

В

()	2	3			5	
6	*	()			10	ò
() 11	() 12	13		() 4	15	
6 1 6	▲ ● 17	()	 ا	٨	12 X	Y

PSC-Line	Clonal karyotype [metaphases]	passage
A3	40,X,Der(X)T(XA1.1;12D1)[14]	24
A6	39,X,-X [13]	25
B2	40,XX [5] 39,X,-X [7]	25
B3	40,XX [2] 39,X,-X [7] 40,X,-X,+1 [3]	25
C4	40,XX [9] 39,X,-X [3]	25

Supplemental Figure 1. Karyotype analysis. (A) Representative euploid metaphase spread from PSC line B3 and overview of the results of the metaphase analyses in ESCs and PSCs (PSC line A6 was initially not evaluated in detail). (B) Spectral karyotyping (SKY) of PSC lines. The upper panel shows the A3 karyotype; the lower table summarizes the karyotype data from 2 transgenic (A3 and A6) and 3 non-transgenic PSC lines (B2, B3, and C4; PSC line C4 was one of the 2 non-transgenic lines that did not show beating activity upon the initial screen). Array-CGH analyses confirmed the unbalanced translocation of parts of chromosome 12 to the partially deleted X-chromosome and identified the break and fusion points (12D1 to XA.1).

Supplemental Figure 2. Electrophysiological identification of distinct myocyte populations. (A) Purkinje-like cell (n=3): Na⁺-channel blockade with tetrodotoxin (TTX, 1 μ mol/l) resulted in a reduction of upstroke velocity and ultimately a complete loss of spontaneous APs (middle panel); subsequent washout reversed the TTX effects; addition of nifedipine (1 μ mol/l) abolished the plateau and thus shortened the AP (right panel). (B) Pacemaker-like cell (n=3): TTX did not influence fast depolarization (middle panel) while nifedipine abolished spontaneous activity (right panel).

1: PSC-derived 2: native

Supplemental Figure 3. Electrical integration of parthenogenetic cardiomyocytes from α MHC-EGFP-PSCs into native myocardium in chimeric mice. (A) Two-photon laser scanning microscopy of intracellular Ca²⁺-transients: 2D- (upper panel) and line- (lower panel) scan images obtained during sinus rhythm (arrows 1 and 2: EGFP-positive and -negative cell, respectively; the dotted line indicates the location of the line-scan). (B) Plots of EGFP and rhod-2 line scan data in the EGFP-expressing cardiomyocyte 1 and the EGFP-negative (native) cardiomyocyte 2 as function of time. (C) Superimposed tracings of AP-evoked changes in rhod-2 fluorescence as function of time from cardiomyocytes 1 (green) and 2 (red). For each cell, the relative changes in fluorescence were normalized such that 0 represents the prestimulus fluorescence intensity and 1 represents the peak fluorescence intensity. F: fluorescence intensity; F: prestimulus fluorescence intensity. Scale bar: 20 µm

	Ventricle-like	Purkinje-like	Atrial-like	Pacemaker-like	Intermediate
n	49	13	11	15	14
C _m (pF)	64 ± 7	80 ± 14	60 ± 14	95 ± 24	58 ± 9
MDP (mV)	-66 ± 1	-64 ± 1	-62 ± 1	-48 ± 1	-52 ± 2
APD 20 (ms)	756 ± 110	364 ± 40	178 ± 26	462 ± 90	685 ± 152
APD 50 (ms)	950 ± 128	487 ± 45	243 ± 30	563 ± 98	685 ± 152
APD 90 (ms)	1031 ± 132	540 ± 45	352 ± 37	731 ± 108	1080 ± 229
Max dV/dt (V/s)	7.7 ± 1.2	21.9 ± 5.7	9.6 ± 2.2	1.9 ± 0.3	6.3 ± 1.7
AP amplitude (mV)	113 ± 1	115 ± 2	99 ± 3	77 ± 3	100 ± 2

Data are presented as mean ± SEM; Cm: cell capacity; MDP: maximal diastolic potential; APD 20, APD 50, APD90: AP duration measured at 20%, 50% or 90% repolarisation, respectively; max dV/dt: maximum rate of rise of AP

Supplemental Table 1. AP-characteristics of PSC-derived cardiomyocytes.

	Ventricle	EHT
n	4	8
max TT (mN)	0.08 ± 0.03	0.17 ± 0.02 *
T1 _{90%} (ms)	38 ± 2	65 ± 3 *
T2 _{50%} (ms)	38 ± 2	69 ± 4 *
Ca ²⁺ EC ₅₀ (mmol/L)	1.52 ± 0.06	0.82 ± 0.03 *

Data are presented as mean ± SEM; max TT: maximal twitch tension at 2.4 mmol/L calcium; T1_{90%}: contraction time from 10% to max TT; T2: relaxation time from max TT to 50% relaxation; Ca²⁺ EC₅₀: calcium concentration at half max TT. **P*<0.05 vs. ventricle (unpaired, two-tailed student's t-test).

Supplemental Table 2. Contractile properties of mouse ventricular myocardium and PSC-EHT.

	SHAM	Ctr.	F-EHT	EHT
n	8	8	8	7
AWTh diastole (mm)	0.77 ± 0.05	0.76 ± 0.08	0.87 ± 0.06	1.09 ± 0.10 *
AWTh systole (mm)	1.13 ± 0.05 *	0.80 ± 0.09	0.92 ± 0.06	1.28 ± 0.14 *
AWTh fraction (%)	32 ± 3 *	4 ± 2	5 ± 1	13 ± 3 *
PWTh diastole (mm)	0.74 ± 0.03	0.95 ± 0.08	0.81 ± 0.06	0.85 ± 0.08
PWTh systole (mm)	1.06 ± 0.07	1.14 ± 0.08	0.90 ± 0.09	0.96 ± 0.11
PWTh fraction (%)	28 ± 3 *	16 ± 3	7 ± 4	10 ± 4
LVID diastole (mm)	3.68 ± 0.10 *	4.49 ± 0.13	4.97 ± 0.11 *	4.32 ± 0.14
LVID systole (mm)	2.69 ± 0.12 *	4.09 ± 0.09	4.80 ± 0.16 *	3.84 ± 0.25
LV Area diastole (mm)	10.9 ± 0.4 *	17.2 ± 0.9	21.1 ± 1.1 *	17.3 ± 1.2
LV Area systole (mm)	6.0 ± 0.5 *	13.5 ± 1.0	17.6 ± 1.0 *	13.4 ± 1.3
FAS (%)	45 ± 4 *	22 ± 2	17 ± 2	23 ± 4
LVEDV (µI)	66 ± 3 *	109 ± 6	136 ± 8 *	109 ± 8
LVESV (µI)	32 ± 3 *	83 ± 6	110 ± 7 *	82 ± 9
EF (%)	51 ± 4 *	25 ± 2	20 ± 3	25 ± 4

Data are presented as mean ± SEM; AWTh: anterior wall thickness; PWTh: posterior wall thickness; LVID: left ventricular inner diameter; FAS: fractional area shortening; LVEDV: left ventricular end diastolic volume; LVESV: left ventricular end systolic volume; EF: ejection fraction; SHAM: mock ligation was placed around the LAD and mock sutures were placed as if EHT was implanted; Ctr.: LAD was permanently ligated and mock sutures were placed as if EHT was implanted; F-EHT: LAD was permanently ligated followed by implantation of formaldehyde fixed (non-viable) EHT; EHT: LAD was permanently ligated followed by implantation of a viable EHT. ANOVA with Dunnett's multiple comparisons test; * *P*<0.05 vs Ctr.

Supplemental Table 3. Echocardiography 14 days after EHT implantation or control intervention.

