SUPPLEMENTAL METHODS Antibodies and Flow Cytometry, mAbs to Langerin (L31), DEC (NLDC), DCIR2 (33D1), Treml4 (16E5), and a control Ig mAb without receptor affinity (GL117) were produced in-house, purified on protein G columns, and labeled with Alexa Fluor 647 (Life Technologies) per manufacturer's instructions. All flow cytometry stainings were preceded by a 15 min incubation at 4°C with α-CD16/CD32 mAbs (produced in house from 2.4G2 hybridoma, ATCC). Cell suspensions were stained using antibodies from eBioscience or BD Biosciences: Alexa Fluor 700 and PerCP-Cy5.5 α-CD4 (RM4-5), allophycocyanin and PerCP-Cy5.5 α-CD25 (PC61), allophycocyanin α-Foxp3 (FJK-16s), FITC, PerCP-Cy5.5 and PE-Cy7 α-CD45.1 (A20) and α-CD45.2 (104), Alexa Fluor 700 α-CD45 (30-F11), Alexa Fluor 700 and eFluor 450 α-CD3ε (145-2C11), PerCP-Cy5.5 α -CD8 α (53-6.7), APC-eFluor 780 and PerCP-Cy5.5 α -CD11b (M1/70), APC-eFluor 780 α -CD11c (N418), PE and PE-Cy7 α -CD11c (HL3), Alexa Fluor 700 α -MHC II (M5/114.15.2), Alexa Fluor 488 α-IL-2 (JES6-5H4), allophycocyanin α-CD62L (MEL-14), FITC and PE α -CD45RB (C363.16A), PE and PerCP-CY5.5 α -CD103 (2E7), PE α-CTLA-4 (UC10-4B9), α-ICOS (7E.17G9), α-Vβ11 (RR3-15), α-PD-1 (J43), and α -SiglecF (E50-2440), PE and PE-Cy7 α -CD44 (IM7), PE-Cy7 α -GITR (DTA-1), α -CD19 (1D3), α -Ter119 (TER-119), α -CD49b (DX5), α -CD5 (53-7.3), α -IFN- γ (XMG1.2), and α -CD127 (A7R34). PE α -PDCA-1 (JF05-1C2.4.1) was from Miltenyi Biotec, and PerCP-Cy5.5 α-CD103 (2E7) and α-IL-17A (TC11-18H10.1) were from Biolegend. Samples were acquired on an LSRII and data were analyzed using FlowJo software (Tree Star). Suppression Assav. B6 mice were transferred with 4x10⁶ 2D2 Foxp3-EGFP CD45.1 CD4⁺ T cells one day before the s.c. inoculation of 3 μ g α -Langerin- or α -DEC- MOGp (day 0). At day 14, Foxp3-EGFP⁺ or Foxp3-EGFP⁻ CD45.1⁺ transferred cells were FACS-sorted from sLN and their function was assessed in an in vitro suppression assay. In brief, $5x10^4$ violet-labeled (1 µM CellTrace violet for 10 min at 37°C) responder MOG-specific CD45.2⁺ CD4⁺ T cells/well were cultured in a U-bottom 96-well plate with 1x10⁴ CD11c-bead purified splenic DCs from CD45.1 B6 mice and 12.5 µg/ml MOG35-55p. Sorted Foxp3-EGFP⁺ CD45.1⁺ or Foxp3-EGFP⁻ CD45.1⁺ T cells were added to the well in decreasing numbers (responder/suppresor ratios = 1:1/3, 1:1/9, 1:1/27, and 1:1/81). Proliferation of responder cells was measured by dilution of the CellTrace violet 4 days later by FACS gating in live CD4⁺ CD45.2⁺ Vβ11⁺ cells. For mixed leukocyte reaction (MLR), 1x10⁵ fresh CD4⁺ T cells from Balb/c Thy1.1 mice labeled with CellTrace violet (responders) were stimulated with 2x10⁴ CD11c-bead purified splenic DCs from B6 CD45.2 mice. Graded numbers of sorted MOG-specific CD45.2⁺ Foxp3-EGFP⁺ cells were added to the cultures in the absence or presence of 12.5 µg/ml MOG35-55p. Proliferation of responder cells was measured by the dilution of the CellTrace violet 4 days later by FACS gating in live CD4⁺ Thy1.1⁺ cells. The percentage of suppression was calculated as follow: [1- (% of proliferated T responders in cultures with suppressors / % of proliferated T responders in cultures without suppressors)] x 100. **Isolation of CNS-infiltrating cells**. Spinal cords of PBS-perfused mice were mechanically disrupted and digested with Collagenase D (400 U/ml, Roche Diagnostics) and 50 µg/ml DNase I for 35 min at 37°C, adding 5 µM EDTA for the last 5 min of incubation. Mononuclear cells