Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Modified Foxp3 mRNA protects against asthma through an IL-10–dependent mechanism
Lauren E. Mays, … , Dominik Hartl, Michael S.D. Kormann
Lauren E. Mays, … , Dominik Hartl, Michael S.D. Kormann
Published February 8, 2013
Citation Information: J Clin Invest. 2013;123(3):1216-1228. https://doi.org/10.1172/JCI65351.
View: Text | PDF
Research Article Pulmonology

Modified Foxp3 mRNA protects against asthma through an IL-10–dependent mechanism

  • Text
  • PDF
Abstract

Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tissue inflammation, airway hyperresponsiveness, and goblet cell metaplasia in 2 asthma models. This protection was conferred following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventive and a therapeutic agent. Mechanistically, FOXP3 induction controlled Th2 and Th17 inflammation by regulating innate immune cell recruitment through an IL-10–dependent pathway. The protective effects of FOXP3 could be reversed by depletion of IL-10 or administration of recombinant IL-17A or IL-23. Delivery of Foxp3 mRNA to sites of inflammation may offer a novel, safe therapeutic tool for the treatment of allergic asthma and other diseases driven by an imbalance in helper T cell responses.

Authors

Lauren E. Mays, Susanne Ammon-Treiber, Benedikt Mothes, Mohammed Alkhaled, Jennifer Rottenberger, Eva Sophie Müller-Hermelink, Melanie Grimm, Markus Mezger, Sandra Beer-Hammer, Esther von Stebut, Nikolaus Rieber, Bernd Nürnberg, Matthias Schwab, Rupert Handgretinger, Marco Idzko, Dominik Hartl, Michael S.D. Kormann

×

Figure 2

Modified mRNA generates transient upregulation of Foxp3 in CD4+ cells.

Options: View larger image (or click on image) Download as PowerPoint
Modified mRNA generates transient upregulation of Foxp3 in CD4+ cells.
 ...
Modified Foxp3 mRNA (A) or modified Foxp3 mRNA with a 3xFLAG epitope tag (B–E) was delivered to MACS-isolated CD4+ cell populations (A) or intratracheally to mice (B–E), in comparison with PBS. Twenty-four hours after administration, cells or mice were harvested for analysis. (A) Suppression of CFSE-labeled Tresps in vitro, with or without transfection of modified Foxp3 mRNA, and percent increase in suppression following Foxp3 mRNA delivery. Percentage of exogenous 3xFLAG-Foxp3 in CD4+ cells (B), and percentage increase of 3xFLAG-Foxp3 in various cell types relative to the starting value (C), or percentage in total cells over time (D) were monitored by flow cytometry. Western blot analysis was performed to detect 3xFLAG-Foxp3 expression in lung (E). (C) Values were calculated as: (% FOXP3 in a given cell type for Foxp3 mRNA-injected mice – % FOXP3 in that cell type for PBS-injected mice)/(% FOXP3 in that cell type for PBS-injected mice) x 100. According to this calculation, PBS-injected mice showed a 0% increase for all cell types. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 for the indicated comparisons between plotted groups, or relative to background levels in PBS-injected mice. Data are represented as individual mice or means ± SD. In vitro studies in (A) were performed in triplicate and repeated in 3 independent experiments. (B–E) n = 5 mice per group.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts