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After cell fate specification, differentiating cells must amplify the specific subcellular features required for
their specialized function. How cells regulate such subcellular scaling is a fundamental unanswered question.
Here, we show that the E3 ubiquitin ligase Mindbomb 1 (MIB1) is required for the apical secretory apparatus
established by gastric zymogenic cells as they differentiate from their progenitors. When Mib1 was deleted,
death-associated protein kinase-1 (DAPK1) was rerouted to the cell base, microtubule-associated protein 1B
(MAP1B) was dephosphorylated, and the apical vesicles that normally support mature secretory granules were
dispersed. Consequently, secretory granules did not mature. The transcription factor MIST1 bound the first
intron of Mib1 and regulated its expression. We further showed that loss of MIB1 and dismantling of the api-
cal secretory apparatus was the earliest quantifiable aberration in zymogenic cells undergoing transition to
a precancerous metaplastic state in mouse and human stomach. Our results reveal a mechanistic pathway by
which cells can scale up a specific, specialized subcellular compartment to alter function during differentiation

and scale it down during disease.

Introduction

Once a cell commits to a specific cell fate and differentiates, it
must be able to amplify the specific subcellular machinery it
needs to perform its specialized cell function. Such specification
requires scaling up the expression of genes that promote those
processes. Recent work has identified a handful of transcription
factors whose expression programs and drives the upregulation
of defined subcellular processes, regardless of cell type. We have
termed such transcriptional regulators scaling factors (1). For exam-
ple, x-box binding protein 1 (XBP1) is necessary and sufficient
to induce ER formation in diverse cells such as antigen-secreting
plasma cells (2, 3) and gastric zymogenic cells (ZCs) (4), and the
BHLH-ZIP transcription factor TFEB upregulates lysosome for-
mation in diverse cell types (5, 6). In the absence of these factors,
cells still adopt the correct fates and make ER and lysosomes, but
they are unable to amplify the subcellular components that are
key to their specialized mature functions. How such transcrip-
tional regulators can induce changes in specific subcellular com-
partments simply by modulating expression levels of specific gene
cohorts is a complex problem that is fundamental to understand-
ing how cells develop and maintain their specialized physiological
functions, particularly how these cellular decisions and functions
are organized in a tissue under homeostatic conditions and per-
turbed during pathologic conditions.

The adult mammalian gastric epithelium undergoes constant
renewal throughout life, providing a useful system for studying the
role of scaling factors and developmentally regulated genes during
cell maturation in the adult. For example, as mucus-secreting neck
cells in the middle portion of the gastric unit (i.e., the neck) mature,
they migrate toward the unit’s base, at which point they undergo a
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series of substantial morphological changes that culminate in the
formation of postmitotic, digestive enzyme-secreting ZCs (Figure
1A). The molecular processes underlying this elaborate transition
are of particular relevance, as alterations in neck cell-ZC differen-
tiation occur during gastric atrophy and metaplasia, processes that
predispose to cancer (7-11). Stomach cancer is the fourth most
common and second most fatal malignancy worldwide; however,
the molecular and morphological progressions that cause this
malignancy are unclear (12-14).The transcription factor MIST1
(encoded by Mist1; also known as Bhlbal$) is critical for regulating
normal neck cell-to-ZC maturation, and its expression is lost in
gastric epithelial atrophy and metaplasia in both humans and mice
(7,15, 16). Thus, MIST1 may play a protective role.

Loss of MIST1 affects ZC maturation (16). During maturation
of ZCs, which are exocrine secretory cells, the subcellular region
between their nuclei and the apical lumen, into which the secre-
tion of digestive enzymes is directed, is greatly expanded. This
apical expansion is likely critical for maintenance of the stores of
secretory granules that must be released upon agonist stimulation;
however, neither the functional significance nor the molecular
underpinnings of this maturational scaling process have been elu-
cidated. Here, we present evidence that MIST1 directs the matura-
tion of secretory granules and the apical expansion in ZCs by acti-
vating the expression of Mindbomb 1 (MIB1), a multidomained
RING-finger type E3 ubiquitin ligase that is conserved from
Drosophila to mammals (17-20). MIB1 is abundantly expressed
throughout development and in adult tissues (21). In mammals,
MIB1 was originally described as the key factor mediating the
subcellular localization and turnover of death-associated protein
kinase-1 (DAPK1) (21, 22). In addition, during embryonic devel-
opment, MIB1 ubiquitinates the Notch ligands Delta and Jagged,
rendering them competent to signal to and activate Notch in adja-
cent cells (19, 23-27). Thus, the role of MIB1 in cells in culture and
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Figure 1

Microtubules and MAP1B coordinate apical
compartment expansion and endolysosom-
al trafficking in gastric ZCs. (A) Morphologi-
cal changes that take place as neck cells
secreting mucus (small white granules)
differentiate into ZCs secreting zymogen
(large black granules). The cells are oriented
with the gastric lumen at the top and the
basement membrane at the bottom. Arrows
indicate vectors of expansion or contraction
during the maturation process. (B) Repre-
sentative section of the base zone of the
gastric unit (thick dashed outline) stained
for anti—a-tubulin (green) antibodies and
Hoechst (blue, nuclei; thin dashed or solid
outlines). A single ZC is highlighted (solid
outline). (C) Fluorescent microscopy of the
neck, transition (TZ), and base zones of the
gastric unit from wild-type mice stained with
antibodies against GSII (red, neck cells)
and CI-M6PR (green; left) and cathepsin L
(green; right). Neck cells and ZCs (solid
outline) are shown enlarged in the insets.
Expression of CI-M6PR and cathepsin L in
transitional cells and parietal cells is indi-
cated by arrowheads and arrows, respec-
tively. (D) Fluorescent microscopy of gas-
tric unit from wild-type mice stained with
GSII (magenta, neck cells), anti—a-tubulin
(green), and anti-MAP1B (red). Enlarged
views of individual neck cell, parietal cell,
and ZC stained with a-tubulin and MAP1B,
as well as merged images, are shown in
the insets. Scale bars: 5 um (B; C and D,
insets), 10 um (C and D).
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Table 1
ZC-specific genes categorized under the GO term “microtubule”
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Probe set Gene symbol Gene name Accession Fold change
10432404 Tubaia Tubulin, alpha 1A NM_011653 2.98
10447224 Dync2li1 Dynein cytoplasmic 2 light intermediate chain 1 NM_172256 2.93
10520544 Mapre3 Microtubule-associated protein, RP/EB family, member 3 NM_133350 2.9
10518585 Kif1b Kinesin family member 1B NM_207682 2.48
10360479 Cep170 Centrosomal protein 170 NM_001099637 2.1
10387180 Ndel1 Nuclear distribution gene E-like homolog 1 (A. nidulans) NM_023668 1.92
10408610 Tubb2a Tubulin, beta 2a NM_009450 1.91
10359480 Dnm3 Dynamin 3 NM_001038619 1.8
10560491 Klc3 Kinesin light chain 3 NM_146182 1.76
10420320 Cenpj Centromere protein J NM_001014996 1.7
10411519 Mtap1b Microtubule-associated protein 1B NM_008634 1.67
10408975 Kif13a Kinesin family member 13A NM_010617 1.62
10572516 Miap1s Microtubule-associated protein 1S NM_173013 1.55
10587368 Mto1 Mitochondrial translation optimization 1 homolog (S. cerevisiae) NM_026658 1.53
10533659 Clip1 CAP-GLY domain containing linker protein 1 NM_019765 15
10475293 Tubgcp4 Tubulin, gamma complex associated protein 4 NM_153387 1.49
10589541 Kif9 Kinesin family member 9 NM_010628 1.45
10398727 Kle1 Kinesin light chain 1 NM_001025360 1.45
10433721 Ndet Nuclear distribution gene E homolog 1 (A. nidulans) NM_023317 1.45
10557233 Tnrc6a Trinucleotide repeat containing 6a NM_144925 1.45
10576056 Map1lc3b Microtubule-associated protein 1 light chain 3 beta NM_026160 1.44
10477353 Mapre1 Microtubule-associated protein, RP/EB family, member 1 NM_007896 1.44
10454655 Apc Adenomatosis polyposis coli NM_007462 1.41
10603567 Dynit3 Dynein light chain Tctex-type 3 NM_025975 1.41

in early embryonic development is well delineated, but how MIB1
governs the homeostasis or maturation of terminally differenti-
ated cells in the adult organism remains unclear.