were enriched by Percoll gradient (67.5% - 30%) centrifugation (800g for 20 min). Intracellular cytokine staining. Cells were stimulated with either 12.5 μ g/ml MOG35-55p, or 100 ng/ml PMA (Sigma-Aldrich) and 0.5 μ g/ml ionomycin (Sigma-Aldrich) at 37°C for 5-6 hrs, adding Brefeldine A (10 μ g/ml; Sigma-Alderich) for the last 4-5 hrs to allow accumulation of intracellular cytokines. After staining of surface markers, cells were fixed and permeabilized, followed by staining with α -IL-17A, α -IFN- γ , and IL-2. Supplemental Figure 1. Gating strategy to define DCs subsets in the skin draining LN and spleen. sLN (*A*) and spleen (*B*) of Langerin-EGFP mice were harvested and digested using Collagenase D/ DNase I. Whole cell suspensions were stained with a cocktail of antibodies to detect distinct DC subsets. (A) Within the single cells suspension, dead cells, doublets, CD19+, TER119+, DX5+ and CD3ε+ cells were excluded from analysis. The CD11chi MHC Ilhi population represents lymphoid-resident DCs, and can be further divided into CD8+ (gate i) and CD8- DCs (gate ii). CD11cint/hi MHC Ilhi cells were further analyzed for the expression of Langerin-EGFP and CD11b to define skin migratory DC subsets. Langerin- cells were divided into CD11b+ DCs (gate iii) and CD11b- DCs (gate iv). Langerin+ cells were further analyzed for the expression of CD103, dividing them into two groups: CD103+ DCs (gate v) and CD103- LCs (gate vi). (B) Splenic live cells, singlets, CD19-, TER119-, DX5- and CD3ε- cells were selected for further analysis and examined for the expression of CD11c and CD11b. The CD11chi population represents lymphoid-resident DCs in the spleen and can be further divided into CD8+ (gate i) and CD8- DCs (gate ii). Supplemental Figure 2. Quality control of α -receptor mAbs genetically engineered to express MOGp. (A) Diagrammatic representation of the α -receptor mAb conjugated with MOGp. Constant regions of the original α -receptor mAbs, as well as a control Ig mAb, were replaced by that of the mouse IgG1 and modified to avoid Fc-receptor binding (26). The sequence inserted into the C-terminus domain of the mouse IgG1 heavy chain corresponds to a small linker (blue) and the 29-59 peptide from the myelin oligodendrocyte glycoprotein (MOG; red) containing amino acids 35-55 (underlined). (B) Coomassie-stained 10% SDS/PAGE reducing gel comparing fusion mAbs with molecular mass in kDa indicated (upper panel). Western blots of fusion mAbs using HRP-conjugated α -mouse IgG1 (middle panel) or Biotin-conjugated α -MOG followed by HRP-Sva (lower panel). (C) FACS analysis of the binding of α -receptor-MOGp mAbs to CHO cells transfected to express different receptors, i.e., DEC, Langerin, DCIR2, TremI4 (red), and control untransfected CHO cells (NEO; blue), using graded doses (0.02-2 µg) of fusion mAbs followed by α -mouse IgG PE. Supplemental Figure 3. Experimental design to evaluate the de novo induction of Foxp3+ T cells, and the expansion of natural Tregs by α -receptor-MOGp mAbs. (A) De novo generation of Foxp3+ T cells from naive CD4+ T cells. $4x10^6$ MOG-specific CD45.1+ naive T cells were purified by FACS from MOG-specific Foxp3-EGFP reporter mice (CD25-, Foxp3-EGFP-, CD44lo-, CD45RBhi), and were transferred into CD45.2 recipient mice. One day later, mice were inoculated s.c. footpad with 3 μ g of α -receptor-MOGp mAbs. The generation of Foxp3-EGFP+ T cells in spleen and sLN was evaluated by FACS 7 days later (shown in Figure 2B). (B) Expansion of Foxp3+ nTregs by α -receptor-MOGp mAbs. $1x10^6$ CD45.1+ Foxp3+ nTregs, FACS-sorted from MOG-specific Foxp3-EGFP reporter mice, were labeled with CellTrace violet and then transferred into CD45.2 recipient mice. On the next day, mice were injected s.c. with 3 μ g of α -Langerin-, α -DEC- or control Ig- MOGp. 7 days after antigen inoculation, the proliferation of Violet-labeled CD45.1+ Foxp3+ nTregs was evaluated by FACS in spleen and sLN. Histograms are gated on CD45.1+ Foxp3-EGFP+ CD4+ T cells. Shown are the frequencies of Foxp3+ nTregs undergoing one or more cell divisions representative of 3 experiments with similar results. Supplemental Figure 4. Foxp3+ T cell generation in vivo using α-DEC and α-Langerin mAbs require steady-state DEC+ and Langerin+ DCs. (A) B6 CD45.2 mice were transferred with 4×10^6 MOG-specific CD45.1+ CD4+ T cells. One day later, mice were inoculated with 3 μg of different α-receptor mAbs conjugated with MOGp, control Ig-MOGp mAbs without receptor affinity, un-conjugated α-Langerin mAb, or different doses of soluble untargeted MOG35-55p (3-300 μg). 7 days after antigen inoculation, the percentage (left panel) and total number (right panel) of Foxp3+ T cells were evaluated in the sLN and spleen. Bar graphs show the mean ± SEM of 2-10 experiments with a total of 4-20 animals. (B) As in A, but WT, DEC-deficient ($Ly75^{-/-}$) or Langerin-deficient mice were inoculated s.c. with MOGp coupled to α-Langerin, α-DEC or control Ig mAbs. Total number of Foxp3+ T cells at day 7 in sLN is shown as the mean ± SEM of two experiments with a total of 4 mice. (C) As in A, but mice received a s.c. (footpad) inoculation of 3 μg of α-Langerin-MOGp alone (PBS) or in combination with different DC-maturation stimuli, and analysis was performed at day 14 in sLN. Shown is the mean ± SEM of 2 different experiments with 2 animals. Supplemental Figure 5. Kinetics of Foxp3+ T cell generation triggered by α-receptor-MOGp mAbs. (A) B6 CD45.2 mice were transferred with $4x10^6$ MOG-specific CD45.1+ CD4+ T cells one day before the s.c. inoculation of 3 μg of α-receptor-MOGp mAbs. 4-28 days after antigen inoculation, sLN were analyzed for the total number of Foxp3+ cells (left panel) and the % of Foxp3+ cells among CD45.1 transferred cells (right panel). The total number of Foxp3+ T cells peaked at day 7-14, and gradually declined thereafter, however, significant numbers of MOG-specific Foxp3+ T cells were still detected at day 28 after α-DEC and α-Langerin inoculation (~2-3x10⁴ Foxp3+ T cells). Data is shown as the mean ± SEM of 2-7 independent experiments with a total of 4-14 animals. (B) As in A, but the fate of MOG-specific Foxp3- T cells was followed in the sLN (left panel) and spleen (right panel). (C) As in A, but 4 days after α-receptor-MOGp mAbs inoculation, sLN cell suspensions were re-stimulated with 12.5 μg/ml of MOG35-55p in the presence of BFA for 6 hrs followed by intracellular cytokine staining. As positive control, cell suspensions were stimulated with 2 μg/ml of α-CD3 mAb. One representative experiment of 2 is shown. Supplemental Figure 6. *Ccr7*^{-/-} mice lack all subsets of skin migratory DCs, whereas DT-treated Langerin-DTR mice specifically lack CD103⁺ migratory DCs and LCs. (A) sLN and spleen of WT and *Ccr7*^{-/-} mice were analyzed by flow cytometry for the percentage of DC subsets using the gating strategy from Supplemental Figure 1. Upper panels represent FACS plot showing lymphoid-resident