Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis–associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. I6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI.
Figure 1
IL-6 levels correlate with the extent of pulmonary damage and lethal-
ity during SAP. (A) Schematic model for SAP. (B and C) Histological
sections of H&E-stained pancreatic and lung tissue of C57BL/6 mice
at the indicated time points. Note the increase of edema (asterisk) and
necrosis (white arrowheads) in the pancreas after 8 hours and
3 days and the first signs of regeneration of damaged pancreatic tissue
(black arrowheads) after 3 days. Lung damage continued to increase
after 3 days, as demonstrated by alveolar wall thickening and collapse
(see higher-magnification views of boxed regions at far right; enlarged
×3). (D) MPO activity in lung tissue of C57BL/6 mice (n = 5). (E) Flow
cytometry analysis of CD11b+/Gr-1+ cells in total lung tissue (n = 6) and
cytospin preparation of BALF in C57BL/6 mice. (F) Lung permeability,
evaluated by FITC-dextran clearance. (G) Intestinal fluid accumulation,
measured as capillary-alveolar membrane thickness (n = 10). (H–K)
Total cell count (H), total protein concentration (I), BALF CXCL1 (J),
and BALF IL-6 (K) (n = 1–3 per condition; 4 independent experiments).
(L and M) Serum levels of IL-6 (L) and CXCL1 (M) in C57BL/6 mice
(n > 5). (N) Kaplan-Meier curves of cerulein-treated Il6–/– mice (green;
ν = 5) and of C57BL/6 mice treated with cerulein (black; n = 6). Ceru-
lein plus 5 μg/d recombinant IL-6 (blue; n = 5), or NaCl sham plus
5 μg/d recombinant IL-6 (purple; n = 5). Results represent mean ± SD.
*P < 0.05, **P < 0.005, ***P < 0.001. Scale bars: 50 μm.

Here, using genetic and pharmacological approaches in mice, we
revealed the underlying mechanisms of lethal ALI during SAP and
identified the IL-6 trans-signaling cascade via STAT3 as a novel
molecular target for lethal ALI.

Results
A model for SAP-induced lethal ALI. The most relevant, well-establish-
ished mouse model of SIRS-associated ALI is cerulein-induced
AP (21, 22). Cerulein binds specifically to the acinar cell–restricted
receptor CCK-A and induces pancreatic damage through intra-
acinar activation of digestive enzymes (21). With the exception of
1 study, multiple daily injections of the CCK analog cerulein
have been reported to cause nonlethal, noninfectious AP with
mild ALI (23, 24). To increase multiple organ damage and lethal-
ity, we modified the cerulein model by inducing AP in mice for
5 consecutive days (Figure 1A). This protocol resulted in SAP with
multiple organ damage.

Although the pancreas showed the first signs of regeneration
after 3 days (Figure 1B and Supplemental Figure 1, A and B; sup-
plemental material available online with this article; doi:10.1172/ JCI64931DS1), lung damage increased dramatically over time,
as shown by histological changes in the lung (Figure 1C). These
changes in morphology were further emphasized by increased
myeloperoxidase (MPO) activity (Figure 1D). Because MPO is
detectable in neutrophils and monocytes, we performed flow
cytometry experiments, which revealed that granulocytes (also
known as polymorphonuclear leukocytes) were significantly
increased in the lung after 8 hours of AP (Figure 1E). In addition
to granulocytes, macrophages were also detected in bronchoal-
veolar lavage fluid (BALF) (Figure 1E and refs. 25, 26). Pulmonary
damage caused by ALI is also characterized by increased alveolar
permeability. Therefore, to evaluate the extent of alveolar perme-
ability, we measured extravasation of FITC-dextran from the circu-
lation to the alveoli, which increased significantly over time (Fig-
ure 1F). This rise might explain the observed increase in alveolar
thickness (Figure 1G).

In line with this observation, we found that the number of cells as well as protein content increased in BALF
(Figure 1, H and I). BALF contained increased numbers of chemo-
kines (i.e., CXCL1; also known as KC) and cytokines (i.e., IL-6) that
are known to be important for cellular recruitment and inflam-
mation (Figure 1, J and K). To rule out hypotension and sepsis, we
additionally analyzed blood pressure and endotoxin levels during
SAP (Supplemental Figure 1, C–E). Moreover, we found that the
effects on the liver and kidney were only transient (Supplemental
Figure 1, F–J). This model of pancreatitis-associated lung injury
revealed activation of the signaling pathways IkK/NF-κB, p38, and
Rhoa (Supplemental Figure 2, A and B), which are known to be
important for mediating damage in the lung (18, 19).

Pulmonary damage was accompanied by elevated serum IL-6
and CXCL1 levels during disease onset (Figure 1, L and M). As the
disease progressed, levels of IL-6 and CXCL1 returned to normal
values, which suggests that these factors accumulate in the lung.
Lethality in this modified SAP model approached 50% after 3 days,
similar to that in humans with SAP (1).

In human SAP, serum IL-6 is a reliable marker for AP severity,
but its significance in mediating ALI is unknown (12). To exam-

ine the function of IL-6 in ALI genetically, we applied this modi-
fied model to mice deficient in IL-6. Whereas Il6–/– mice were
resistant to death with SAP, 40% of wild-type C57BL/6 mice died.
Conversely, single daily i.v. injections of recombinant IL-6 (5 μg;
1 hour before the last cerulein injection) in diseased C57BL/6 mice
significantly increased the death rate. Single daily injections of
recombinant IL-6 (5 μg; 1 hour before the last cerulein injection)
with 8 hourly injections of NaCl (0.9%) had no effect on survival
(Figure 1N). Thus, our genetic and pharmacological data clearly
demonstrated that IL-6 is not just a marker, but a relevant patho-
physiological mediator of lethality in SAP with lung injury.

IL-6 links pancreatitis to pulmonary damage. To determine the under-
lying mechanisms of IL-6 in terms of contributions to lethality
during ALI, we analyzed the onset of inflammation in Il6–/– mice.
Consistent with previous reports (23), we found that genetic dele-
tion of Il6 increased susceptibility of the pancreas to inflammation-
ated-associated damage (Figure 2, A–C). In contrast, ALI was attenuated,
as Il6–/– mice revealed less alveolar thickness and granulocyte ac-
mulation in the lung (Figure 2, D–F). In parallel, levels of circu-
ating CXCL1 in Il6–/– mice decreased significantly (Figure 2G).

The neutrophil-attracting chemokine CXCL1 has previously
been shown to depend on the gp130-STAT3 axis (25). Because
IL-6 also exerts its proinflammatory effects through the Jak2–
dependent STAT3 pathway, we examined whether STAT3 is
activated during AP and whether its activation depends on IL-6.
Using pancreatic tissue from C57BL/6 and Il6–/– mice, we exam-
ined phosphorylation of STAT3 and STAT1 using Western blot
analysis. Activation of STAT3 was clearly attenuated in Il6–/– mice
compared with wild-type controls; phosphorylation of STAT1 was
not detectable in either group (Figure 2H). These findings were
supported by immunohistochemistry (IHC), which demonstrated
loss of p-STAT3727S in the acinar cells of Il6–/– mice (Figure 2I,
white arrowhead); conversely, the immune cells still demonstra-
ated STAT3 activation (Figure 2I, black arrowhead). These data
implicate STAT3 in the pancreas as a mediator of IL-6–dependent
effects in AP-associated ALI. We therefore conclude that IL-6 links
the inciting event of AP to the secondary development of ALI,
potentially via STAT3 activation in the pancreas.

IL-6 trans-signaling activates STAT3 in the pancreas to mediate pul-
monary damage. Next, we sought to determine the mechanisms
by which IL-6 mediates STAT3 activation in the pancreas. We

The Journal of Clinical Investigation
http://www.jci.org Volume 123 Number 3 March 2013
1021

Downloaded from http://www.jci.org on February 5, 2018. https://doi.org/10.1172/JCI64931
therefore extended our analysis to isolated acinar cells. To test the hypothesis that IL-6 mediates STAT3 activation, we stimulated acinar cells for 2 hours with different concentrations of IL-6. Surprisingly, IL-6 alone did not induce robust STAT3 phosphorylation (Figure 3A). Notably, even supramaximal concentrations of the CCK analog cerulein failed to activate STAT3 in isolated acinar cells (Supplemental Figure 3A). IL-6 can activate STAT3 via 2 modes. The first mode entails classical signaling mechanisms characterized by binding of IL-6 to IL-6R and gp130 on specific target cells. Alternatively, IL-6 binds to the naturally occurring sIL-6R, forming a complex with IL-6 that initiates signaling in cells that lack membrane-bound IL-6R; this process is called IL-6 trans-signaling (15). To test the concept that IL-6 mediates STAT3 activation in acinar cells via IL-6 trans-signaling, we stimulated acinar cells with IL-6 in the presence of sIL-6R.

