Cxcl5 limits macrophage foam cell formation in atherosclerosis

Anthony Rousselle, Fatimunnisa Qadri, Lisa Leukel, Rüstem Yilmaz, Jean-Fred Fontaine, Gabin Sihn, Michael Bader, Amrita Ahluwalia, Johan Duchene.

Online supplement

SUPPLEMENTAL METHODS

Experimental design. 6wks old ApoE^{-/-} and WT mice were placed on a WD (21% fat, 0.2% cholesterol, Harlan Teklad) or remained on CD for the indicated time. ELR⁺- CXCL chemokines were quantified from aorta tissue mRNA and plasma CXCL5 concentration was assessed by ELISA.

Additionally, ApoE^{-/-} mice fed a WD were treated with a mouse CXCL5 mAb (50 μ g/mouse, i.p., every 72h, R&D) or IgG isotype control for 12 wks. Alternatively, ApoE^{-/-}-B₁R^{-/-} and ApoE^{-/-}-B₁R^{+/+} mice were fed a CD for 60 wks. Brachiocephalic artery and heart were fixed with 4% PFA and embedded in paraffin for histology analysis. Blood was collected for leucocytes, lipids, cytokines and chemokines measurement.

Histology and immunostaining. Serial sections (5µm) of brachiocephalic artery and aortic root were stained with hematoxylin and eosin to determine lesion size. Collagen was detected using Sirius Red coloration. Sections were stained for macrophages (Mac-2 mAb, Acris, 1:200), neutrophils (Ly6G mAb, BioLegend, 1:100), lipid-droplet content (adipophilin mAb, Fitzgerald, 1:1000) and detected with secondary anti-rat Cy3- (1:300) or Alexa 488-(1:500) Ab. Quantification analysis was assessed with ImageJ software.

Chemokine and cytokine measurement. Plasma Cxcl1 (Peprotech), Cxcl2 and Cxcl5 (R&D) and supernatant CXCL6 and IL-6 (R&D) levels were determined by ELISA. Plasma IFNγ, IL-2, IL-4, IL-6, IL-10, IL-12p70 and IL-17 levels were measured using Milliplex technology (Millipore).

Lipids profile. Plasma cholesterol and triglyceride levels were determined with commercially available kits (Abcam and Sigma).

Blood monocyte counting. ApoE^{-/-} mice fed a WD were treated with Cxcl5 mAb or control as above. Blood was collected after 2wks, red blood cell lysed (BD PharmLyse) and cells stained with CD11b (APC), CD115 (PE) and Ly6G (FITC) (all Biolegend). Total monocytes were identified as CD11b⁺CD115⁺Ly6G⁻ cells. Data were acquired using BD LSR II flow cytometer and analysed with FlowJo software.

Real-time quantitative PCR. cDNA was synthesized from 1 µg total RNA with M-MLV reverse transcriptase (Promega) using random hexamer nucleotides. Real-time quantitative PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems) on an ABI Prism 7900 sequence detection system with 10 ng of cDNA and 100 nM primers (sequences in Supplemental Table 3). Gene expression was normalized to β -actin (aorta) or HPRT (macrophage) or GAPDH (HUVEC) and expressed as a relative value to control group using the comparative threshold cycle method (2^{- $\Delta\Delta$ Ct}).

Microarray analysis. Raw data (CEL files) from 18 mouse aorta samples of an Affymetrix microarray dataset of WT and ApoE^{-/-} mice fed WD for 6, 32 and 78 wks was downloaded from the Gene Expression Omnibus database (identifier: GSE10000), processed and analysed using the R/Bioconductor statistical software. GCRMA normalisation method was applied on the 45101 probes. We filtered out probes with low variation in expression (at least 15% of the samples must have an expression value greater than the 10th percentile of all values in the dataset, and the inter quartile range must be greater than the median), probes having no annotated Entrez Gene identifier, and duplicated probes by keeping the one with the higher variance. There were a total of 19304 probes selected for further analysis. Pearson's correlation coefficients of gene probe expression profiles were computed between the Cxcl5 profile (Affymetrix probe identifier: 1419728_at) and profiles of the selected probes. P-values for significance were assessed using the distribution of all pairwise

probe correlation coefficients. 266 probes were significantly correlated to Cxcl5 (P<=0.01) and analysed for Biological Functions using Protein ANalysis THrough Evolutionary Relationships (www.pantherdb.org).

In vivo model of foam cell formation. ApoE^{-/-} mice on WD were injected with Cxcl5 (400ng, i.p., every 72h, Peprotech). After 12d, animals were sacrificed for peritoneal cells isolation. By flow cytometry, gated macrophages (CD11b⁺CD115⁺) were identified as foam (FSc^{hi}SSc^{hi}). In parallel, macrophages were left to adhere (2h) in DMEM and lipids were stained with Oil-Red-O. Cells with over 1/3 of cytoplasm lipids were considered as foam.

Endothelial cell stimulation. Using a cone and plate viscometer, HUVECs were exposed to steady unidirectional high (10dyn/cm^2) or low (2 dyn/cm^2) LSS for 24h. Treatment with oxidized LDL $(20\mu\text{g/ml}, \text{BTI})$ or IL-1 β (10ng/ml, Preprotech) was added for the last 4h or an additional 24h. qPCR analysis was carried out from 4h cell lysate. CXCL6 ELISA was performed from 24h supernatant.

Primary macrophage culture. Mouse bone-marrow-derived macrophages (BMDM) flushed out from femur were seeded in 10% FBS DMEM with M-CSF (50ng/mL) for 5-7d. Peritoneal macrophages (PM) isolated 4d after injection of 3% thioglycollate (1mL, i.p.) were left to adhere (2h) in DMEM. Non-adherent cells were PBS washed and primary macrophages were placed in 1% FBS DMEM overnight before further treatment.

Macrophage stimulation. PMs or BMDMs were stimulated with Cxcl5 (100ng/mL) with (20µg/mL) or without acLDL. In some experiments, cells were also treated with either Cxcl5-, Cxcr2-, IL-6-, or control IgG antibodies (20µg/mL, 20min prior to Cxcl5 stimulation). In addition, some macrophages were polarised into classically-activated

macrophages (M1) with IFNY (10ng/mL, 4h) or alternatively-activated macrophages (M2) with IL-4 (10ng/mL, 4h) and co-treated with Cxcl5. qPCR analysis was carried out from 4h cell lysate. ABCA1 Western Blotting and IL-6 ELISA were performed from 24h or 48h cell lysate or supernatant respectively.

In vitro model of foam cell formation. acLDL-loaded (20µg/mL) PMs were treated (100ng/mL) or not with Cxcl5 for 24h in 2.5% serum containing medium. 4% PFA fixed macrophages were stained for lipids with 0.5% Oil-Red-O. Cells with over 1/3 of cytoplasm lipids were considered as foam.

Cholesterol efflux assay. PMs were incubated with acLDL (20µg/mL) with (100ng/mL) or without Cxcl5 for 48h. NDB cholesterol (1µg/mL) was added for 6h. Medium was then replaced by fresh serum-free medium containing ApoAI (10µg/mL, BTI) for 4h. Fluorescence-labelled cholesterol was measured from collected supernatant and cell lysate (0.1N NaOH). Cholesterol efflux was calculated by dividing supernatant fluorescence by the sum of fluorescence in the media and cells.

Western blotting. Proteins from macrophage lysate were separated on 10% SDSpolyacrylamide gel, transferred to PVDF membranes, blocked (Odyssey) and ABCA1 was detected by incubation with rabbit anti-mouse Ab (1/500, Novus) at 4°C overnight followed by donkey-anti-rabbit IgG (IRDyeTM 800CW, 1/10000, Odyssey, 30min).

Supplemental Figure 1. Expression of ELR⁺-Cxcl chemokines in atherosclerosis.

(A) Assessment of Cxcl1 (■) and Cxcl2 (▲) mRNA during the progression of atherosclerosis in aorta of ApoE^{-/-} mice (n=6-8 per time point) fed a WD for the indicated time. (B) Triglycerides and LDL cholesterol were measured in plasma of WT and ApoE^{-/-} mice fed either chow (CD) or western (WD) diet for 12wks (n=8 mice per group). (C) Aortic Cxcl1, Cxcl2 and Cxcl5 mRNA expression was measured in ApoE^{-/-} mice under CD for 12wks in thoracic aorta (Th) and aortic arch (Ar) (n=8 mice per group). Data are mean SEM. ***P<0.001, **P<0.01, *P<0.05. ns, not significant. (D) Representative images of brachiocephalic artery (BCA) and spleen from ApoE^{-/-} mice fed a WD for 12wks and stained with anti-Ly6G Ab for neutrophil detection. Spleen was used as a positive control for Ly6G immunostaining. Scale bar= 75µm.

Supplemental Figure 2. Blockade of Cxcl5 augments macrophage foam cell formation.

ApoE^{-/-} mice were fed a WD for 12wks and treated with either IgG isotype control (IgG) or anti-Cxcl5 Antibody (Cxcl5 Ab). Brachiocephalic artery and heart were removed, cut and stained. Representative images from brachiocephalic artery lesions of (A) hematoxylin-eosin staining (HE) and (C) Mac2 immunostaining for macro-phage detection. (B) Quantification of plaque size in brachiocephalic artery lesions. (D) Representative image of brachiocephalic artery section from Cxcl5 Ab treated mice immunostained for adipophilin. White arrows indicate lipid-droplet. Representative images from aortic root lesions of (E) picosirius red staining for collagen detection. (F) Quantification of collagen content in aortic root lesions. (B and F) Data represent mean \pm SEM. n =7- 8. **P<0.01. ns: not significant. Scale bars 100µm(A and E), 50µm (C), 10µm (D).

Supplemental Figure 3. Reduction of Cxcl5 in ApoE^{-/-} B1R^{-/-} mice is correlated with an increase of foam macrophage cells in atherosclerotic plaques.

ApoE^{-/-} / B1R^{+/+} and ApoE^{-/-} / B1R^{-/-} mice were fed a CD for 60wks. (A) Cxcl1, Cxcl2 and Cxcl5 levels were measured in plasma by ELISA. (B) Monocytes were measured in blood by flow cytometry analysis. (C) Cholesterol level was determined in plasma. (D-G) Heart was removed and aortic root section were analysed. Representative images of aortic root sections immunostained for Mac2 (D) and Adipophilin (F). Quantification of macrophage (E) and lipid-droplet (G) content in atherosclerotic plaque area within the aortic root. Data in A, B, C, E and G represent mean \pm SEM. n = 8.**P<0.01. ns, not significant.

В

Supplemental Figure 4. Cxcl5 reduces macrophage foam cell formation in vivo.

ApoE^{-/-} mice were fed a WD and treated with either saline or Cxcl5 (i.p. 400ng, every 72h) for 12days. Peritoneal macrophages were isolated and stained with Oil-Red-O. (A) Representative images of peritoneal macrophages stained with Oil-Red-O. (B) Quantification of peritoneal foamy macrophages (Oil-Red-O positive). Data represent mean \pm SEM. n = 3. ***P<0.001.

Supplemental Figure 5. Blockade of Cxcl5 does not affect plasma cytokine levels.

ApoE^{-/-} mice were fed a WD for 12wks and treated with either IgG isotype control (IgG) or anti-Cxcl5 Ab (Cxcl5 Ab). Selected plasma cytokines were analysed using Multiplex technology. Data represent mean ± SEM. n=7-8. ns: not significant; nd: not determined (below the limit of detection).

