
Leaky channels make weak muscles

Alfred L. George Jr.
Department of Medicine and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.

Mutations in the skeletal muscle voltage-gated calcium channel (Cav1.1) have been associated with hypokalemic periodic paralysis, but how the pathogenesis of this disorder relates to the functional consequences of mutations was unclear. In this issue of the JCI, Wu and colleagues recapitulate the disease by generating a novel knock-in Cav1.1 mutant mouse and use this model to investigate the cellular and molecular features of pathogenesis. They demonstrated an aberrant muscle cell current conducted through the Cav1.1 voltage-sensor domain (gating pore current) that explains an abnormally depolarized muscle membrane and the failure of muscle action potential firing during challenge with agents known to provoke periodic paralysis. Their work advances understanding of molecular and cellular mechanisms underlying an inherited channelopathy.

Ion channels are ubiquitous membrane proteins that confer selective ionic permeability to the plasmalemma or intracellular membranes and enable a wide variety of important physiological processes, including membrane excitability, synaptic transmission, signal transduction, cell volume regulation, and transcellular ion transport. The vital nature of ion channels is reflected by the existence of inherited disorders caused by mutations in genes that encode these proteins (1–5). These “channelopathies” represent more than 50 human genetic diseases, including several affecting skeletal muscle contraction, such as the periodic paralysis and nondystrophic myotonias (see “Muscle channelopathies”).

Hypokalemic periodic paralysis
Plasma membrane channels in skeletal muscle are essential for the generation and propagation of action potentials, leading to release of intracellular calcium through the process of excitation-contraction coupling. Ion channel dysfunction can hinder contraction by impairing action potential firing along the membrane. A characteristic symptom of this phenomenon is known as “periodic paralysis,” a form of paroxysmal weakness that occurs in the absence of neuromuscular junction or motor neuron disease. Periodic paralysis is most often thought of as an inherited disease, but certain acquired conditions can produce a similar phenotype. Disturbances in plasma potassium ion concentration often accompany bouts of weakness, and the direction of change has been used to classify the condition as hypokalemic, hyperkalemic, or normokalemic periodic paralysis (6). These conditions are not lethal, because respiratory muscles are spared.

Although the clinical features and inheritance pattern have been known since the first half of the twentieth century, the pathophysiology of periodic paralysis remained mysterious until approximately 30 years ago, when investigators in Germany published their electrophysiological observations on explanted intercostal muscle fibers from subjects with periodic paralysis (7). These studies revealed that resting membrane potential was less nega-

Conflict of interest: The author has declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2012;122(12):4333–4336. doi:10.1172/JCI66535.
Muscle channelopathies

<table>
<thead>
<tr>
<th>Voltage-gated sodium channel (Na(_{v})1.4; SCN4A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperkalemic periodic paralysis</td>
</tr>
<tr>
<td>Normokalemic periodic paralysis</td>
</tr>
<tr>
<td>Hypokalemic periodic paralysis, type 2</td>
</tr>
<tr>
<td>Paramyotonia congenita</td>
</tr>
<tr>
<td>Potassium-aggravated myotonia</td>
</tr>
<tr>
<td>Congenital myasthenic syndrome</td>
</tr>
</tbody>
</table>

| Muscle chloride channel (CIC-1; CLCN1) |
| Dominant myotonia congenita (Thomsen’s disease) |
| Recessive generalized myotonia (Becker’s myotonia) |

| Dihydropyridine receptor/voltage-gated Ca\(^{2+}\) channel (Ca\(_{v}\)1.1; CACNA1S) |
| Hypokalemic periodic paralysis, type 1 |
| Malignant hyperthermia susceptibility |
| Inward rectifying potassium channel (Kir2.1; KCNJ2) |
| Andersen syndrome |
| Ryanodine receptor/Ca\(^{2+}\) release channel (RyR1; RyR1) |
| Malignant hyperthermia susceptibility |
| Central core disease |
| Acetylcholine receptor, \(\alpha, \beta, \delta, \text{ and } \epsilon \) subunits |
| Congenital myasthenic syndromes |