CD11chi DCs (population i and iii) and MHC IIhi migratory DCs (population ii) in sLN (left panel) and spleen (right panels). Skin migratory DCs (MHC IIhi, population ii) were further divided into Langerin+ and CD11b+ populations. The bottom bar graph shows the frequency of the indicated population in *Ccr7*^{-/-} relative to WT controls as the mean ± SEM of 4 experiments with 4-7 animals. (B) Langerin-DTR/EGFP mice were inoculated i.v. with 500 ng DT at day -1, followed by i.p. inoculations of 250 ng DT at day 1, 3 and 5. At day 7 DT-treated and non-treated mice were analyzed by FACS as in *A*. Mean ± SEM of 2 experiments with a total of 4 mice is shown. Supplemental Figure 7. MOG-specific Foxp3+ transgenic T cells accumulate preferentially in sLN, but not in LN draining the lung or gut, after inoculation of α -Langerin- and α -DEC- MOGp mAbs. $4x10^6$ MOG-specific CD45.1 T cells were transferred into CD45.2 B6 recipient mice one day before the s.c. inoculation of α -DEC-, α -Langerin- or control Ig- MOGp mAbs. Spleen, sLN, mesenteric LN, and mediastinal LN were harvested at day 7 and analyzed for the expression of Foxp3 in MOG-specific transgenic T cells, identified by the leukocyte marker CD45.1 and the T-cell receptor (TCR) V β 11. The left panel shows the frequency of MOG-specific CD45.1 transgenic T cells. The right panel shows the frequency of MOG-specific CD45.1 transgenic T cells expressing Foxp3. Data is shown as the mean \pm SEM of 2-4 experiments with 4-8 animals per group. Supplemental Figure 8. α -Langerin and α -DEC-induced Foxp3+ T cells are functional Tregs. B6 mice transferred with 4x106 MOG-specific CD4+ T cells, obtained from MOG-specific Foxp3-EGFP mice, were inoculated one day later with 3 μg α-receptor-MOGp mAb s.c., and analysis was performed at day 14 in sLN. (A) Phenotype of α-receptor-MOGp mAb induced MOG-specific Foxp3+ T cells (iTregs, red histograms), compared to Foxp3+ nTregs (blue histogram) and Foxp3- CD4+ T cells (gray filled histogram). One experiment of two analyzed by FACS. (B) MOG-specific Foxp3-EGFP+ and Foxp3-EGFP- T cells before or after FACS-sorting (left and right panel, respectively). (C) Violet-labeled MOG-specific CD4+ responder T cells (responders) were co-cultured with CD11c+ DCs (5:1 ratio) plus 12.5 μg/ml MOG35-55p. FACS-sorted Foxp3-EGFP+ or Foxp3-EGFP- cells were added to the cultures (suppressors; 1:1/9 ratio). Responder cells proliferation was evaluated 4 days later by dilution of the CellTrace violet. (D) As in C, but the suppressors were added to the culture at the indicated ratios. Depicted is the % of suppression (see methods), as the mean of 2 independent experiments. (E) Foxp3-EGFP+ T cells FACS-sorted as in B were tested for suppression in a mixed leukocyte reaction (MLR). Violet-labeled responders CD4+ T cells from Balb/c mice were cultured with CD11c+ DCs from B6 mice (5:1 ratio). MOG-specific Foxp3+ T cells were added to the cultures (suppressors; 1:1/9 ratio) +/- 12.5 µg/ml MOG35-55p. (F) As in E, but the suppressors cells were added at different ratios. Shown is the % of suppression as the mean of 2 experiments. #### **Supplemental Figure 9** Α Mean clinical score (± SEM) Control Ig-MOGp α-DEC-MOGp α-Langerin-MOGp α-DEC-OVA α-Langerin-OVA -Days 40 30 20 -15 0 10 -14 EAE MOG-specific CD4+ T cells Induction C В ★ Control Ig-MOGp Mean clinical score (± SEM) Mean clinical score (± SEM) α -Langerin-MOGp -DT α -Langerin-MOGp +DT Days Days 25 -2 40 15 20 0 10 ↟ DT EAE → PBS EAE Induction Induction ★ Control Ig-MOGp _ α-DEC-MOGp Supplemental Figure 9. α-DEC- and α-Langerin conjugated with MOGp, but not OVA, protect from EAE. (A) B6 mice were transferred with $4x10^6$ MOG-specific CD4+ T cells one day before the inoculation of 3 μg α-receptor mAbs conjugated with MOGp or OVA. 14 days after, EAE was induced by immunization with MOG35-55p in CFA. The course of EAE is shown as the mean clinical score ± SEM of 10-20 animals in 2-4 experiments. α-DEC- and α-Langerin- MOGp were statistically significant (2-way ANOVA and Bonferroni's post hoc testing) from α-DEC- and α-Langerin- OVA starting at day 18 (*), p<0.05. (B) As in A, but mice were inoculated i.v. (2 day before EAE induction) and i.p. (1 day after EAE induction) with 250 ng DT. Mean ± SEM of 15-20 animals in 3-4 experiments. No significant differences were found between mice vaccinated with α-Langerin-MOGp +/- DT. On the other hand, α-Langerin-MOGp groups were significantly different from control lg-MOGp starting at day 20 (* = p<0.05; 2-way ANOVA and Bonferroni's post hoc testing). (C) As in A, but α-receptor-MOGp mAbs were inoculated 10 days after EAE induction. No significant differences between the groups were found. Shown is one experiment of two with 5 animals per group. α-Langerin-MOGp Supplemental Figure 10. Flow cytometric analysis of the CNS-infiltrating T cells in α -Langerin-MOGp inoculated mice at the peak of EAE. B6 mice inoculated with 3 μg of α -Langerin- or control Ig-MOGp (given one day after transfer of $4x10^6$ MOG-specific CD4+ T cells), were challenged for EAE induction 14 days later. At the peak of the disease (day 19-22), the spinal cord infiltrating cells were analyzed by FACS. (A) Shown is a representative FACS plot of CNS-infiltrating cells. (B) The total number of CD45+ leukocytes (left panel), CD3 ϵ + T cells (middle panel), and CD4+ T cells (right panel) is shown as the mean \pm SD of 10-14 animals in 2-3 different experiments. (C) The total number of CD4+ T cells producing IFN- γ and IL-17A after a short re-stimulation with PMA/ionomycin, or expressing Foxp3 is shown as the mean \pm SD of 7 animals in 2 experiments. (D) As in C, but the frequency of CD4+ T cells is shown. n.s. is non-significant. Supplemental table 1. α -Langerin and α -DEC mAbs prevent the development and progression of EAE. | | Disease | Day of | Mean Peak | Cumulative | |-----------------|--------------|--------------------|-----------------------------|----------------------------| | Treatment | Incidence | Onset ^A | Clinical Score ^B | disease index ^C | | PBS | 10/10 (100%) | 13.1 ± 1.7 | 5 | 126.7 ± 11.4 | | Control Ig-MOGp | 18/20 (90%) | 16.3 ± 4.5 | 4.2 ± 0.92 | 82.2 ± 30.8 | | α-DEC-MOGp | 12/20 (60%) | 18.8 ± 9.3 | 3 ± 0.6 | 48.4 ± 22.15 | | α-Langerin-MOGp | 7/15 (46.7%) | 19.7 ± 5.2 | 2.6 ± 0.7 | 38.4 ± 21 | | α-DCIR2-MOGp | 10/10 (100%) | 14.9 ± 1.7 | 3.65 ± 1 | 76.65 ± 19.3 | | α-Treml4-MOGp | 9/10 (90%) | 14.3 ± 2.8 | 3.78 ± 0.97 | 73.6 ± 18.8 | ^A Day of onset was calculated as the first day of a clinical score ≥ 1 for each animal and average within each group. ^B Mean peak clinical score was measured over the duration of disease per animal and average within each group. ^C Cumulative disease index was calculated as the sum of daily clinical scores from each animal over the entire observation period, and reported as the average within each group. Mean \pm SEM of 2-4 different experiments with a total of 10-20 mice is shown.