Supplemental Figure 6. Cxcl5 induces IL-6 and ABCA1 expression in peritoneal macrophages in vitro. (A) Cxcr2 mRNA expression was determined by RT-PCR in BMDM and PM. Minus RT (-RT) serves as a negative control. (B-D) PM were cholesterol-loaded or not with acLDL and treated with or without Cxcl5. Macrophage activation was determined by IL-6 expression (B) at mRNA level using qPCR and (C) protein release in the medium using ELISA. (D) Expression of genes involved in cholesterol trafficking was measured by qPCR in PM. Data are mean ± SEM. n=5-8. **P<0.01, *P<0.05. ns, not significant.

С

Supplemental Figure 7. Stimulation of Cxcl5-Cxcr2 axis induces expression of ABCA1 but not CD36 in M0 and M2 macrophages and is independent of IL-6 pathway.

(A) Cholesterol-loaded BMDM with acLDL were treated with anti-IL-6 Ab 20min prior to (0h) or 24h after Cxcl5 stimulation. ABCA1 mRNA expression was measured by qPCR at t=48h. (B-C) BMDM were treated with Cxcl5 (M0) or in combination with INFY (M1) or IL-4 (M2) for 4h. Antibodies against Cxcl5 and Cxcr2 were added 20min prior to Cxcl5, INFY and IL-4 treatments. CD36 (B) and ABCA1 (C) mRNA expression in naive (M0), classically-activated (M1) and alternatively-activated (M2) macrophage was determined by qPCR. Data are mean \pm SEM. n=6. *P<0.05. ns, not significant.

В

	<u> </u>		<u> </u>	
Rank	Probeset	EntrezGenelD	Symbol	Correlation
				(R value)
1	1419728 at	20311	Cxcl5	1.0000
2	1440173 x at	20344	Selp	0.9135
3	1422412 x at	53876	Ear3	0.8930
4	1424415 s at	233744	Spon1	0.8897
5	1421977 at	58223	Mmp19	0.8787
6	1418508 a at	14784	Grb2	0.8732
7	1451537 at	12654	Chi3l1	0.8572
8	1438676 at	100702	Gbp6	0.8520
9	1418675 at	18414	Osmr	0.8507
10	1417721 s at	16792	Laptm5	0.8500
11	1423878 at	71683	Gvpc	0.8472
12	1444242 at	24059	Slco2a1	0.8453
13	1427747 a at	16819	Lcn2	0.8408
14	1439015 at	14585	Gfra1	0.8407
15	1450826 a at	20210	Saa3	0.8395
16	1426594 at	232288	Frmd4b	0.8392
17	1419209 at	14825	Cxcl1	0.8386
18	1450430 at	17533	Mrc1	0.8375
19	1420249 s at	20305	Ccl6	0.8339
20	1442599 at	83704	Slc12a9	0.8336
21	1415804 at	20312	Cx3cl1	0.8300
22	1420498 a at	13132	Dab2	0.8285
23	1426246 at	19128	Pros1	0.8282
24	1457539 at	52701	D10Ertd709e	0.8280
25	1450822 at	17110	Lvz1	0.8266
26	1448566 at	53945	SIc40a1	0.8259
27	1436987 at	319909	lsm1	0.8197
28	1423632 at	80290	Gpr146	0.8197
29	1417495_x_at	12870	Ср	0.8196
30	1423140_at	16889	Lipa	0.8190
31	1417019_a_at	23834	Cdc6	0.8187
32	1437046_x_at	75007	Fam63a	0.8176
33	1419417_at	22341	Vegfc	0.8159
34	1456620_at	432486	Gnptab	0.8149
35	1450020_at	13051	Cx3cr1	0.8087
36	1439518_at	105450	Mmrn2	0.8083
37	1424125_at	217826	Kcnk13	0.8083
38	1451680_at	76650	Srxn1	0.8074
39	1417523_at	56193	Plek	0.8066
40	1430124_x_at	58810	Akr1a4	0.8046
41	1436963_x_at	67706	Tmem179b	0.8008
42	1440759_at	100038499	Gm10672	0.8001
43	1443698_at	327959	Xaf1	0.8001
44	1449193_at	11801	Cd5l	0.7993
45	1426604_at	24014	Rnasel	0.7977
46	1435135_at	320024	Nceh1	0.7973
47	1451359_at	210992	Lpcat1	0.7948
48	1435143_at	13713	Elk3	0.7941
49	1436003_at	22329	Vcam1	0.7936
50	1449153_at	17381	Mmp12	0.7936
51	1418580_at	67775	Rtp4	0.7934