Muscle channelopathies

Voltage-gated sodium channel (Na\(_{v}\)1.4; SCN4A)
- Hyperkalemic periodic paralysis
- Normokalemic periodic paralysis
- Hypokalemic periodic paralysis, type 2
- Paramyotonia congenita
- Potassium-aggravated myotonia
- Congenital myasthenic syndrome

Muscle chloride channel (CIC-1; CLCN1)
- Dominant myotonia congenita (Thomsen’s disease)
- Recessive generalized myotonia (Becker’s myotonia)

Dihydropyridine receptor/voltage-gated Ca\(^{2+}\) channel (Ca\(_{v}\)1.1; CACNA1S)
- Hypokalemic periodic paralysis, type 1
- Malignant hyperthermia susceptibility
- Inward rectifying potassium channel (Kir2.1; KCNJ2)
- Andersen syndrome
- Ryanodine receptor/Ca\(^{2+}\) release channel (RyR1; RyR1)
- Malignant hyperthermia susceptibility
- Central core disease
- Acetylcholine receptor, \(\alpha, \beta, \delta, \text{ and } \epsilon \) subunits
- Congenital myasthenic syndromes

Formational changes involving the S6 segment open the ion pore and permit rapid movement of ions through a passageway created by the pore domain.

The highly conserved S4 segment has received an enormous amount of attention for the past two decades, particularly with regard to the molecular motions that carry its positive charges through the membrane electric field (10, 11). One startling revelation regarding sodium and potassium channels was that the S4 segment becomes accessible to aqueous protein-modifying reagents during gating motions (12, 13). This observation led to the hypothesis that S4 segments travel through the membrane via a water-filled cavity. Even more intriguing was the observation that histidine substitutions for arginine residues within the S4 segment generate a proton pore that is separate from the main ion permeation pathway in the pore domain (14). The current flowing through the voltage-sensor pore (also known as the gating pore) was termed the “omega” or “gating pore” current (Figure 1B).

Because these S4 segment histidine substitutions created unnatural channels, astute researchers investigating the functional consequences of channelopathy-associated mutations recognized that this mechanism might explain the pathophysiology of HypoPP. Specifically, sodium channel mutations associated with HypoPP that replace S4 segment arginine residues create channels that conduct an anomalous inward current at resting membrane potentials (15–18). The in vivo relevance of this mechanism was demonstrated subsequently using a mouse model of the disease (Na\(_{v}\)1.4 R669H knock-in), in which an anomalous inward current was detected in muscle cells at hypopolarized potentials (19). These investigations offered a molecular explanation for HypoPP caused by sodium channel mutations, but did not address what happens with the more common calcium channel mutations. Furthermore, prior studies of mutations engineered in human Ca\(_{v}\)1.1 did not reveal a consistent and compelling pattern of channel dysfunction that would explain the phenotype, in part because of the difficulty of expressing this channel in heterologous cell systems.

Calcium channel mutant mice

To address the pathogenesis of HypoPP caused by CACNA1S mutations, Wu and colleagues in the laboratory of Stephen Cannon report in this issue of the JCI the inves-
commentaries

current rather than ionic current conducted through a known ion channel (20). These findings offered a mechanistic link between calcium channel mutation and attacks of muscle weakness. Anomalous gating pore current creates a precarious balance between the inward and outward currents that maintain the membrane potential. Factors such as hypokalemia that transiently depress potassium currents, which are required to maintain a normal resting membrane potential, can render the muscle severely depolarized and, consequently, inexcitable owing to inactivation of sodium channels.

Now that a common mechanism of evoking gating pore current has been established in HypoPP, several new and intriguing questions emerge. Can aberrant gating pore current be selectively blocked, and would this prevent attacks of paralysis? Do carbonic anhydrase inhibitors such as acetazolamide and dichlorphenamide, which are effective treatments for HypoPP regardless of genotype, affect gating pore current directly or indirectly? Are there triggering factors that act specifically by potentiating gating pore current? Finally, what is the basis for vacuolar myopathy, and why is there a sex-biased penetrance of mutations? These and other important questions can now be addressed using the mouse model developed by Wu and colleagues.