Here, we took advantage of the spatiotemporally ordered devel-
opment of the gastric ZC lineage to study the cellular and molec-
ular mechanisms underlying the expansion and maturation of
the apical cytoplasmic compartment. We found that deletion of
MIB1 specifically in adult mature ZCs caused abnormal subcel-
lular localization of DAPK1, loss of phosphorylated apical MAP1B
(encoded by Mtap1b), apical reorientation of nuclei, and defective
late endosome trafficking. We showed that MIST1 bound to the
5’ regulatory region of Mib1, and loss of MIST1 caused loss of ZC-
specific MIB1 expression, mislocalization of DAPK1 in ZCs, and
abrogation of the MIB1-DAPKI1 protein interaction. Relevant to
cancer progression, we showed using mouse models and human
specimens that loss of MIB1 expression, and dismantling of the
apical digestive enzyme secretory apparatus, was the earliest
detectable aberration in ZCs undergoing spasmolytic polypep-
tide-expressing metaplasia (SPEM). Indeed, scaling down of the
MIB1-regulated apical secretory apparatus predated upregulation
of mucous neck cell proteins like spasmolytic polypeptide (also
known as TFF2), which is how this lesion was named and has been
traditionally diagnosed. The present study is the first to describe
a molecular mechanism that regulates a prosecretory apical com-
partment in physiologically mature cells, as well as a function for
MIB1 both in the normal stomach and en route to cancer.

Results

The apical compartment specifically expands during ZC maturation. As
mucous neck cells migrate into the base segment of the gastric
unit, they undergo a series of well-characterized, highly coordi-
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nated morphological changes that culminate in the formation of
postmitotic, digestive enzyme-producing ZCs (7, 16, 28). Vectors
associated with changes in architecture during ZC maturation are
shown in Figure 1A. During maturation, the luminal apex of the
ZC shows concentration of subcortical F-actin and nonmuscle
myosin II, while the basal membrane expands with the establish-
ment of integrin-extracellular matrix connections (Supplemental
Figure 1; supplemental material available online with this article;
doi:10.1172/JCI65703DS1). Concomitant with these processes,
the apical compartment of the cell expands greatly, as the cells
enlarge with digestive enzyme-secretory vesicles and the nucleus
migrates to the base.

In the current study, we focused on the cellular and molecu-
lar mechanisms that lead to the dramatic expansion of the api-
cal region of the cell. Our hypothesis was that maturation and
expansion of the apical cellular compartment is a fundamental
cell process that facilitates the large-capacity polarized storage
and regulated secretion of digestive enzymes key to the physi-
ology of these cells. To understand how changes in the apical
cytoplasmic compartment are coordinated at the genetic level,
we performed gene expression profiling: RNA from purified
populations of neck cells and ZCs was isolated using multila-
bel, RNA-preserving laser capture microdissection (LCM) (16),
linearly amplified, and hybridized to Affymetrix Mouse Gene
1.0ST arrays. Genes whose expression was enriched in ZCs com-
pared with neck cells were identified, and 2,935 such ZC-specific
genes were generated and sorted based on Gene Ontology (GO)
using GOurmet software (29, 30). The fractional representation
of genes categorized by the GO term “microtubule” was over-
represented in ZCs (Table 1). Gene expression of a-tubulin in
ZCs increased 3-fold compared with neck cells (Tubala; Table 1),
Volume 123~ Number 4
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The DAPK1-MIB1 protein complex is
localized to the apical compartment of
ZCs. (A) Fluorescent microscopy of an
individual gastric unit (thick dashed out-
line) stained with GSII (red) and an anti-
body that specifically recognizes MAP1B
phosphorylated at Thr1265 (green).
Insets show pan-MAP1B expression
(red) and the merged image of the
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which would be expected to lead to dramatic expansion of tubu-
lin mass, given the abundance of this ubiquitous cytoskeletal
protein. Using immunofluorescence (IF) and confocal analyses,
we confirmed the dramatic increase in the apical microtubular
network relative to neck cells and how the elaborate microtubu-
lar expansion coordinated with movement of ZC nuclei toward
the cell base (Figure 1, B and D).
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Microtubules regulate cell shape and polarity and are the princi-
pal conduit for cellular vesicular trafficking (31-36); thus, we rea-
soned that the expansion of microtubules might also help coordi-
nate expansion of apical vesicular trafficking. Mature lysosomes,
identified by expression of LAMP1, LAMP2, and cathepsin D,
localized to the subnuclear basal compartment (R.U. Jin and J.C.
Mills, unpublished observations), and early (i.e., EEAl-positive)
Volume 123
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endosomes showed no specific subcellular distribution (data not
shown). We found a LAMP1-negative vesicular compartment,
defined by expression of the cation-independent mannose-6-phos-
phate receptor (CI-M6PR) and by dramatic expansion of the pro-
protein convertase cathepsin L in the cell apex (Figure 1C). In cells
with secretory granule stores, LAMP1-negative, and cathepsin L-
and CI-M6PR-positive vesicles define a specific late endosomal
and/or multivesicular body compartment involved in secretory
granule maturation (37-41). This vesicular compartment was not
detectable with these markers in neck cells (Figure 1C, insets) and
parietal cells (Figure 1C, white arrows).

The stability and polarity of the microtubule network in ZCs
are regulated by microtubule-associated proteins (MAPs) (32, 42).
Additionally, microtubules in conjunction with MAPs facilitate
spatial arrangements among the vesicular components of the
secretory and endolysosomal pathways (33-35). We examined
expression of 2 of the MAPS most increased during ZC matura-
tion, Mtaplb and Mtapls (Table 1). MAP1B and MAP1S protein
expression was specific for ZCs compared with neck cells and also
was localized specifically to the apical compartment (Figure 1D
and data not shown; results for MAP1B and for MAP1S were equiv-
alent). Collectively, these data showed that the dramatic expansion
of the apical ZC compartment during maturation was correlated
with elaboration of a microtubular network, specific trafficking
of late endosomal vesicles and/or multivesicular bodies, and an
increase in a microtubule coordinating protein, MAP1B, that is
known to play a role in establishing polarized cell growth (43-45).

Apical localization of DAPK1 and apical expansion as a whole require
MIB1. MAP regulation of microtubule dynamics in health and
disease depends on regulated phosphorylation and dephosphory-
lation cycles (43, 44, 46). Using an antibody specific for MAP1B
phosphorylated at Thr1265, an important functional phosphory-
lation site (43), we showed that much of the apical MAP1B in ZCs
was phosphorylated (Figure 2A). Previous studies have shown that
MAPs such as MAP1B are substrates for several serine/threonine
kinases, including DAPK1 (43, 46-48).

The ability of DAPK1 to phosphorylate its downstream effec-
tors is strongly influenced by its location in the cytoplasm, which
in turn is mediated by its direct interaction with the E3 ubiquitin
ligase MIB1 (21, 22, 49). Both DAPK1 and MIB1 protein expres-
sion increased as ZCs began to leave the neck/base transition zone
(Figure 2, B and C, arrowheads), and both localized apically, as con-
firmed by confocal microscopy. Neither DAPK1 nor MIB1 protein
was detectable in parietal cells (Figure 2, B and C, arrows). Con-
sistent with previous data demonstrating MIB1-dependent ubiq-
uitination of DAPK1 (21, 22), IP of stomachs with anti-ubiquitin
antibodies demonstrated that a pool of DAPK1 was indeed ubig-
uitinated (Figure 2D). DAPK1 gene expression was maintained at
significant levels in both neck cells and ZCs, but was unchanged
between the 2 cell populations (mean Affymetrix expression val-
ues, neck cells, 66 + 5; ZCs, 72 + 4; Figure 2E), consistent with its
known posttranscriptional regulation by MIB1 (21). In contrast,
expression of MIBI was substantially increased in ZCs versus neck
cells (158 + Svs. 53 + 5; Figure 2E).

MIB1 regulates cell morphology, membrane trafficking (spe-
cifically late endosomal vesicles), and protein sorting (19, 50-52),
although MIB1 function in the adult stomach has not been report-
ed. We hypothesized that the dramatic apical expansion of ZCs as
they mature from neck cells could be governed at the molecular
level by induction of MIBI gene expression, which would cause
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apical localization and stabilization of DAPKI, in turn helping
to coordinate apical vesicular trafficking and cytoskeletal expan-
sion via MAP1B. We therefore bred floxed Mib1 (Mib1%/2) mice (24)
with Mist1“*ER mice (53) to conditionally delete MibI in mature,
MIST1-expressing ZCs. Induction of Cre recombinase caused
loss of MIB1 in nearly all basal ZCs by 2 weeks (Figure 3A). Sub-
sequently, new wild-type ZCs, arising from mucous cell precursors
migrating from the neck zone, slowly replaced Mib1%* ZCs until
none remained by 6 weeks (Figure 3 and data not shown). We used
the 2-week time point for all subsequent experiments.

Consistent with our hypothesis that MIB1 regulates DAPK1
localization in the apical cytoplasm of ZCs, Mib1%/2 ZCs showed
striking relocalization of DAPK1 from the supranuclear to the sub-
nuclear region of the cytoplasm (Figure 3B). As hypothesized, loss
of apical localization caused loss of DAPK1 activity, as its substrate
MAP1B was no longer detectable there in its phosphorylated form
(Figure 3C). Loss of MIB1, apical DAPK1, and phosphorylated
MAPI1B all correlated with decreased apical trafficking of the CI-
MG6PR/cathepsin L compartment that normally expanded during
neck cell-to-ZC maturation (Figure 3, D and E). Furthermore, the
activated form of cathepsin L was increased in Mib1»2 ZCs, indica-
tive of loss of the pro-cathepsin L form that normally traffics to
the late endosomal compartment (37, 40). Finally, we observed
that loss of MIB1 led to a dramatic accumulation of galectin 8, a
marker of damaged endolysosomes (54), in the apex of Mib1%* ZCs
versus controls, whereas it was normally confined to the ZC bases,
where autophagic/lysosomal activity was most prominent (Figure
3F). These results were confirmed by confocal microscopy (data
not shown). Overall, our findings indicated that MIB1 is required
for the apical expansion of the cytoskeleton and normal vesicular
trafficking that characterize ZC maturation.

Mib1¥»* ZCs did not reexpress mucous neck cells markers such as
GSII (Figure 3 and Supplemental Figure 2) or reenter the cell cycle
(Supplemental Figure 2A), as occurs when ZCs become metaplastic
(55). In addition, loss of MIB1 in ZCs did not affect cleavage of the
Notchl1 receptor in the mature gastric epithelium, which remained
in the isthmal region (Supplemental Figure 2B), where Notch has
been described to play a role in regulating proliferation of the stem/
progenitor cell (56). Loss of MIB1 also did not affect the protein
expression level of Notch signaling intermediates Hes1 and HesS
in ZCs or in any other gastric cells, as determined by histology (data
not shown). Hence, the effects of MIB1 loss were not likely the result
of non-ZC-autonomous effects due to aberrant Notch signaling.

MIB1 is expressed in a MIST1-dependent fashion during ZC differen-
tiation. We next investigated the molecular regulation of Mib1 gene
expression. Previous studies have determined a critical role for
MIST1 in regulating neck cell-to-ZC maturation (4, 7, 15, 16, 57).
To determine whether Mib1I expression is dependent upon MIST1 in
the ZC lineage, gene expression profiles of neck cells and ZCs from
Mist17~ mice were prepared by LCM as described above. Whereas
Mib1 and Mist1 transcripts were enriched concomitantly in ZCs com-
pared with neck cells in age-matched wild-type mice, Mib1 expres-
sion did not increase in Mist1/~ ZCs beyond the levels observed in
neck cells (Figure 4A). These results were confirmed by PCR (data
not shown). Similarly, MIB1 protein was detected only in transition
cells just beginning to migrate out of the neck and into the base
(Figure 4B, arrow), whereas mature Mist1 7/~ ZCs showed no detect-
able MIB1, and overall MIB1 protein levels were greatly reduced in
Mist17/~ stomachs. Thus, loss of MIST1 reduced Mib1 expression,
which suggests that MIB1 is a downstream target of MIST1.
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Figure 3

MIB1 maintains apical compartment physiology by regulating the sub-
cellular localization of DAPK1. (A) Immunohistochemistry using anti-
MIB1 antibodies was performed on stomach sections from Mib7144 and
control (Ctrl) mice 2 weeks after initiation of tamoxifen treatment. Neck,
transition, and base zones are indicated. PCR analysis of MIB1 tran-
script levels and Western blot analysis of MIB1 protein levels in Mib714/A
and control ZCs are also shown. (B) Fluorescent microscopy of individ-
ual gastric units (thick dashed outline) from Mib744 and control mice,
2 weeks after tamoxifen treatment, stained for MIB1 (green; top) and
with GSIl and DAPK1 (red and green, respectively; bottom). Enlarged
views (x1.5-fold) of representative ZCs (solid outline) are shown in
the insets. Thin dashed outlines denote nuclei (Hoechst, blue). Note
the basal subnuclear distribution of DAPK1 in Mib144 ZCs compared
with the apical localization in control mice. (C) Gastric units stained for
GSlI (red) and phosphorylated MAP1B (green). (D and E) Gastric units
stained for CI-M6PR (D; green) or for cathepsin L (E; green). Enlarged
views (x1.5-fold) of representative ZCs are shown in the insets. West-
ern blot for pro—cathepsin L and activated cathepsin L is also shown in
E. (F) Gastric units stained for galectin 8 (green; top) and with galec-
tin 8 and GIF (green and red, respectively; bottom). Enlarged views
(x1.5-fold) of representative ZCs are shown in the insets. Note the
accumulation of galectin 8 in the apical compartment of Mib7144A ZCs.
Scale bars: 10 um (C—F); 20 um (B); 40 um (A).

MIST1 regulates transcription of its target genes in part through
its binding of a particular E-box, CATATG, frequently located
within several kilobases of the end of the first exon (57, 58). Bio-
informatic scanning for conserved CATATG E-boxes showed dra-
matic multispecies conservation of a site within 1 kb of the first
intron of the MIBI gene (Figure 4C). We further confirmed MIBI
as a direct MIST1 target via binding to the conserved E-box by per-
forming ChIP on the human gastric cancer cell line HGC-27 after
transient transfection of a MIST1 expression plasmid (7). Prim-
ers flanking the conserved CATATG site generated amplicons in
the MIST1-immunoprecipitated genomic fragments with greater
efficacy than in preimmune control-precipitated DNA, whereas
primers for control regions without a CATATG sequence within
500 bp generated no amplicon (Figure 4C).

Along with ZCs, MIST1 is expressed during the terminal dif-
ferentiation of several highly specialized, high-capacity secretory
cell lineages in mammals (59). MIB1 was expressed in a MIST1-
dependent fashion in pancreatic acinar cells, as shown by IF (Sup-
plemental Figure 3A), and the MIST1 binding site we detected
in gastric cells was also detected in pancreatic ChIP sequencing
experiments (S.F. Konieczny, unpublished observations, and
ref. 60). Furthermore, gene array analysis of pancreas wild-type and
Mist1~~ mice showed a dramatic decrease in MIB1 gene expression
(60). Interestingly, MIB1 gene expression was rescued to wild-type
levels in MistI/~ pancreatic acinar cells upon forced expression of
myc-tagged MIST1 (Supplemental Figure 3A). MIB1 expression
was also induced as B cells matured into antibody-secreting plas-
ma cells and began to express MIST1 (Supplemental Figure 3B
and ref. 61), and increased plasma cell MIB1 expression does not
occur in Mist17~ mice (59).

Apical compartment physiology is disrupted in the absence of MISTI.
We next reasoned that, if MIST1 regulation of MIB1 is an impot-
tant aspect of ZC maturation, loss of MIST1 should cause an api-
cal compartment phenotype similar to that seen in the absence of
MIB1. As in Mib1%»* ZCs, DAPK1 protein was mislocalized to the
basal cytoplasm in Mist1-deficient ZCs (Figure 4D). IP from stom-
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achs using anti-DAPK1 showed considerable association of DAPK1
and MIB1, and the abundance of DAPK1 immunoprecipitatable by
MIB1 was greatly decreased in the absence of MIST1 (Figure 4D).
Thus, DAPK1 localization and its ability to interact with its subcel-
lular localizer MIB1 depended on MIST1. Other effects of the loss
of MIB1 were also recapitulated by loss of MIST1: apical MAP1B
was not phosphorylated in Mist17/~ ZCs, and CI-M6PR as well as
cathepsin L vesicles were aberrantly trafficked (Figure 4, E and F).

We next sought to determine the potential physiological purpose
of the MIST1-MIB1-DAPK1 control of ZC apical expansion. The
primary purpose of ZCs is to store and secrete digestive enzymes
in a regulated fashion. We reasoned that dysregulation of the
vesicular compartment that has been shown to regulate secretory
granule maturation would lead to disruption of ZC secretory gran-
ules. Consistent with that hypothesis, IF and Western blot analy-
ses showed that MibI-null ZCs had dramatically reduced levels of
2 proteins stored and secreted in their apical secretory granules:
gastric intrinsic factor (GIF) and pepsinogen C (PGC) (Figure S,
A and B). Loss of MIB1 alone was sufficient to phenocopy the
secretory granule loss characteristic of the Mist7~ ZC phenotype
(16). Notably, MIB1-expressing transition cells unaffected by
Mist1¢eFRT-mediated deletion of Mibl showed abundant secretory
granules filled with GIF and PGC (Figure 5, A and B), consistent
with zymogenic secretory granule dependence on MIB1 and serv-
ing as an internal control highlighting the substantial depletion of
granules in mature ZCs lacking MIB1.

To further characterize the defect in the granules in MibI-null
ZCs, we performed transmission electron microscopy (TEM).
Mature zymogenic granules can be recognized by their relative
electron density, which correlates with the increased packing of
secretory contents. Consistent with previous reports (16, 62), wild-
type ZC granules were mostly mature, although occasional gran-
ules had a more electron-lucent immature phenotype (Figure 5C,
arrowheads). In all Mib1%* ZCs examined, all the secretory gran-
ules were electron lucent (Figure 5C), indicative of a substantial
defect in secretory granule maturation in the absence of MIB1.

To test the physiological effects of MIB1-dependent apical
vesicle trafficking in ZCs, the total enzymatic activity of pepsin
from wild-type and MibI*/A mice was determined using a modi-
fied hemoglobin proteolysis assay, first described in 1932 by
Anson and Mirsky (63). The enzymatic activity of pepsin in whole
stomach was significantly reduced in Mib1%/2 mice (Figure 5D).
The magnitude of reduction was within the range seen in previ-
ous reports of decreased pepsin activity in humans during gastric
atrophy and progression to gastric cancer (64).

As described above, expansion of the apical compartment and
the increase in digestive enzyme-secretory vesicles depended
on migration of the nucleus to the basal cytoplasm of ZCs. In
Mib1%% ZCs, nuclear localization — as defined by the ratio of
the distance from the nucleus to the apex (marked by the tight
junction protein ZO-1) to the distance from the nucleus to the
basement membrane (marked by the integrin CD49f) — was sig-
nificantly decreased compared with wild-type ZCs (1.2 = 0.1 vs.
6.5+0.2,P <0.0001; Figure SE).

MIBI expression is lost in mouse and human gastric SPEM. In both
mice and humans, loss (atrophy) of parietal cells causes dramatic
changesin ZCs (7,9, 10, 15, 16). When parietal cells are killed with
toxins like high doses of tamoxifen in mice, ZCs decrease expres-
sion of MIST1 as they undergo SPEM, which is characterized by
reexpression of neck cell markers like GSII and TFF2 and, eventu-
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Figure 4

MIST1 regulates MIB1 expression during ZC differentiation. (A) Micro-
array analysis of Mist1 and Mib1 gene expression from isolated popula-
tions of neck cells and ZCs from wild-type and Mist1-- mice. (B) Mist1--
gastric unit (thick dashed outline) stained for GSII (red) and MIB1
(green). MIB1 was expressed in the transition zone (white arrow). West-
ern blot of MIB1 protein levels in wild-type and Mist1-- whole stomach
corpus is also shown. (C) The human MIBT gene, represented to scale,
with numbered exons as vertical lines. Note the dramatic conservation
of the CATATG sequence, located within the first 1 kb of the end of
the first exon, across multiple mammalian species. Also shown are gel
electrophoresis images of PCR amplicons from ChlIP experiments using
anti-MIST1 antibody in HGC-27 cells followed by primers as indicated
(see Methods). (D) Mist1-- gastric unit stained for GSII (red) and DAPK1
(green). Thin dashed outlines denote nuclei (Hoechst, blue). Enlarged
view (x1.5-fold) of a representative ZC (solid outline) is shown in the
inset. Western blotting of MIB1 immunoprecipitates from wild-type and
Mist1-- mice for DAPK1 is also shown. (E) Mist1-- gastric unit stained
for GSII (red) and phosphorylated MAP1B (green). (F) Mist1-- gastric
unit stained for GSII (red) and for CI-M6PR (green; top) or cathepsin L
(green; bottom). Enlarged views (x1.5-fold) of representative ZCs are
shown in the insets. Scale bars: 10 um (E and F); 20 um (B and D).

ally, reentry into the cell cycle (65). In humans showing features of
early SPEM, there is loss of MIST1 and equivalent cellular changes
(15). We reasoned that loss of MIST1 would lead to loss of MIB1,
which might affect the ZC apical secretory apparatus. Thus, we
induced SPEM by killing parietal cells with 3 consecutive injec-
tions of high-dose tamoxifen (5 mg/20 g BW; Figure 6A and ref.
65). Figure 6B depicts the expression of MIST1, MIB1, and gastric
epithelial cell lineage markers relative to onset and recovery from
metaplasia in this system. Vehicle-treated mice showed normal
development patterns of neck cells (GSII, red stain) to ZCs, with
expression of MIST1 (green nuclear stain; white arrows) and MIB1
(green cytoplasmic stain) restricted to the ZCs in the base of the
gastric unit, where levels of digestive enzymes (PGC, purple stain)
were highest. In contrast, by the last day of toxic-dose tamoxifen
treatment (i.e., day 3), expression of the neck cell marker GSII was
detected in ZCs (pathognomonic for SPEM onset, which is defined
by reexpression of neck cell markers like TFF2 and GSII in ZCs;
ref. 15), while MIST1 levels were mostly undetectable (Figure 6A).