Supplemental Table 1. List of genes significantly correlated to Cxcl5

52	1419043_a_at	60440	ligp1	0.7931
53	1421138_a_at	18768	Pkib	0.7929
54	1424616_s_at	233575	Pgap2	0.7929
55	1452948_at	69769	Tnfaip8l2	0.7927
56	1426385 x at	22627	Ywhae	0.7927
57	1422243 at	14178	Fgf7	0.7925
58	1430704 at	73914	Irak3	0.7922
59	1453196 a at	23962	Oasl2	0.7918
60	1444176 at	242341	Atp6v0d2	0.7915
61	1437726 x at	12260	Clab	0.7907
62	1434783 at	380967	Tmem106c	0.7905
63	1448668 a at	16179	Irak1	0.7905
64	1449516 a at	50780	Ras3	0.7902
65	1427348 at	230738	Zc3h12a	0.7891
66	1427994 at	246746	Cd300lf	0.7886
67	1417793 at	54396	Iram2	0.7882
68	1456111 at	244853	Fam55d	0.7874
69	1449025 at	15959	lfit3	0.7858
70	1419100 at	20716	Serpina3n	0.7850
71	1417009 at	50909	C1ra	0 7834
72	1418090 at	84094	Plvan	0 7834
73	1449256 a at	53869	Rab11a	0 7832
74	1421424 a at	16790	Annen	0 7831
75	1434380 at	229900	Gbn7	0 7820
76	1421034 a at	16190	ll4ra	0.7805
77	1419463 at	80797	Clca2	0 7803
78	1433588 at	28006	D6Wsu116e	0.7796
79	1421839 at	11303		0 7795
80	1425133 s at	74760	Rah3il1	0 7793
81	1420609_at	56644	Clec7a	0.7790
82	1418626 a at	12759	Clu	0.7789
83	1410020_a_at	83924	Gnr137h	0.7788
84	1433488 x at	75612	Gns	0.7788
85	1418021 at	12268	C4h	0.7785
86	1448424 at	20378	Erzh	0.7783
87	1448303 at	93695	Gnnmh	0.7782
88	1448020 at	74145	E13a1	0.7782
80	1425823 at	545366	Cfbr2	0.7780
00 00	1424603 at	58011	Sumf1	0.7776
01	1424005_at	20750	Son1	0.7772
02	1434784 s at	380967	Tmem106c	0.7772
02	1435732 v at	1108/	Atn6v0c	0.7760
93 Q/	1451715 at	16658	Mafh	0.7762
9 4 95	1420527 a at	22038	Plecr1	0.7754
90	1429327_a_at	11/715	Spred1	0.7752
90 07	1420777_at	17357	Marckel1	0.7750
08	1400027_A_at	16854		0.7748
90	1420000_at	22234	Lyaiss	0.7740
100	1400100_at	17105		0.7740
100	1423347_at	71705	Lyzz Ditopo1	0.7736
101	1455204_at	19930	Plto	0.7733
102	1451784 v ot	1/06/	т цр Ц2 П1	0.1133
103	1/20221 of	67702	Dnf1/0	0.1132
104	1423321_al	216001	Adan?	0.1120
105	1420009_al	210331	Tm2d2	0.1123
100	1439434_X_al	09/42 51900	Rok	0.7720
107	1417040_a_al	57077	DUK Slurn1	0.1120
100	1420002_al	51211 67729	Dob2	0.7717
109	1402047_a_al	0//20	DUIZ	0.7717

110	1448380_at	19039	Lgals3bp	0.7717
111	1451651_at	278180	Vsig4	0.7714
112	1415983_at	18826	Lcp1	0.7714
113	1419449 ⁻ a at	14678	Gnai2	0.7712
114	1418133 at	12051	Bcl3	0.7711
115	1451931 x at	14980	H2-L	0.7684
116	1417492 at	13030	Ctsb	0.7682
117	1426774 at	243771	Parp12	0.7681
118	1448591 at	13040	Ctss	0.7680
119	1436333 a at	104015	Svni1	0.7680
120	1441216 at	20442	St3gal1	0.7677
121	1454783 at	16164	ll13ra1	0.7676
122	1422062 at	20288	Msr1	0.7672
123	1418318 at	66889	Rnf128	0.7669
124	1427076 at	17476	Mpeg1	0.7667
125	1418736 at	26879	B3gaInt1	0.7664
126	1451243 at	215615	Rnpep	0.7661
127	1437760 at	230145	Galnt12	0.7660
128	1422645 at	15216	Hfe	0.7657
129	1451866 a at	15234	Haf	0 7656
130	1421172 at	11489	Adam12	0 7656
131	1454086 a at	16909	I mo2	0 7650
132	1423593 a at	12978	Csf1r	0 7649
133	1422978 at	13058	Cybb	0 7648
134	1456212 x at	12702	Socs3	0 7648
135	1422868 s at	14544	Gda	0 7645
136	1436589 x at	101540	Prkd2	0 7632
137	1427103 at	102595	Plekho2	0.7630
138	1433500 at	209773	Dennd2a	0 7619
139	1455357 x at	67952	Tomm20	0 7618
140	1444052 at	14257	Flt4	0.7609
140	1427327 at	231805	Pilra	0.7603
142	1450764 at	27052	Aoah	0.7601
143	1448163_at	26384	Gnnda1	0.7598
140	1451191 at	12904	Crahn2	0.7595
145	1420196 s at	100855	Thc1d14	0.7594
146	1427682 a at	13654	For2	0.7591
140	1450297 at	16193	116	0 7590
148	1422572 at	56212	Rhog	0 7589
140	1424523 at	140580	Flmo1	0.7583
150	1460619 at	211798	Mfsd9	0.7583
151	1416022 at	16592	Fabn5	0 7582
152	1420697 at	65221	SIc15a3	0.7682
153	1442082 at	12267	C3ar1	0.7579
154	1418539 a at	19267	Ptore	0.7572
155	1450678 at	16414	Itah2	0.7570
156	1438633 x at	16796	l asn1	0.7567
157	1455221 at	11307	Abca1	0.7565
158	1455476 a at	382034	Gse1	0.7562
150	1449370_at	20677	Sov4	0.7661
160	1436838 x at	72042	Cotl1	0 7560
161	1430700 a at	27226	Pla2n7	0 7550
162	1410104 e ot	63986	Gmfa	0.7559
163	1452117 a at	23880	Fvb	0.7553
164	1404707 of	12774	Cor5	0.7535
165	1426528 at	18187	Nrn2	0.7540
166	1455660 at	12083	Cef2rh	0.7544
167	1420703 of	12000	Cef2ra	0.7539
107	1720100_at	12002	Usizia	0.7550