Figure 2

IL-6 is required to link pancreatic damage to pulmonary damage during AP. C57BL/6 and Il6−/− mice were subjected to 8 hours of AP. (A) Morphological analysis of H&E-stained pancreatic tissue. (B and C) Amylase and lipase levels ($n = 4$). (D) Histological sections of lung tissue. Note the increased alveolar wall thickening and collapse in C57BL/6 mice. (E) Capillary-alveolar membrane thickness ($n = 10$). (F) MPO activity in lung tissue ($n > 5$). (G) Serum CXCL1 ($n = 4$). (H) Pancreatic tissue was isolated at the indicated time points and homogenized to detect p-STAT3Y705 and p-STAT1Y701. ERK1/2 served as loading control (representative blot; $n = 4$ per time point). (I) IHC staining of p-STAT3Y705 in pancreatic tissue. Only C57BL/6 mice showed STAT3 activation in acinar cells; Il6−/− mice showed phosphorylation of STAT3 in immune cells (black arrowhead), but not in acinar cells (white arrowhead). Results represent mean ± SD. *$P < 0.05$, **$P < 0.001$. Scale bars: 50 μm. Boxed regions are shown at higher magnification at right (enlarged ×3).
acinar cells for 2 hours with different concentrations of the fusion protein hyper–IL-6, which consists of IL-6 and sIL-6R (27). Indeed, only hyper–IL-6 was sufficient to induce STAT3 phosphorylation in isolated acinar cells in vitro (Figure 3A). Conversely, hepatocytes expressing membrane-bound IL-6R responded to IL-6 (data not shown and ref. 28). In fact, unlike hepatocytes, acinar cells showed only weak expression of membrane-bound IL-6R (data not shown). In contrast, circulating levels of sIL-6R in serum increased during pancreatitis onset and returned to normal as the disease progressed (Supplemental Figure 3B). However, sIL-6R in BALF continued to increase during the course of disease (Supplemental Figure 3C). Such kinetics and distribution resembled those of IL-6 and CXCL1. Taken together, our in vitro data indicate that IL-6 trans-signaling, rather than classical IL-6 signaling, is required to activate STAT3 in acinar cells.

Prior research has shown that IL-6 trans-signaling plays a significant role in regulating leukocyte recruitment, a process required for ALI (29, 30). Thus, we next sought to determine whether specific inhibition of IL-6 trans-signaling in vivo has effects on ALI similar to those of IL6−/− mice. We used opt_sgp130Fc mice, a line

Figure 3

IL-6 trans-signaling via STAT3 mediates ALI during SAP. (A) Acinar cells were incubated with indicated concentrations of IL-6 or hyper–IL-6 for 2 hours. Protein lysates from incubated acinar cells were homogenized and blotted with p-STAT3Y705, p-STAT1Y701, and STAT3. β-Actin served as loading control (representative blot; n = 3). (B) Morphological analysis of representative H&E stains revealed less alveolar collapse and thickness in opt_sgp130Fc compared with C57BL/6 mice. (C) Interstitial fluid accumulation, measured as capillary-alveolar membrane thickness (n = 5). (D) Lung tissue was removed to measure MPO activity (n = 5). (E) Serum IL-6 concentration (n = 4). (F) Pancreatic tissue was isolated at the indicated times and homogenized to detect p-STAT3Y705, β-Actin served as loading control (representative blot; n = 4 per time point). (G) Morphological analysis of representative H&E stains revealed less pancreatic injury in opt_sgp130Fc compared with C57BL/6 mice. (H and I) Serum analysis showed significantly lower levels of amylase and lipase after 4 and 8 hours in opt_sgp130Fc versus C57BL/6 mice. Results represent mean ± SD. *P < 0.05, **P < 0.005. Scale bars: 50 μm. Boxed regions are shown at higher magnification at right (enlarged ×3).
with liver-specific transgenic overexpression of a soluble gp130Fc (sgp130Fc); more specifically, sgp130Fc inhibits IL-6 trans-signaling without affecting classical IL-6 signaling (17, 31).