Chromosome 5

Marker	Distance from centro- mere (cM)	Forward primer 5'-3'	Reverse primer 5'-3'
D5Mit193	1	TGTCTTTAAAGTGGCCCAGG	TGTTTTCTATGTGTTTTATATGCTTCA
D5Mit294	8	TGCAAACTAGCAGCCAACTG	GTCAACCTCTGATCTACACCCC
D5Mit352	20	CCCAGAGCCCACATCAAG	TAGGTGGGTGTGTCTCTCCC
D5Mit81	28	GGGAGTTCCAGGTTCATTGA	ATGTGCATTATGGCATGTAAATG
D5Mit135	42	TACACAGGGAAAGGACAGGG	AGGGAGATTTTGGATTAGAGGC
D5Mit18	45	CTGTAGTGGGTGGTTTTAAAATTG	ATGCCACTGGTGCTCTCTG
D5Mit136	65	CTTCCAGGATGATTTACAGTATAACTG	AAACTTGCCCACTCCCATC
D5Mit168	78	CAGGTGACAGTTGTTCTCTTCC	CATGCATGAACACACATCACA

Chromosome 17

Marker	Distance from centro- mere (cM)	Forward primer 5'-3'	Reverse primer 5'-3'
D17Mit113	6.5	GAAACCTTTATGTAACCATCTGGC	AATTTATTTCATAGTGCATGTGTTG
D17Mit198	16	TGCTTCTACCTCCCAAGGG	CCAACCTTTCAAGTCAGATGTG
H2-Q4	19.16	CCTGCAGGAATATCAATAGTG	ATACAGAGAAACCCTATCTCAA
D17Mit24	20.43	ACCTCTCACCTCTCTCTGTG	TGGAGAGACGTCCTATGATG
D17Mit178	24.5	ACACAATTTCTTTTAGTGGGTTCC	TGTGGAAGACACTCAATATCAACC
D17Mit139	30.2	AGACATGTGAGTACTGCACAGACA	ATGATGACATACCTCCTAGTAGTCCC
D17Mit93	44.5	TGTCCTTCGAGTGTTTGTGTG	TCCCCGGTGAATGAGTTATC
D17Mit130	55.7	CTCAACTCCCCCTCTGCTTT	TGTCTGAACTCCTCAGGTACCA

Supplemental Table 4. Primers used for haplotype analyses of chromosomes 5 and 17.

	Forward primer 5'-3'	Reverse primer 5'-3'	Annealing temp. (°C)
Peg1 1st	TAGGGGTTTGTTTGTTGTTTATTT	AACCTATAAATATCTTCCCATATTC	45
Peg1 2nd	GATATGATAGAAAATATTTTGAAATTAAAA	ТАААААТАССААСАССТААААААА	55
lgf2r 1st	GTAGAGTTTTTTGAATTTTTTTGTT	TAAACTATAATTCTAATTATACCAAATTAC	45
lgf2 2nd	TGGTATTTTTATGTATAGTTAGGATAG	AAAAATTCTATAATCAAAACCAAC	55
H19 (CTCF1) 1st	TAAGGAGATTATGTTTTATTTTTGGA	CCCCCTAATAACATTTATAACCCC	45
H19 (CTCF1) 2nd	AAGGAGATTATGTTTTATTTTTGGA	AAACTTAAATAACCCACAACATTACC	55
lgf2 (DMR2) 1st	TTTAATATGATATTTGGAGATAGTT	ΑΑΑΑΑΑCAACCTAATATAAAAAAAC	45
lgf2 (DMR2) 2nd	GAGTTTAAAGAGTTTAGAGAGGTTAAA	ТААААСТАТСССТАСТСААААААА	55
Dlk1-Gtl2 (IG-DMR) 1st	GGTGGGATTGTTTTAGGTTTTTATT	AAATTTCTCCAACCCCAATATAACT	45
Dlk1-Gtl2 (IG-DMR) 2nd	TGGATTTGGTTTTATGAATGAAGATA	AAATAATCACCCTAACCCAACCTAC	55

Supplemental Table 5. Primers used for nested PCR to determine DNA methylation.