168	1428758_at	67893	Tmem86a	0.7535
169	1425546 a at	22041	Trf	0.7534
170	1423776_s_at	223754	Tbc1d22a	0.7533
171	1415686 at	68365	Rab14	0.7531
172	1434308 at	215113	Slc43a2	0.7527
173	1452068 at	67111	Naaa	0.7523
174	1453055 at	214968	Sema6d	0.7519
175	1460273 a at	17948	Naip2	0.7518
176	1449824 at	96875	Pra4	0.7514
177	1439256 x at	664862	Gpr137b-ps	0.7509
178	1449360 at	12984	Csf2rb2	0.7507
179	1416094 at	11502	Adam9	0.7507
180	1424470 a at	223864	Rapgef3	0.7506
181	1424126 at	11655	Alas1	0.7502
182	1460437 at	72318	Cvth4	0 7500
183	1417648 s at	69178	Snx5	0 7498
184	1426623 a at	70497	Arhoap17	0 7498
185	1424265 at	74091	Nnl	0 7494
186	1434376 at	12505	Cd44	0 7494
187	1455741 a at	230857	Ece1	0.7404
188	1425797 a at	200007	Sykh	0.7489
189	1410128 at	16411	ltaax	0.7480
103	1451821 a at	20684	Sp100	0.7480
101	1456581 x at	14560	Gdi2	0.7403
102	1430301_A_at	12514		0.7407
102	1449104_at	16301	IrfQ	0.7400
104	1421322_a_al	75000	ling Vmn1	0.7404
194	1423722_at	11752	Δηγοβ	0.7403
195	1425769_5_at	100024251	Cm11/20	0.7401
190	1430330_at	100034251	Bal2111	0.7470
197	1430449_at	12120	DCIZITI Cor1	0.7474
190	1419609_at	12700		0.7474
199	1449429_at	14220	ГКОРТО	0.7474
200	1422031_al	11022	Alli Atacudha	0.7409
201	1419883_S_at	11900		0.7409
202	1428187_at	10423	C047 Ctad	0.7408
203	1448118_a_at	13033	Cisa	0.7405
204	1452279_at	18636	Ctp	0.7464
205	1419534_at	108078	OIr1	0.7461
206	1442798_x_at	212032	HK3	0.7460
207	1427691_a_at	15976	Ifnar2	0.7460
208	1457035_at	226691	AI607873	0.7456
209	1438561_x_at	75146	1 mem 180	0.7453
210	1436223_at	320910	Itgb8	0.7452
211	1451363_a_at	/2121	Dennd2d	0.7449
212	1448550_at	16803	Lbp	0.7442
213	1449156_at	17085	Ly9	0.7437
214	1422648_at	11988	Slc7a2	0.7436
215	1419605_at	17312	Clec10a	0.7434
216	1423571_at	13609	S1pr1	0.7434
217	1449280_at	71690	Esm1	0.7432
218	1421187_at	12772	Ccr2	0.7430
219	1417381_at	12259	C1qa	0.7426
220	1419598_at	68774	Ms4a6d	0.7426
221	1450686_at	330260	Pon2	0.7424
222	1435416_x_at	14755	Pigq	0.7422
223	1419589_at	17064	Cd93	0.7418
224	1417073_a_at	19317	Qk	0.7417
225	1448620_at	14131	Fcgr3	0.7416