Overexpression of sgp130 alleviated the extent of ALI during AP (Figure 3, B–D); circulating levels of IL-6 were still high, but with a significant difference after 4 hours (Figure 3E). This was accompanied by attenuated STAT3 activation in opt_sgp130Fc mice (Figure 3F). In contrast to findings in Il6–/– mice, local pancreatic inflammation was attenuated (Figure 3, G–I), which suggests that IL-6 trans-signaling, rather than classical IL-6 signaling, is involved in the mediation of pancreatic damage. Collectively, these data demonstrated that IL-6 trans-signaling, not classical IL-6 signaling, links the inciting event of AP to the secondary development of ALI. Our data also implicated IL-6 trans-signaling–dependent STAT3 activation as the linking module.

Classical IL-6 signaling and IL-6 trans-signaling activate distinct pathways in the pancreas during inflammation. Although pulmonary damage was attenuated in Il6–/– and opt_sgp130Fc mice, the extent of local damage in the pancreas differed. To better understand the mechanisms underlying these findings, we analyzed various signaling pathways involved in AP in vivo. Interestingly, whereas STAT3Δp705 phosphorylation was clearly diminished in Il6–/– and opt_sgp130Fc mice, serine phosphorylation at S727, which is known to attenuate NF-κB activity, was even inversely correlated to p-STAT3 Y705 (Figure 6G). Local damage was not different in any mouse line. Surprisingly, late trypsin activity was not different in any mouse line. Interestingly, the release of pancreatic amylase did not change (data not shown), even though ALI in RelAΔmye mice was greatly reduced (Figure 5F). RelAΔmye mice displayed less circulating IL-6; moreover, mRNA levels of Il6 and Cxcl1 were also reduced in the pancreas (Figure 5, G–I). In addition, pancreatic phosphorylation of STAT3Δp705 after cerulein exposure in RelAΔmye mice was attenuated (Figure 5J). Collectively, these data indicated that RelA/p65-dependent IL-6 secretion in myeloid cells contributes to phosphorylation of STAT3Δp705. Furthermore, inactivation of RelA/p65 in myeloid cells uncouples local damage from ALI during AP.

Phosphorylation of STAT3Δp705 modulates inflammation severity and determines lethality. To define the requirements for STAT3/SOCS3 in the pancreas to mediate lethal ALI, we generated mice in which STAT3 or SOCS3 was deleted in the pancreas (referred to herein as Stat3panc and Socs3panc mice, respectively; ref. 34). This Cre/loxP-based system affected recombination in the pancreas, but not the liver or lung (Figure 6A and Supplemental Figure 4, A and B). Expression of p-STAT3Δp705 was completely abrogated in Stat3panc mice, whereas Socs3panc mice revealed strong and sustained phosphorylation of STAT3Δp705 (Figure 6, B and C). Local damage was attenuated in Stat3panc mice, but was aggravated in Socs3panc mice, as shown by histology, amylase and lipase levels, relative pancreatic weight, and CXCL1 levels (Figure 6, D–F, and Supplemental Figure 4, C and D). Because intra-acinar conversion of trypsinogen to trypsin is believed to influence acinar cell death, we next measured trypsin activity in all mouse lines during AP. Early trypsin activity was not different in any mouse line. Surprisingly, late trypsin activity was even inversely correlated to p-STAT3Δp705 (Figure 6G). AP severity in Stat3panc and Socs3panc mice was accompanied by decreased and increased serum IL-6 levels, respectively (Figure 6H).

Histopathological examination of Stat3panc lungs after serial injections of cerulein demonstrated limited inflammatory cell influx and preservation of the alveolar structure; in contrast, these features were pronounced in Socs3panc mice (Figure 7A). In accordance with this observation, all indices—including MPO activity, lung edema, tissue permeability, and alveolar thickness—were dependent on phosphorylation of STAT3Δp705 in the pancreas, as they were substantially reduced in Stat3panc mice and increased in Socs3panc mice (Figure 7, B–E). Analysis of BALF revealed reduced pulmonary damage in Stat3panc mice as the disease progressed. Total protein, IL-6, and CXCL1 levels in BALF were attenuated in Stat3panc mice (Figure 7, F–H). Socs3panc mice were not available at this time point because all of them succumbed to SAP; in contrast, Stat3-knockout mice were resistant to SAP-induced lethal ALI (Figure 7I). Together, these observations support the assertion that phosphorylation of STAT3Δp705 determines the severity of local and pulmonary inflammation during AP.

