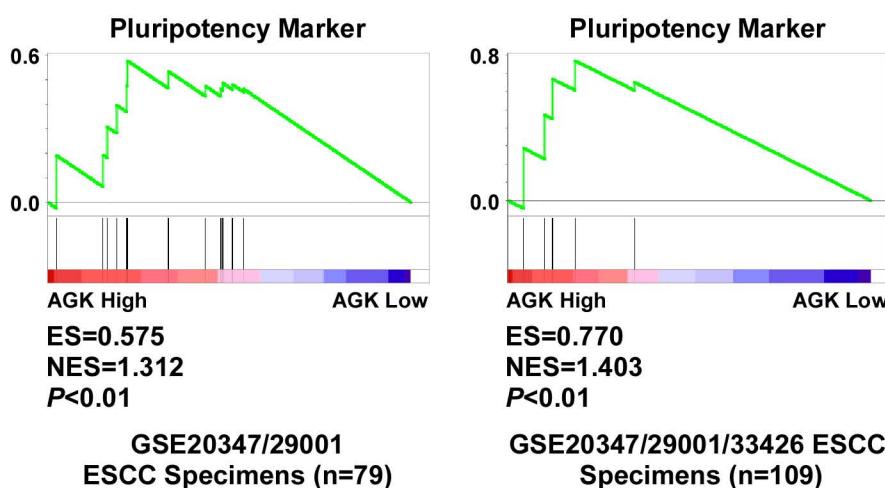

Supplemental Figure 9. Expression of AGK mRNA is elevated in ESCC cell lines and tissues.

(A) Real-time PCR analysis of AGK mRNA in 2 primary cultured human normal esophageal epithelial cells (NEECs) and 11 ESCC cell lines.


(B) Real-time PCR analysis of AGK mRNA in 8 paired primary ESCC tissues (T) and the matched adjacent non-tumor tissues (ANT) from the same patient.

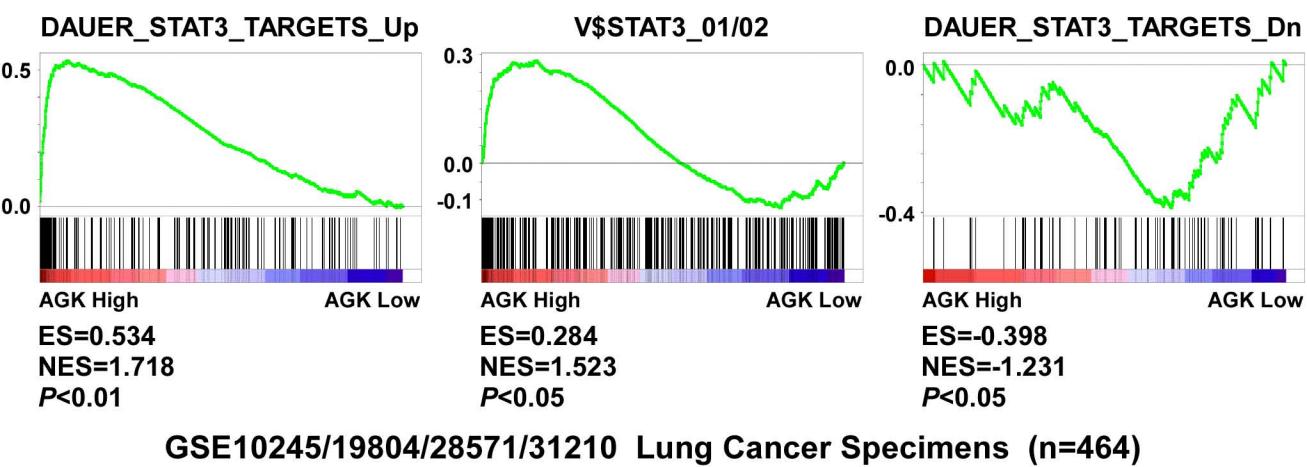
Supplemental Figure 10


A

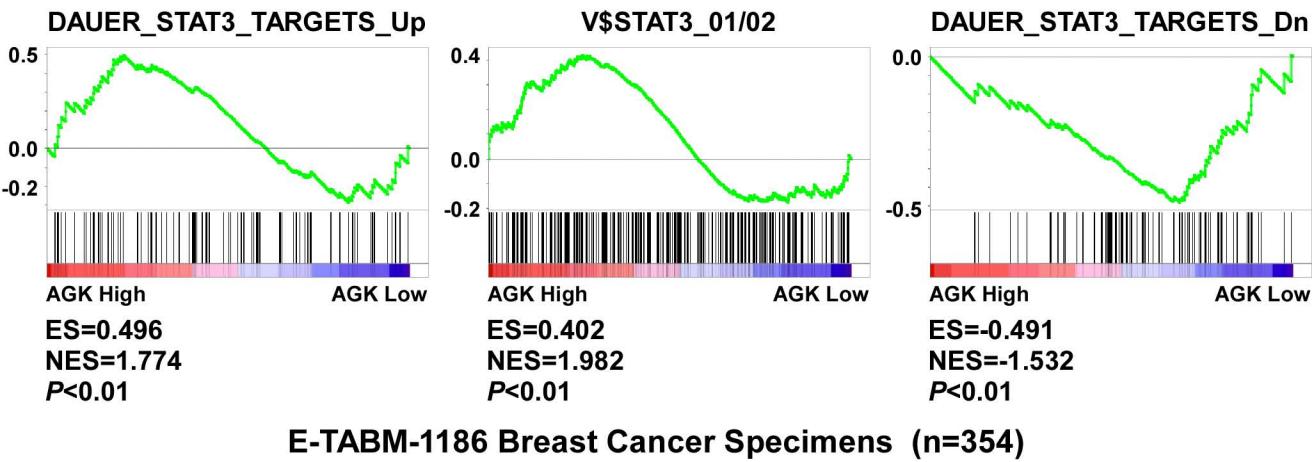

B

C

D



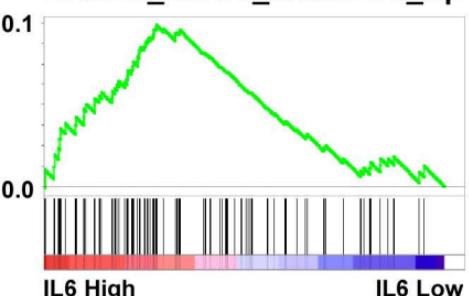
Supplemental Figure 10. AGK expression and JAK2-STAT3 activity correlate with the expression levels of pluripotency-associated factors in ESCC tissues.


- (A) Real-time PCR analysis of the mRNA expression of pluripotency-associated factors, including *ABCG2*, *SOX2*, *OCT4*, *NANOG*, *BMI1* and *CD44*, in 8 freshly collected human ESCC samples.
- (B and C) AGK expression (B) and JAK2-STAT3 activity (C) correlated significantly with the expression levels of pluripotency associated factors in freshly collected ESCC tissues.
- (D) GSEA plot showing that AGK levels positively correlated with the expression of pluripotency-associated factors, between normal and tumor tissues (left panel) and within tumor tissues (right panel), through an analysis of published ESCC patient profiles.

Supplemental Figure 11

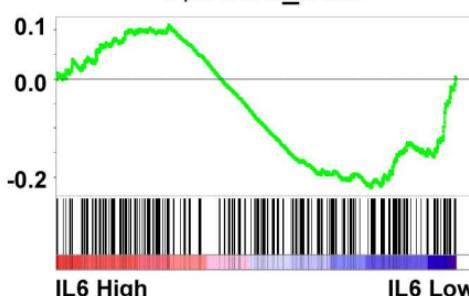
A

B

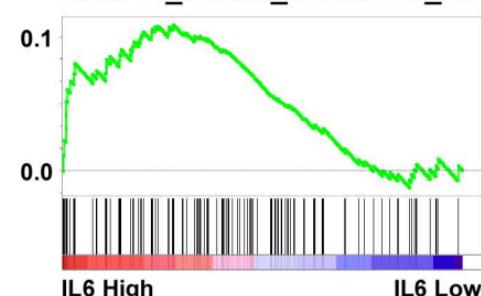


Supplemental Figure 11. AGK levels correlate with STAT3 activity in lung cancer and breast cancer datasets.

(A-B) GSEA plot showing significant correlations between AGK expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in published lung cancer gene expression profiles (statistic performed within tumor tissues from GSE10245/19804/28571/31210, $n = 464$) (A) and breast patient gene expression profiles (statistic performed within tumor tissues from E-TABM-1186, $n = 354$) (B).


Supplemental Figure 12

DAUER_STAT3_TARGETS_Up


ES=0.097
NES=0.231
P=0.429

V\$STAT3_01/02

ES=-0.221
NES=-1.017
P=0.417

DAUER_STAT3_TARGETS_Dn

ES=0.107
NES=0.273
P=0.378

GSE20347/29001 ESCC Specimens (n=79)

Supplemental Figure 12. Expression of IL6 does not correlate with STAT3 activation in clinical ESCC specimens.

GSEA plot showing no significant correlation between IL6 expression and the STAT3-activated gene signatures (DAUER_STAT3_TARGETS_UP, V\$STAT3_01/02) or STAT3-suppressed gene signatures (DAUER_STAT3_TARGETS_Dn) in published ESCC patient gene expression profiles (NCBI/GEO/GSE20347 and GSE29001, $n = 79$).