Metaplastic glands at this time point showed a mosaic pat-
tern of MIB1 expression: each cell had MIB1 levels that corre-
lated positively with expression of the digestive enzyme PGC and
negatively with the neck cell marker GSII on a per-cell basis. The
photomicrograph in Figure 6C is representative of the pattern we
quantified by digitizing MFI in cytoplasms of all basal cells of the
neck cell-ZC lineage. Next, we binned cells according to degree of
MIB1 staining: cells 270% of maximal normalized MFI in a field
were scored as 2, those < 30% of maximal MFI were scored as 0,
and the midrange cells received a score of 1. Quantification of
individual cells in the base with differing levels of MIB1 (n = 50
cells) showed that cells with high MIB1 expression had the high-
est levels of PGC and almost no GSII (Figure 6C). Detectable
GSII occurred only in cells with lower MIB1 expression, which
also correlated with decreased PGC. We interpret cells with this
intermediate MIB1 immunostaining to be hybrid cells, transi-
tioning into SPEM. Cells with near-baseline MIB1 had low but
detectable levels of PGC and showed high levels of GSII, consis-
tent with a full SPEM phenotype. Cells at day 3 that, like normal
MIB1-expressing ZCs, were not yet reexpressing the epitope for
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GSII also maintained DAPK1 and had phosphorylated MAP1B
(Supplemental Figure 4).

Thus, MIB1 expression began to decrease during onset of meta-
plasia, consistent with its regulation by MIST1, which is also lost
with metaplasia (15). By 7 days, gastric units had undergone com-
plete metaplastic transformation, as indicated by the presence of
GSII labeling throughout the base zone, a complete loss of MIST1,
and a 78% reduction in PGC levels (Figure 6B). MIB1 expression
was entirely lost in the metaplastic ZCs at this time point. As
expected, DAPK1 could be found only in the basal portion of the
metaplastic ZCs, and phosphorylation of MAP1B was abrogated
(Supplemental Figure 4). In this metaplasia model, there is com-
plete recovery of gastric unit differentiation within 2-3 weeks (65).
Accordingly, mice at 21 days after treatment displayed recovery in
the cellular and molecular architecture of the base (Figure 6B).
During recovery, those cells with normal morphology, including
expanded apical compartments with normal DAPK1 localization
and MAP1B phosphorylation, showed reexpression of both MIST1
and MIB1, which suggests that reexpression is concomitant with
recovery of the ZC lineage.

Tamoxifen-induced SPEM mimics Helicobacter pylori-induced
SPEM; accordingly, we analyzed the base of gastric corpus units in
5 mice infected with a CagA* strain of Helicobacter PMSS1 8 weeks
after infection. Treatment caused parietal cell atrophy and SPEM
in multiple regions throughout most of the corpus. Supplemen-
tal Figure 5 shows a representative region in which a few residual
normal units with MIB1-positive ZCs were preserved; note that
those cells did not show labeling with GSII, whereas other gastric
units throughout the corpus showed SPEM with GSII-labeled,
MIB1-negative cells.

Our analysis of the time course and progression of SPEM in mice
indicated that cells transitioning to SPEM progress first through
a stage equivalent to that seen in our MibI»* mice, in which
MIB1 is lost, and loss of the secretory vesicle apparatus leads to
decreased storage of cytoplasmic PGC, but markers of neck cells
are not expressed. Note that in Figure 6C, only cells without MIB1
(“0” cells) showed GSII, and those cells had diffuse, reduced PGC,
whereas transitional cells with reduced MIB1 (“1” cells) main-
tained PGC without GSII, which suggests that MIB1 levels must
drop below a critical level before the apparatus for high-capacity
secretory vesicle packaging is dismantled. Expression of high levels
of MIB1 was nearly exclusive of detectable GSII, which suggests
that reduced MIB1 and loss of apical secretory architecture nor-
mally occur before reexpression of mucous neck cell markers in
ZCs, the pattern diagnostic of SPEM.

Parietal cell atrophy in humans also correlates with loss of
MIST1 in ZCs. Thus, we next sought to determine whether loss
of MIB1 and downscaling of large apical PGC granules also rep-
resented a heretofore-undiscovered initial phase of SPEM in
humans. We analyzed a series of 62 routine gastric biopsies and
resections (Table 2) from multiple institutions in 2 different
nations (15). Using MIB1 and GSII labeling, we identified those
specimens with regions characterized by “hybrid,” or early, SPEM
with low to absent MIB1 and moderate GSII; Figure 7A shows a
representative field from 1 such specimen. This specimen also
showed a region with normal neck cell-to-ZC differentiation
(Figure 7A, white arrows), demonstrating that in humans, as in
mice, levels of MIB1 increased apically as ZCs migrated toward
the base of the gastric unit. A region of mature SPEM, with high
basal GSII and no MIB1, was also observed (Figure 7A, yellow
Number 4 1483
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Disruption of apical compartment physiology in ZCs decreases the levels and enzymatic activity of digestive enzymes. (A) Fluorescent micros-
copy of individual gastric units (dashed outline) from Mib74 and control mice 2 weeks after tamoxifen treatment stained for MIB1 and GIF (green
and red, respectively; top) or with GIF alone (red; bottom). Note that GIF accumulated only in the cells migrating from the neck zone with a full
complement of MIB1. (B) Gastric units from Mib742 and control mice 2 weeks after tamoxifen treatment stained for PGC (red). Note the accumula-
tion only in Mib 14/ transition cells. (C) TEM images of individual ZCs from Mib14» and control mice and higher-magnification views of secretory
granules (insets). Scatter plots of electron density of each granule from 3 different cells per genotype are also shown. Each data point represents
an individual granule within that cell. (D) Quantification of pepsin activity in wild-type and Mib744 mice relative to pepsin activity in Mist1-- mice
showed nearly abrogated storage of pepsinogen granules in mature ZCs. (E) Gastric ZCs stained for ZO-1 (green) and integrin CD49f (red). Cells
are shown en face to demonstrate that cell height was consistent and parallel to cell base. Graphical representation of the ratio of the distance
from nucleus to luminal apex to the distance between nucleus and cytoplasm for each group (n = 50 cells) is also shown. Scale bars: 500 nm (C,
insets); 2 um (E); 10 um (C); 20 um (A and B). Data represent mean + SEM. **P < 0.01; ***P < 0.0001.
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outline). We analyzed all 18 specimens that had SPEM using the
same MIB1 binning system we developed in mice. Regions of
hybrid SPEM were relatively common, as 1 in 5 basal glands with
SPEM had some features of hybrid SPEM (i.e., detectable MIB1
and low to absent GSII; Figure 7, A-C). Quantification of these
regions showed that in humans, as in mice, cells with high lev-
els of MIB1 (expression score 2) also expressed high levels of PGC
while maintaining near-undetectable levels of GSII, and cells with
low MIB1 levels (expression score 0) had decreased PGC stores and
fully reexpressed the epitope for GSII (Figure 7D), indicative of
SPEM. Figure 7C depicts a representative confocal image where
transitional phenotypes could be seen in adjacent cells, highlight-
ing transitional phenotypes between normal ZCs and SPEM in an
individual unit. Note that wherever there was residual MIB1 (“2”
cell, white outline), PGC expression was stronger and packaged
into large apical secretory vesicles; where MIB1 was undetectable,
PGC was diffuse, in smaller vesicles, or nearly undetectable (“0”
cell, yellow outline). Overall, the results indicated that in humans,
as in mice, substantially decreased expression of MIB1 (presum-
ably secondary to loss of MIST1) represents the first detectable
morphological change in cells transitioning to SPEM, occurring
before reexpression of mucous neck cell markers.

SPEM often occurs with the other predominate type of metapla-
sia induced by parietal cell death, intestinal metaplasia, which is
characterized by ectopic formation of intestinal epithelium (goblet
cells and brush border-expressing enterocytes) and expression of
the transcription factor CDX2 (15). Of the specimens we exam-
ined, 26 showed characteristics of intestinal metaplasia. MIB1
expression in these lesions was consistently low to moderate
(expression score 1), but not absent (data not shown).

Given that MIB1 expression appeared to be the earliest change
in ZCs after parietal cell atrophy and that gastric cancer in general
occurs only in the setting of such atrophic/metaplastic changes, we
hypothesized that MIB1 would not be expressed in gastric adenocar-
cinoma. We examined a limited cohort of 15 dysplastic and carcino-
matous lesions for MIB1 expression (Table 2). There was no detect-
able expression of MIB1 in the dysplastic lesions, regardless of grade
of dysplasia (Supplemental Figure 6A). We noted focal expression
of MIB1 in 4 of 5 adenocarcinomas exhibiting signet ring morphol-
ogy (Supplemental Figure 6B). The invasive adenocarcinomas with
intestinal differentiation in the cohort we immunostained were uni-
formly MIB1 negative (Supplemental Figure 6C).

Discussion

Here, we addressed the central question of how the temporal reg-
ulation of a single gene can control specific subcellular morphol-
ogy and function in a polarized epithelium. We present evidence
that many aspects of the apical secretory compartment expan-
sion that occurs in gastric ZCs are regulated at the transcription-
al level by MIST1-dependent maintenance of a specific cellular
effector, MIB1. Our data showed that MIB1 and DAPK1 formed a
molecular complex in the apical membrane compartment during
ZC maturation. Conditional knockout of MibI in ZCs revealed
that MIB1 was necessary for the apical localization of DAPK1.
Mislocalization of DAPK1 to the basal cytoplasm caused loss
of MAP1B phosphorylation and a significant defect in apical
membrane trafficking and secretory granules. Collectively, these
data suggest that MIB1 and DAPKI1 operate as part of a signal-
ing complex that directs the changes in apical cell structure,
polarization, and endolysosomal vesicle compartmentalization
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as neck cells transform into ZCs. Ultimately, all of this coordina-
tion of apical protein events depended on MIST1’s regulation of
MIB1 at the transcriptional level.

The expansion and maturation of the apical compartment
appear to be critical for secretory cell function, as loss of MIST1
and/or MIB1 caused profound maturation defects in secretory
granules. Within the ZC apical cytoplasm, secretory proteins are
being packaged in secretory granules for delivery to the luminal
apex. Vesicles containing lysosomal hydrolases and proprotein
convertases are sorted and trafficked to lysosomes in the basal
cytoplasm to multivesicular or recycling endosomes as part of sig-
naling networks and in and out of the secretory granules them-
selves, a process that is key to the maturation/processing of their
cargo (66-69). Microtubules are the principal conduit for cellular
vesicular trafficking (33, 34), and ZCs construct an elaborate net-
work of microtubules in the apical membrane compartment. We
demonstrated that the segregation of these vesicle compartments
on microtubules was regulated, in part, by a signal transduction
pathway that involved the phosphorylation of MAP1B by DAPK1
that was maintained by MIB1. MAPIB is a key target of DAPK1
(46). DAPK1 also plays a key role in the regulation of cell mor-
phology by bridging membrane proteins with the cytoskeleton
(46,70-72). Finally, unbiased loss-of-function studies have shown
that DAPK1 is required specifically for proper subcellular localiza-
tion of late/recycling endosomes (72), the vesicular compartment
expanded in the apex of maturing ZCs, as described above. These
molecular events are necessary for ZCs to maintain their mature
phenotype and, subsequently, their loss leads to a deficiency in
mature (i.e., digestive enzyme-packed) secretory granules.

Expression of Mib1 is significantly increased as neck cells transi-
tion to ZCs. 2 principal mechanisms have been described for MIB1
function: activation of Notch signaling though the ubiquitination
and endocytosis of the Notch ligands Delta and Jagged (19, 24),
and regulation of DAPK1 during apoptosis (21, 22). There is no
documented role for Notch in ZC homeostasis, and we observed
no changes in Notch-regulated genes during neck cell-to-ZC tran-
sition or in the absence of MIST1/MIB1. Rather, consistent with
previously published data (56), we detected Notch pathway activity
only in the isthmal region, where the corpus stem cell resides; this
localization did not change when MIB1 was lost in ZCs (56). More-
over, the same study showed that there was no effect on the ZC lin-
eage, or parietal cell lineage, in adult mice treated with the known
Notch antagonist dibenzazepine (56). On the other hand, we here
demonstrated in gastric ZCs: (a) a direct interaction between MIB1
and DAPK1; (b) that DAPK1 was ubiquitinated and ubiquitination
was attenuated in the absence of MIB1; and (c) that apical localiza-
tion of DAPK1 also depended on MIB1. Our studies are the first to
demonstrate that MIB1 functions upstream of DAPK1 to regulate
a subcellular compartment in mature, fully differentiated cells.

MIB1 target specificity and, thus, its molecular function may
vary at different points in development. Indeed, recent studies
have indicated that MIB1 can regulate morphogenesis of postmi-
totic neurons by interacting with proteins involved in the mainte-
nance of secretory vesicle transport, cytoskeletal rearrangement,
and cell adhesion (51). Collectively, these data suggest that MIB1
can function on 2 levels: during cell fate specification, and dur-
ing maturation of terminally differentiated cells. Our current
data highlight the importance of MIB1 in maintaining cell matu-
ration. After we induced loss of Mib1 expression in mature ZCs,
MIB1 protein expression was consequently lost, its target proteins
Number 4 1485
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Figure 6

MIB1 expression is lost during the progression of mouse SPEM. (A)
Experimental design. (B) Representative immunostain of mice treated
with vehicle or high-dose tamoxifen (5 mg/20 g BW). Top panels were
stained with GSII (red), MIB1 (green, cytoplasmic), MIST1 (green,
nuclear), and Hoechst (nuclei, blue). Bottom panels were stained
with PGC (purple) and Hoechst (blue, nuclei). Arrows indicate nuclear
MIST1 staining. Graphical representation of MFI for MIB1 (green), GSII
(red), and PGC (purple) in the basal cells of ZC lineage over time is
also shown. (C) Representative immunostain of hybrid SPEM lesion
at day 3 after tamoxifen treatment stained with MIB1 (green; top), GSI|
(red; middle), and PGC (purple; bottom). Individual cells (outlines) were
assigned a MIB1 expression score: 2, high; 1, intermediate; 0, low.
Graphical representation of the correlation of MIB1 expression score
and MFI for PGC and GSlI in individual cells is also shown. Scale bars:
5 um (C); 20 um (B). Data represent mean + SD.
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Table 2
Summary of MIB1 expression in patient samples

Total Predominant MIB1

incidence expression score

0 1 2

Normal 11 0 0 11
SPEMA 18 18 0 0
Intestinal metaplasia 26 0 26 0
Dysplasia 4 4 0 0
Cancer (diffuse type) 5 1 4 0
Cancer (intestinal adenocarcinoma) 5 5 0 0

n = 28 (Nicaragua); 34 (United States). AExcludes regions of hybrid
SPEM analyzed in Figure 7.

began to accumulate in the wrong compartment, and cell function
was abrogated. Thus, Mib1 expression is necessary throughout the
lifespan of the mature secretory cell.

The mechanisms that control Mibl expression had not previ-
ously been reported. Here, we revealed that Mib1 is a direct tran-
scriptional target of MIST1. MIST1 is a developmentally regulated
transcription factor that does not specify cell fate, but rather regu-
lates the development of secretory cell structure and function (1).
Our data suggest that MIST1 regulation of MibI may be generally
conserved, as we have identified multiple secretory cell lineages of
diverse origin — plasma cells (59) as well as gastric ZCs and pancre-
atic acinar cells (present study) — in which MIST1 is able to scale
the levels of MibI transcription. While the scaling of MibI expres-
sion in stomach is regulated by MIST1, our data suggest that its
transcription is initiated upstream of MIST1, possibly by another
lineage-specific transcription factor, because expression of MIB1
in cells transitioning between the neck and base was maintained
even in the absence of MIST1.

Stomach cancer is the fourth most common and second most
fatal malignancy worldwide; however, our understanding of
the molecular and morphological progressions that cause this
malignancy is limited (12-14). During SPEM-type metaplasia in
the stomach, ZCs reexpress markers of their progenitor mucous
neck cell phase and reenter the cell cycle, increasing the risk for
subsequent dysplasia and carcinoma by mechanisms that remain
poorly understood (15, 73). Such changes in cell morphology are
common in carcinogenesis and an area of active research (7, 9, 15,
53). We have previously shown that MIST1 expression is almost
universally lost in all gastric carcinomas (15).

Our present data allow us to speculate about the molecular
mechanisms underlying the transition of ZCs into SPEM cells.
Using doses of tamoxifen that induce near-synchronous death of
parietal cells, we followed the sequential response of ZCs, which
began to lose MIB1 expression within 3 days. Concomitant with
or slightly after the loss of MIB1, there was loss of densely packed
apical secretory granules, as evidenced by dispersal of PGC immu-
nolabeling from large, densely packed granules. Reexpression of
the neck cell marker GSII was almost never seen in cells express-
ing detectable MIB1, which indicates that loss of MIB1 and dis-
mantling of the apical secretory apparatus occur before neck cell
marker reexpression. In mice infected with H. pylori and in mul-
tiple human stomach specimens, in regions transitional between
complete SPEM and normal morphology, we saw the same mor-
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phological patterns: namely, MIB1 and GSII were mutually exclu-
sive, and MIB1 expression was highly positively correlated with
normal apical PGC granular content.

We speculate that dismantling of the apical secretory appara-
tus, which could be identified by loss of MIB1 labeling in ZCs, is
a distinct step in metaplasia that occurs before the changes cur-
rently used to diagnose appearance of SPEM (i.e., reexpression of
neck cell markers). Given that loss of MIB1 alone in Mib1%~A ZCs
was sufficient to induce a morphology similar to this initial stage
of metaplasia, with disrupted apical secretory granule packaging,
and that loss of MIST1 caused loss of Mib1, we propose that loss of
MIST1 expression is the initial molecular event that induces this
first step in transition to metaplasia. Loss of MIB1 alone, how-
ever, was not sufficient to cause neck cell marker expression in
ZCs. Thus, other mechanisms independent of MIB1 must induce
expression of neck cell genes, which does not seem surprising,
as it would not be obvious how MIB1 regulating apical cytoskel-
etal and trafficking machinery might affect transcription and/
or translation. Although loss of MIB1 is apparently sufficient for
the initial phase of SPEM, it is not clear whether MIB1 must be
lost for the next phase of SPEM to occur, which is a clear avenue
for future study. Dedifferentiation of MIST1-expressing cells also
occurs during acinar-to-ductal metaplasia in the pancreas, which
has been called the initiating event for ductal adenocarcinomas in
that organ (53, 60, 74). It is interesting to speculate whether loss
of MIB1-dependent apical secretory differentiation in those cells
also occurs prior to the reexpression of ductal markers in a man-
ner that parallels loss of MIB1 prior to reexpression of neck cell
markers in the stomach.

Together, our results indicate a key regulatory mechanism
involved both in the normal scaling up of a specific subcellular
compartment required for normal physiology of exocrine secre-
tory cells and in the scaling down of that same compartment in
those same cells during pathophysiological changes. This mecha-
nism may be conserved in a cross-species, cross-tissue fashion, pro-
viding a tool for understanding how cells in diverse environments
derive their form and function throughout development.

Methods
Mice. Germline Mist”/~ mice (75) were maintained in a specific pathogen-
free barrier facility. Mist1¢*RT mice were generated as previously described
(53) and bred to Mib 1/ mice (24). Mist1“<ERT/*Mib 17/ mice were generated
and at 6 weeks of age were given 5 consecutive intraperitoneal injections of’
tamoxifen (1 mg/20 g BW; Sigma-Aldrich). Deletion of MibI did not lead
to immediate death of ZCs, as there was no substantial difference in ZC
census or apoptosis levels between control mice (i.e., tamoxifen-treated ani-
mals not expressing Mist1“**kT) and induced MibI-null mice. Control mice
were Mist1eERT/“Mib1/f mice treated with tamoxifen vehicle only or were
tamoxifen-treated littermates of Mist1“<*RT/*Mib 1! mice that lacked either
the Cre allele (Mist1*/*“Mib17f') or both flox inserts (Mist1ERT/*Mib1*/*).

Patient samples. Serial sections (4-6 um thick) obtained from paraffin-
embedded tissue samples (H&E and alcian blue-periodic acid-Schiff
stains) were reviewed by 2 pathologists with specific expertise in gastroin-
testinal diseases, and a consensus on the score for each pertinent histologic
variable was reached. Diagnoses and selection of specific regions of transi-
tion among normal stomach, atrophic stomach, and intestinal metaplasia
was performed by a third pathologist.

IF/cell imaging. Stomachs were prepared and stained as described previ-
ously (16). Briefly, stomachs were inflated with freshly prepared methacarn
fixative and suspended in fixative for 15-30 minutes at room temperature,
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SPEM (yellow outline). (B and C) Representative immunostain (B) and confocal imaging (C) of a hybrid SPEM lesion stained for MIB1 (green),
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followed by multiple rinses in 70% ethyl alcohol (EtOH), arrangement
in 2% agar in a tissue cassette, and routine paraffin processing. Sections
(5 um) were deparaffinized and rehydrated, and then antigen retrieval
was performed by boiling in 50 mM Tris-HCI, pH 9.0. Slides were blocked
in 1% BSA and 0.3% Triton X-100 in PBS and then incubated in primary
antibodies followed by secondary antibodies. Slides were incubated for
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5 minutes in 1 ug/ml bisbenzimide (Invitrogen) prior to mounting in 1:1
glycerol-PBS. Fluorescence microscopy and imaging were performed using
a Zeiss Axiovert 200 microscope with x20 (Plan-Apochromat, 0.811 NA),
x40 (Plan-Neofluar, 0.85 NA), and x63 (Plan-Apochromat, 1.4 NA) objec-
tives with an Axiocam MRM camera and AxioVision software. Additional
confocal microscopy and imaging were performed using a Zeiss LSM510
Number 4
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META microscope with x40 (EC Plan-Neofluar, 0.7516 NA) and x63 (Plan-
Apochromat, 1.4 NA) objectives using LSM510 software.

To visualize microtubules, stomachs were flushed with PBS at 37°C, fol-
lowed by 2% paraformaldehyde, 75 mM lysine, 25 mM taxol, 0.1% Triton
X-100 in PBS. Sections were fixed for 20 minutes at 37°C followed by a
wash with 5% sucrose in PBS at 37°C and embedded in OCT. 5-um-thick
sections were cut, rehydrated in PBS, and incubated with Alexa Fluor 488-
conjugated anti-a-tubulin antibody (eBioscience).

The following primary antibodies were used for immunostaining: goat
anti-human GIF (1:2,000; gift of D. Alpers, Washington University School
of Medicine); sheep anti-PGC (1:10,000; Abcam); mouse anti-o-tubulin
(1:500; Sigma-Aldrich); phalloidin; myosin; integrin; mouse anti-cathep-
sin L (1:100; Novus Biologicals); rabbit anti-CI-M6PR (1:500; gift of
S. Kornfeld, Washington University School of Medicine); mouse anti-
MAPI1B (1:100; Sigma-Aldrich); rabbit anti-phosphorylated MAP1B
(1:200; Novus Biologicals); rabbit anti-DAPK1 (1:200; Sigma-Aldrich);
rabbit anti-MIB1 (1:500; Sigma-Aldrich); mouse anti-galectin 8 (1:100;
Sigma-Aldrich); rabbit anti-MIST1 (1:200; ref. 15). Secondary antibodies
used were Alexa Fluor 488-, 594-, and 647-conjugated donkey anti-goat,
anti-rabbit, anti-sheep, and anti-mouse antibodies (1:500; Invitrogen).

IF quantification to determine cytoplasmic MFI was performed with
NIH Image] software. MFI was determined in each cell after subtraction of
background, which was determined by averaging the fluorescence signal
in 5 parietal cells, which did not express any lineage marker examined,
from the same gastric unit.

Apical cytoplasm measurements were performed using Image J software.

LCM and quantitative real-time PCR (qRT-PCR). Preparation of stom-
ach frozen sections for LCM has been described previously (16). Briefly,
stomachs were excised immediately after sacrifice, quickly flushed with
room-temperature PBS, inflated by duodenal injection of OCT compound
(Sakura Finetek), frozen in Cytocool II (Richard-Allen Scientific), and cut
into serial 7-um-thick cryosections, which were mounted on Superfrost
slides (Fisher Scientific), fixed in 70% EtOH, rehydrated in nuclease-free
water (nuclease-free solutions from Ambion), and then incubated in Alexa
Fluor 488-conjugated Griffonia simplicifolia GSII (diluted 1:500 in nuclease-
free water) for 15 minutes. Sections were washed in nuclease-free water
and dehydrated in graded ethanol followed by xylene. ZCs were identified
as corpus cells that were basal to GSII labeling and did not show the dark
silhouettes and characteristic shape of parietal cells after xylene dehydra-
tion. 4 wild-type mice and 5 Mist17/~ mice were used for dissection (Pix-
Cell I LCM apparatus [7.5-um spot diameter| and CapSure HS LCM caps;
Arcturus) to generate 2 caps per mouse. RNA was purified by PicoPure
kit (Arcturus), and RNA integrity was confirmed by an Agilent 2100 Bio-
analyzer. QqRT-PCR was performed only on RNA that had sharp 18S and
28S bands. All RNA from each cap was treated with DNase I (Invitrogen)
and then reverse transcribed using the SuperScript III (Invitrogen) stan-
dard protocol (most cDNA syntheses started with 10 ng total RNA). Mea-
surement of cDNA levels was performed by qRT-PCR using a Stratagene
MX3000P detection system, and Absolute QPCR SYBR green mix (Thermo
Scientific) fluorescence was used to quantify relative amplicon amounts
of mouse Mib1, Mistl, and 18S rRNA, with the following primers: Mib1
forward, GTCATCCCAGTCTCCAGGATTCTGAA; Mibl1 reverse, GGAC-
CAAAAGCCTAACAATCTGGGT; Mistl forward, TGGTGGCTAAAGC-
TACGTGTC; MistI reverse, GACTGGGGTCTGTCAGGTGT; 18S forward,
CATTCGAACGTCTGCCCTATC; 18S reverse, CCTGTGCCTTCCTTGGA.

Gene chips and bioinformatic analysis. Gene chip arrays used in these experi-
ments were Affymetrix Mouse Gene 1.0ST arrays. Chip quality control and
GeneChip-to-GeneChip comparisons to generate expression profiles were
performed using dChip (76, 77). Cell lineage-specific profiles were gener-
ated by extracting those genes whose expression was increased in the given
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cell lineage relative to the other lineages, according to the following param-
eters: lower bound of 90% confidence, fold change >1.2; expression inten-
sity difference, 250. Parietal cell-specific genes were derived from LCM
experiments previously performed (16), and those genes were removed
from the list of ZC-specific genes. Gene chips are available through GEO
(accession no. GSE43441).

Conversion of cell-specific gene lists into GO distributions. Lists of cell type-
specific genes for each gastric epithelial cell lineage were associated with
GO terms using GOurmet Vocabulary software (29). Among those GO
terms, those associated with specific subcellular domains or processes were
identified and depicted in Figure 1, Table 1, and Supplemental Figure 1.

Analysis of MIB1 gene cis-regulatory elements. The ECR browser (78) was used
to analyze the human genomic sequence for MIB1 5’ to the transcription
start. Sequence was analyzed up to 50 kb or until an exon from the neigh-
boring gene was reached. The first intron up to 50 kb was also analyzed.
CATATG sequences within analyzed sequences were identified using the
dreg application in the EMBOSS suite. Conservation among species aligned
in the ECR browser was then determined at each of these CATATAG sites.

ChIP. ChIP was performed as previously described (57). Approximately
108 HGC-27 cells transfected with a MIST1 expression plasmid were har-
vested for 1 ChIP experiment. 15 ul of MIST1 antiserum (rabbit polyclonal
anti-human MIST1) or serum from the rabbit prior to immunization
(preimmune control) together with protein A/G plus agarose (Santa
Cruz Biotechnology) was added to the cell lysate for IP. Regular PCR and
qRT-PCR were performed to assess the quantity of genomic sequences
immunoprecipitated by either preimmune control or MIST1 antise-
rum, as well as a 1:10 dilution of the cell extract prior to IP. The follow-
ing primers were used to assess IP of binding sites: MIST1 conserved site
forward, CGACTCCTCCTCTTGGGAAG; MIST1 conserved site reverse,
CATCTCCACAAATCCGAGGT; control site forward, GCAGGATAGC-
CAACCTTCAT; control site reverse, TATTATAGTCCTGGGGCAAAACA.

Western blot, qRT-PCR, and co-IP from stomach tissue. For blots, corpus
tissue was homogenized in RIPA buffer using a PowerGen 700 (Fischer
Scientific) with proteins separated on NuPAGE 4%-12% (Invitrogen),
transferred to polyvinylidene difluoride, and detected by Immobilon che-
miluminescence (Millipore). Primary antibodies were rabbit anti-MIB1
(1:1,000), rabbit anti-DAPK1 (1:1,000), goat anti-GIF (1:20,000), and goat
anti-actin (1:1,000; Santa Cruz Biotechnology). Secondary antibodies were
horseradish peroxidase-conjugated donkey anti-rabbit (1:2,000; Jackson
ImmunoResearch) and donkey anti-goat (1:2,000; Santa Cruz Biotechnol-
ogy). For qRT-PCR, total RNAs from corpus were extracted and assayed as
described previously (79). Co-IP was performed using a Pierce Crosslink
IP Kit (Thermo Scientific) with anti-MIB1 antibodies (Sigma-Aldrich) or
anti-ubiquitin antibodies (Santa Cruz Biotechnology).

TEM. For TEM studies, stomachs were fixed, sectioned, stained, and
imaged as previously described (16). Scoring of electron density was per-
formed using Image J.

Statistics. All graphs and statistics were determined with GraphPad Prism
and then visualized using Adobe Illustrator. Statistical analysis was by
2-tailed Student’s ¢ test. A P value of 0.05 or less was considered significant.

Study approval. All experiments involving animals were performed
according to protocols approved by the Washington University School of
Medicine Animal Studies Committee. Acquisition of human gastric path-
ological tissue specimens was approved by the Institutional Review Board
of Washington University School of Medicine, the Comité de Bioetica of
Nicaragua for Universidad Nacional Autonoma De Nicaragua — Facultad
De Ceincias Medicas Managua, and the Research Ethics Board Manager
for Health Sciences at the University of Toronto. Either patients provided
informed consent prior to their participation, or, in some cases, tissue
was from archived specimens taken for diagnosis, so informed consent
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was exempted, with the exemption approved by the Institutional Review
Board of Washington University.
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