Pharmacological inhibition of STAT3 and IL-6 trans-signaling mitigates SAP-induced lethal ALI. These observations raised the possibility...
that pharmacological inhibition of IL-6 trans-signaling and its downstream effector, STAT3, as well as of CXCL1 and its receptor, CXCR2, can prevent SAP-linked lethal ALI. To examine this hypothesis, C57BL/6 mice were subjected to the SAP model and injected with recombinant sgp130Fc, the small-molecule STAT3 inhibitor S3I-201, the CXCR2 antagonist SB225002, or the anti-CXCL1 antibody (Supplemental Figure 5A). S3I-201 specifically inhibited nuclear translocation of phosphorylated STAT3 in vivo (Supplemental Figure 5B and ref. 35). Administration of sgp130Fc, SB225002, anti-CXCL1 antibody, and S3I-201 saved

Figure 5
Myeloid cells secrete IL-6 in a NF-κB–dependent manner. (A and B) Immunohistochemical analyses were used to localize p-κBα (A) and RelA/p65 (B) in pancreas and lung tissues 8 hours after the first injection of cerulein. Positive results for p-κBα and RelA/p65 in the pancreas (black arrowheads) were mainly restricted to inflammatory cells. Acinar cells remained negative (asterisk). (A) Alveolar cells showed weak activation of p-κBα. (B) Bronchial epithelium (arrowhead) and infiltrating cells (circle) in the lung harbored nuclear RelA/p65. (C) IHC analyses were used to localize IL-6 in the pancreas and lung. Positive results for IL-6 in the pancreas were strictly restricted to inflammatory cells (black arrows). Alveolar macrophages expressed IL-6 in the lung (white arrows). (D) Myeloid-specific abrogation of RelA/p65 in bone marrow–derived macrophages (BMDM) of Rela^{F/F} and Rela^{Δmye} mice. (E) Pancreatic nuclear protein extracts (10 μg) were subjected to gel retardation assays with an NF-κB consensus binding site (representative EMSA; n = 4). (F) Lung tissue was removed to measure MPO activity (n = 4). (G–I) Serum was removed for IL-6 evaluation (G), and levels of Il6 (H) and Cxcl1 (I) mRNA of total pancreatic mRNA were determined, in Rela^{F/F} and Rela^{Δmye} mice. Fold change values (± SD) were normalized to cyclophilin mRNA (n = 4). (J) Pancreases were harvested and homogenized to detect p-STAT3^{Y705}. STAT3 and β-actin served as loading controls (representative blot; n = 4). Results represent mean ± SD. *P < 0.05, **P < 0.005. Scale bars: 50 μm. Boxed regions are shown at higher magnification below (enlarged ×3).
all animals from SAP-induced ALI (Figure 8A). Even CXCL1 and CXCR2 were relevant for pancreatitis-associated lung injury: blocking of CXCR2 by use of SB225002 or an antibody directed against CXCL1 protected mice completely from death. Notably, although we observed no changes in local damage (Figure 8, B, C, and E), pulmonary injury significantly improved in all treatment groups (Figure 8, D and F). These data demonstrated the importance of the IL-6/STAT3/CXCL1 pathway in linking the inciting event of AP to acute pulmonary damage.

Our findings indicated that the IL-6 trans-signaling–dependent STAT3 pathway is central to AP-associated lethal ALI and may thereby represent a potential therapeutic target. Therefore, we next evaluated the clinical relevance of these data (Supplemental Table 1) using plasma from individuals with AP. Because levels of IL-6 decrease as AP progresses, plasma was drawn within 50 hours of disease onset for both groups of patients (Figure 9A and refs. 12, 36). Similar to previous reports, IL-6 levels were significantly higher in plasma from individuals with ALI compared with patients with mild AP and control subjects (Figure 9B and ref. 12). However, the association between IL-6/sIL-6R and ALI was significant (Figure 9, C and D, and ref. 37), reliably distinguishing patients with mild AP from those with pancreatitis-associated organ/lung failure. IL-8, a human ELR+ CXC chemokine that activates neutrophils (e.g., mouse CXCL1), was significantly elevated in plasma of patients with SAP and organ failure (Figure 9E and refs. 38, 39). These findings highlighted the activity of the IL-6 trans-signaling/STAT3/CXCL1 cascade in patients with pancreatitis-associated organ failure.