	Forward primer 5'-3'	Reverse primer 5'-3'	TaqMan probe 5'FAM-3'TAMRA
α-MHC (Myh6)	GCT GAC AGA TCG GGA GAA TCA G	CCC CTA TGG CTG CAA TGC	TCC TCA TCA CCG GAG AAT CCG GAG
β-MHC (Myh7)	TCC TCA CAT CTT CTC CAT CTC TGA	GCA AAA TAT TGG ATG ACC CTC TTA G	ATG CTG ACA GAT CGG GAG AAT CAG TCC AT
Nkx2.5	CTT TGT CCA GCT CCA CTG C	CAA GTG CTC TCC TGC TTT CC	TTC TGC AGC GCG CAC AGC TCT TT
Oct3/4	GCC CCA ATG CCG TGA AG	CAG CAG CTT GGC AAA CTG TTC	TGG AAC CAA CTC CCG AGG AGT CCC
Nanog	TGC TAC TGA GAT GCT CTG CAC A	TGC CTT GAA GAG GCA GGT CT	AGG CTG CCT CTC CTC GCC CTT C
Brachyury	AGC AAG AAA GAG TAC ATG GCA TTG	GCA GCG AGA AGG GAG ACC	AAC ATC CTC CTG CCG TTC TTG GTC A
Flk1	TGA TTG CCA TGT TCT TCT GG	TGT GTG TTG CTC CTT CTT TCA	CTA CGG ACC GTT AAG CGG GCC AAT
IsI-1	CAT TTG ATC CCG TAC AAC CTG ATA	AAA TTC ACG ACC AGT ATA TTC TGA GG	TTG GAG TGG CAT GCA GCA TGT TTG A
GAPDH	ATG TTC CAG TAT GAC TCC ACT CAC G	GAA GAC ACC AGT AGA CTC CAC GAC A	AAG CCC ATC ACC ATC TTC CAG GAG CGA GA
Casq2	CGG GAC AAC ACT GAC AAT CC	CCC AAT CTG TGG CTT GAA CA	TGA CTT TCC ACT GCT TGT TGC TTA CTG GG
Rex1	GGC CAG TCC AGA ATA CCA GA	GAA CTC GCT TCC AGA ACC TG	
Sox2	GGC AGC TAC AGC ATG ATG CAG GAG C	CTG GTC ATG GAG TTG TAC TGC AGG	
cTnT	CAG AGG AGG CCA ACG TAG AAG	CTC CAT CGG GGA TCT TGG GT	

Supplemental Table 6. TaqMan primer/probe sets and SYBR Green primer sequences (Rex1, Sox2, cTnT).

Antibody	Origin	Clone	Dilution	Source
Primary antibodies				
Neurofilament protein M, 160 kDa Sarcomeric myosin Pan-cytokeratin Nebulin α-Sarcomeric actinin Pan-cadherin alpha-Fetoprotein Cytokeratin 18 Cardiac troponin-I Connexin43 Connexin43 Nkx2.5 GATA4 Oct3/4 Nanog SSEA1	mouse mouse mouse rabbit rabbit mouse rabbit rabbit rabbit rabbit rabbit rabbit rabbit rabbit	NF-09 MF 20 C 11 NB2 EA-53 polyclonal polyclonal ks18.04 polyclonal 2/connexin-43 polyclonal polyclonal polyclonal polyclonal polyclonal polyclonal polyclonal MC-480	1/1000 1/50 1/100 1/400 1/250 1/250 1/200 1/250 1/200 1/200 1/200 1/200 1/200 1/200 1/200	abcam DSHB Sigma Sigma Sigma DAKO Progen Biotechnik Chemicon Translab Chemicon Santa Cruz Santa Cruz abcam abcam DSHB
Secondary antibodies				
Anti-mouse IgG Alexa 488 Anti-mouse IgG Alexa 546 Anti-mouse IgG Alexa 633 Anti-rabbit IgG Alexa 546 Anti-rabbit IgG Alexa 633	goat goat goat goat goat	polyclonal polyclonal polyclonal polyclonal polyclonal	1/800 1/800 1/800 1/800 1/800	Molecular Probes Molecular Probes Molecular Probes Molecular Probes Molecular Probes

DSHB: Developmental Study Hybridoma Bank at the University of Iowa

Supplemental Table 7. Applied primary and secondary antibodies.