Although HypoPP was the first channelopathy for which aberrant gating pore current was implicated in disease pathogenesis, many other S4 mutations in voltage-gated sodium, calcium, and potassium channels have been found in other inherited disorders of membrane excitability, including epilepsy and cardiac arrhythmia syndromes (21). Are some of these conditions also “gating pore-pathies”? A recent study demonstrating that an S4 segment mutation in the cardiac sodium channel (NaV1.5 R219H) associated with dilated cardiomyopathy evokes an aberrant proton current (22) suggests that this may be a more widespread phenomenon.

Acknowledgments

The author is supported by grants from the NIH (HL083374, NS032387).

Address correspondence to: Alfred L. George Jr., Division of Genetic Medicine, 529 Light Hall, Vanderbilt University, 2215 Garland Avenue, Nashville, Tennessee 37232-0275, USA. Phone: 615.936.2660; Fax: 615.936.2661; E-mail: al.george@vanderbilt.edu.

Figure 1
Voltage-gated sodium and calcium channel structural domains and location of gating pore. (A) Predicted transmembrane topology model of typical voltage-gated sodium or calcium channel. The S4 segments within voltage-sensing domains are indicated by a column of plus (+) signs. The inset illustrates locations of the separate voltage-sensing and pore domains that are repeated four times in the channel protein. (B) A cutaway view showing the pathway through which ionic current or gating pore currents are conducted. The cylinders within the channels represent the S4 segments, and the approximate location of the HypoPP mutation CaV1.1 R528H is indicated. Figure modified from the Journal of General Physiology (23).
αKlotho: FGF23 coreceptor and FGF23-regulating hormone

Harald Jüppner1 and Myles Wolf2

1Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 2Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.

Low levels of phosphate can disrupt bone ossification and predispose to fractures. FGF23 is one of the major determinants of phosphate homeostasis, acting to increase urinary phosphate excretion. However, the regulation of FGF23 is incompletely understood. In this issue of the JCI, Smith et al. show that the cleaved form of αKlotho, the membrane-bound form of which is an FGF23 coreceptor, serves as a novel endocrine regulator of phosphate homeostasis, capable of inducing FGF23 production in osteocytes.

Phosphate is a critical component of bone, and it serves numerous biological functions in the synthesis of DNA and membrane lipids, protein modifications, energy metabolism, and second messenger formation. FGF23 and parathyroid hormone (PTH) are the major regulators of phosphate homeostasis (1, 2). Both hormones increase urinary phosphate excretion by reducing proximal tubular expression of the sodium-dependent phosphate cotransporters, NPT2a and NPT2c, thereby lowering serum phosphate levels. However, in contrast to FGF23, which decreases serum levels of 1,25-dihydroxyvitamin D (1,25D) by inhibiting renal 1α-hydroxylase and stimulating 24-hydroxylase, PTH increases renal production of 1,25D, which consequently enhances the absorption of phosphate (and calcium) from the intestinal tract (3).

FGF23 belongs to the subfamily of endocrine FGFs and mediates its phosphate-regulating actions in the kidney through FGF receptors (FGFRs), most prominently FGFR1. These actions require the transmembrane form of αKlotho (mKL), which acts as the coreceptor that enhances the binding affinity of FGF23 to different FGFRs (4, 5). Ablation of αKlotho in mice leads to severe hyperphosphatemia, elevated levels of 1,25D, hypercalcemia, diffuse soft tissue calcifications, accelerated aging, and premature death (6). These findings are largely indistinguishable from those observed in FGF23 loss-of-function models (7, 8).

Osteocytes are the primary cellular source of FGF23 after the fetal period (9), but little is known about their regulation and secretion. Although discovery of the molecular causes of monogenic hypophosphatemic rickets disorders has helped to identify a set of bone-derived proteins that decrease FGF23 production, the mechanisms of how these inhibitors suppress FGF23 remain largely unknown. Furthermore, despite our knowledge that changes in dietary phosphate intake can alter FGF23 levels in healthy individuals (10, 11), how serum phosphate or phosphate balance is sensed and how this signal is conveyed to the osteocyte to alter FGF23 expression remains completely unknown.

A novel regulator of FGF23 synthesis

In this issue of the JCI, Smith et al. provide intriguing new findings about the