Discussion

The causal link between the inflammatory process of SAP and concomitant evolving lethal ALI has long been recognized in daily clinical practice; however, the underlying molecular mechanisms
We previously showed that inactivation of NF-κB in the pancreas increased local damage and aggravated ALI, which was accompanied by high systemic and local levels of IL-6 (21, 33). Here, we demonstrated the role of IL-6 trans-signaling in SAP and ALI, showing that IL-6 is not merely a marker, but a relevant pathophysiological player in the disease process (12, 13). Our results showed that IL-6 exerted its effects during SAP and lethal ALI predominantly via IL-6 trans-signaling. This type of activation rendered virtually all cells capable of responding to IL-6/sIL-6R complexes. Moreover, we demonstrated IL-6 trans-signaling to regulate processes localized to the site of inflammation. This mode of activation enhanced IL-6 responsiveness and drove inflammatory events. In addition to its proinflammatory capacities, classical IL-6 signaling coordinated homeostatic properties of IL-6, such as neutropenia, changes in cholesterol, and weight gain (31).

While the role of IL-6 in AP has been extensively analyzed, IL-6 trans-signaling has not been addressed in this context (23, 40). We previously showed that inactivation of NF-κB in the pancreas increased local damage and aggravated ALI, which was accompanied by high systemic and local levels of IL-6 (21, 33). Here, we demonstrated the role of IL-6 trans-signaling in SAP and ALI, showing that IL-6 is not merely a marker, but a relevant pathophysiological player in the disease process (12, 13). Our results showed that IL-6 exerted its effects during SAP and lethal ALI predominantly via IL-6 trans-signaling. This type of activation rendered virtually all cells capable of responding to IL-6/sIL-6R complexes. Moreover, we demonstrated IL-6 trans-signaling to regulate processes localized to the site of inflammation. This mode of activation enhanced IL-6 responsiveness and drove inflammatory events. In addition to its proinflammatory capacities, classical IL-6 signaling coordinated homeostatic properties of IL-6, such as neutropenia, changes in cholesterol, and weight gain (31). Beyond phosphorylation of STAT3^{Y705}, classical IL-6 signaling and

Figure 7
Phosphorylation of STAT3 in the pancreas contributes to systemic complications. (A) Histological sections of lung tissue from control, Stat3^{Δpanc}, and Socs3^{Δpanc} mice revealed marked hemorrhage and alveolar collapse in Socs3^{Δpanc} mice. (B) MPO activity in lung tissue of control, Stat3^{Δpanc}, and Socs3^{Δpanc} mice at the indicated time points during AP (n = 6). (C) Lung permeability, determined by injection of EBD in the right femoral artery and measurement of dye concentration in lung tissue at 0 and 8 hours (n = 4). (D) Intersitial fluid accumulation, determined by capillary-alveolar membrane thickness. Values represent mean ± SD (n = 10). (E) Lung edema, determined indirectly by the increase in pulmonary fluid accumulation (n = 8). Animals were killed at 8 hours, and the left lung was removed in order to determine the wet/dry ratio (n = 8). (F–H) Protein concentration (F), IL-6 (G), and CXCL1 (H) measured in BALF taken from control and experimental animals (n = 4; 1–3 BALF/animal). Note that BALF could not be taken from Socs3^{Δpanc} mice (n.a.), since all mice died due to SAP. (I) p-STAT3^{Y705} was linked to SAP-induced lethal ALI. Kaplan-Meier curves of control (n = 6), Stat3^{Δpanc} (n = 9), and Socs3^{Δpanc} (n = 5) mice during SAP. Values represent mean ± SD. *P < 0.05, **P < 0.005, ***P < 0.001. Scale bars: 50 μm.
IL-6 trans-signaling are likely involved in distinct and different pathways during inflammation (41). More importantly, IL-6 was found to play a crucial antiinflammatory role in both local and systemic acute inflammatory responses by controlling the level of proinflammatory, but not antiinflammatory, cytokines. In fact, we observed strong phosphorylation of STAT3727 and of RelA in the pancreatic tissue of $\text{Il6}^{-/-}$ mice; this phosphorylation was not detectable in control or transgenic opt_sgp130Fc mice. Phosphorylation of STAT3727, for example, was found to be localized in the mitochondria, for optimal function of the electron transport chain (32). Whether this phosphorylation accounts for the severe local damage in $\text{Il6}^{-/-}$ mice remains unclear. These data suggest that, unlike blocking IL-6 trans-signaling, genetic inhibition of classical IL-6 signaling likely eliminates protective mechanisms during inflammation. These observations might account for the different phenotypes observed in $\text{Il6}^{-/-}$ and opt_sgp130Fc mice.