226	1460430_at	72065	Rap2c	0.7414
227	1424595_at	16456	F11r	0.7413
228	1443783_x_at	14960	H2-Aa	0.7412
229	1448595_a_at	19716	Bex1	0.7409
230	1442849_at	16971	Lrp1	0.7405
231	1415947_at	433375	Creg1	0.7398
232	1449846_at	13587	Ear2	0.7397
233	1439069_a_at	66776	Pisd-ps3	0.7395
234	1434731_x_at	18477	Prdx1	0.7388
235	1416046_a_at	66848	Fuca2	0.7384
236	1449454_at	12182	Bst1	0.7383
237	1449519_at	13197	Gadd45a	0.7383
238	1459740_s_at	22228	Ucp2	0.7380
239	1424302_at	18733	Lilrb3	0.7380
240	1450424_a_at	16068	ll18bp	0.7378
241	1416968_a_at	101502	Hsd3b7	0.7376
242	1439440_x_at	23999	Twf2	0.7376
243	1416013_at	18807	Pld3	0.7376
244	1437347_at	13618	Ednrb	0.7375
245	1460235_at	12492	Scarb2	0.7374
246	1448313_at	12751	Tpp1	0.7373
247	1415687_a_at	19156	Psap	0.7373
248	1441281_s_at	18081	Ninj1	0.7368
249	1418738_at	20266	Scn1b	0.7368
250	1450241_a_at	14017	Evi2a	0.7365
251	1433741_at	12494	Cd38	0.7364
252	1427020_at	219151	Scara3	0.7360
253	1449033_at	18383	Tnfrsf11b	0.7360
254	1418446_at	20502	Slc16a2	0.7355
255	1438138_a_at	224824	Pex6	0.7354
256	1419042_at	60440	ligp1	0.7352
257	1446951_at	320452	P4ha3	0.7349
258	1437454_a_at	66958	Tmx2	0.7348
259	1426441_at	18174	Slc11a2	0.7347
260	1448576_at	16197	ll7r	0.7346
261	1448919_at	66205	Cd302	0.7344
262	1424067_at	15894	lcam1	0.7333
263	1451310_a_at	13039	Ctsl	0.7331
264	1418340_at	14127	Fcer1g	0.7329
265	1425733_a_at	13860	Eps8	0.7328
266	1448617_at	12508	Cd53	0.7328
267	1457753_at	279572	Tlr13	0.7325

Biological Process	amount	expected	P value
immune system process	82	17.54	2.55E-33
response to stimulus	55	14.49	9.00E-18
immune response	29	5.19	1.29E-13
cytokine-mediated signaling pathway	19	2.61	3.25E-11
signal transduction	78	37.09	4.17E-11
cell communication	80	38.76	5.27E-11
cellular process	96	56.16	8.41E-09
macrophage activation	12	1.65	1.47E-07
cell surface receptor linked signal transduction	า 43	18.96	3.97E-07

Supplemental Table 2. List of the Biological Functions of genes coregulated with Cxcl5 generated by PANTHER Classification System.

Supplemental Table 3. List of primers

Gene	Species	Forward	Reverse
Cxcl1	mouse	TGAGCTGCGCTGTCAGTGCCT	AGAAGCCAGCGTTCACCAGA
Cxcl2	mouse	GAGCTTGAGTGTGACGCCCCAGG	GTTAGCCTTGCCTTTGTTCAGTATC
Cxcl5	mouse	GCATTTCTGTTGCTGTTCACGCTG	CCTCCTTCTGGTTTTTCAGTTTAGC
Cxcr2	mouse	ATGCCCTCTATTCTGCCAGAT	GTGCTCCGGTTGTATAAGATGAC
IL-6	mouse	CTGCAAGAGACTTCCATCCAGTT	GAAGTAGGGAAGGCCGTGG
CD36	mouse	TTTCCTCTGACATTTGCAGGTCTA	AAAGGCATTGGCTGGAAGAA
MSR1	mouse	TGAACGAGAGGATGCTGACTG	TGTCATTGAACGTGCGTCAAA
ABCA1	mouse	CCCAGAGCAAAAAGCGACTC	GGTCATCATCACTTTGGTCCTTG
ABCG1	mouse	ATCTGAGGGATCTGGGTCTGA	CCTGATGCCACTTCCATGA
HPRT	mouse	GTAATGATCAGTCAACGGGGGAC	CCAGCAAGCTTGCAACCTTAACCA
β -actin	mouse	GAAATCGTGCGTGACATCAAAG	TGTAGTTTCATGGATGCCACAG
CXCL8	human	GAATGGGTTTGCTAGAATGTGATA	CAGACTAGGGTTGCCAGATTTAAC
CXCL6	human	GGTCCTGTCTCTGCTGTGC	GGGAGGCTACCACTTCCA
GAPDH	human	CATGTTCGTCATGGGTGTGAA	ATGGACTGTGGTCATGAGTCCTT