In addition, $\text{Il6}^{-/-}$ mice revealed strong activation of the NF-κB pathway. IHC showed that in addition to acinar cells, myeloid cells displayed strong NF-κB activation. Using genetic tools, we further showed that myeloid NF-κB activation contributed significantly to IL-6 synthesis and IL-6 trans-signaling, and functional inactivation of RelA/p65 in myeloid cells attenuated STAT3 phosphorylation and decreased transcriptional levels of CXCL1 and IL-6. Our data clarified previous observations and demonstrated that, unlike RelA in acinar cells, NF-κB/RelA in myeloid cells linked local inflammation to ALI in AP via IL-6/sIL-6R, thereby placing IL-6 trans-signaling in a central position for inflammation-associated ALI (21, 33).

By virtue of phosphorylating STAT3727, IL-6/sIL-6R regulates leukocyte recruitment, thereby contributing to local inflammation. In response to IL-6/sIL-6R, STAT3 is activated in endothelial cells to produce chemokines and upregulate adhesion molecules (30, 42). In the pancreas, we found a number of increased proinflammatory cytokines and chemokines, some of which have been validated by other studies as STAT3 target genes; moreover, high expression of proinflammatory cytokines and chemokines was found to correlate with AP severity in animal models as well as in humans. Indeed, the neutrophil chemoattractant chemokine CXCL1, which is involved in monocyte/granulocyte traffic across endothelial barriers (26, 43, 44), was highly upregulated during SAP. Our genetic data suggest that IL-6 trans-signaling–induced STAT3 phosphorylation in the pancreas acts as an amplifier for CXCL1 induction. The ELR$^+$ CXC chemokine CXCL1 binds to the CXCR2 receptor to orchestrate extravasation of leukocytes from the vascular system to the site of inflammation. In our murine model of pancreatitis-associated ALI, inhibition of CXCL1 or of the CXCR2 receptor was sufficient to prevent death independent of local damage in the pancreas. Herein, we demonstrated the pivotal role of the STAT3-dependent CXCL1/CXCR2 axis in link-
ing pancreatic damage to ALI. Interestingly, this concept seems to be relevant even in other settings of ALI (45).

Although we observed high levels of IL-6 in patients with SAP and concomitant ALI, levels of sIL-6R were significantly lower compared with individuals with noncomplicated AP or control subjects. This potentially reflects complexation of IL-6 with sIL-6R, providing evidence in support of IL-6 trans-signaling even in the human disease. We further demonstrated that the serum IL-6/sIL-6R ratio was useful to distinguish patients with mild pancreatitis from those with SAP and subsequent ALI. Similar to IL-6, sIL-6R levels in control patients and patients with mild AP were preliminary and need to be confirmed in larger studies with consistent time points, these data corroborated the assertion that the IL-6/STAT3/CXCL1 (IL-8) cascade is important in promoting ALI during AP. Interestingly, analysis of BALF from patients with ALI also showed elevated levels of sIL-6R, IL-6, and IL-8 (46), which suggests that this cascade exerts its effect in the lung. Whether the circulating IL-6/sIL-6R complex is sufficient to create all these effects or whether it requires additional local release of IL-6 and sIL-6R from activated neutrophils remains to be determined (29).

Our present data increase the understanding of distantly mediated ILI (Figure 9F and ref. 48). This cascade not only defines a specific and promising target linking local events to systemic inflammation, its activation opens a therapeutic window, especially in patients with ongoing SAP and ALI. Yet, as previously stated, whether the circulating IL-6/sIL-6R complex is sufficient to promote these effects or whether it requires additional local release of IL-6 and sIL-6R from activated neutrophils remains to be determined (29). With the development of STAT3 inhibitors, specific IL-6/IL-6R antibodies, and soluble recombinant gp130 proteins at hand, we can reasonably test such substances in patients with SAP and ALI (35, 49).

Methods

Animal models. To delete Stat3 or Soc3 in the pancreas, we crossed Stat3Δmye and Soc3Δmye to Ptf1a-cre mice, which were intercrossed to generate compound mutant Ptf1a-creΔmye,Stat3Δmye (Stat3Δmye) and Ptf1a-creΔmye,Soc3Δmye (Soc3Δmye) mice, respectively. Pancreas-specific expression of Cre recombinase was visualized by crossing Ptf1a-creΔmye knockin mice to the LSL-R26S-creERT2 reporter mouse strain. opt_sgp130Fc transgenic mice have been previously described (17, 34). For myeloid-specific deletion of exons 7–10 in the Rela gene, RelaΔmye mice were crossed to the LysMCre transgenic mouse line to obtain myeloid-specific inactivation of Rela/p65 (RelaΔmye mice) (50). In all experiments, experimental mice were compared with littermate controls of the same genetic background. C57BL/6 mice were obtained from Charles River.

Assessment of pulmonary capillary permeability. Lung permeability was determined by injection of Evans blue dye (EBD; 20 ml/kg) in the right femoral artery 30 minutes before termination of the experiment to assess vascular leakage in the lung. After mice were sacrificed, the lung was flushed with saline (0.9%), removed, and placed in formamide (2–3 ml/100 mg lung). Lungs were removed, weighed, and pooled in a tube of formamide (2–3 ml/100 mg lung). The tube was incubated at 50°C for 72 hours. EBD was extracted, and relative EBD concentration in the supernatant (compared with the standard curve) was measured at 632 nm.
To measure airway permeability, mice were challenged with cerulein for 8 hours. Along with the last i.p. injection of cerulein, mice were injected i.v. with 200 μl (5 mg/ml) of fluorescein isothiocyanate-dextran (FD4; Sigma-Aldrich). Mice were sacrificed, BALF was recovered, and alveolar permeability was measured via fluorescence.

BALF analysis. Protein content, total cell count, and inflammatory markers CXCL1 and IL-6 were analyzed in BALF. Briefly, animals were killed by decapsulation. The trachea was then exposed and intubated with a catheter, and between 1 and 3 repeated injections of PBS (0.8 ml) were given to harvest BALF. Collected BALF was centrifuged at 300 g for 10 minutes at 4 °C, and the supernatant was frozen at –80 °C for subsequent analysis of total protein content (Bio-Rad protein analysis kit) and inflammatory mediators. Cells in the pellet were resuspended in PBS for quantification.

Models of AP. The model of experimental AP was performed as previously described (21). For the SAP model, food was withheld from age- and sex-matched littermates for 18 hours, but mice were provided water ad libitum. Moreover, mice received 8 hourly i.p. injections of saline (control) or of 30 g/kg cerulein (Sigma-Aldrich) in saline in 5 days.

Scores in AP and ALI. Histological analysis of pancreatitis and lung injury was performed as described previously (21). For evaluation of lung inflammation during pancreatitis, we randomly chose 10 microscopic fields per mouse (n = 4). Alveolar wall thickening was measured by 2 researchers in a blinded manner and analyzed using Avisvision software (version 4.8, Zeiss).

Drug treatment in vivo. For inhibition experiments, sgp130Fc was provided by the Institute of Biochemistry, University of Kiel (endothelin level, <0.125 EU/mg) and used according to the protocol in Supplemental Figure 5A. The small-molecule inhibitor S3I-201 (OTAVA) was freshly diluted from frozen aliquots in DMSO that had been stored at –20 °C (stock concentration, 0.25 M). 9-week-old mice were injected i.v. with S3I-201 (7.5 mg/kg body weight) 2 hours after the first injection of cerulein. The CXCR2 antagonist SB225002 (2725; TORCIS Bioscience) was diluted in DMSO and injected i.p. at a concentration of 0.5 μg/ml body weight. The anti-CXCL1 antibody (MAB4531; R&D Systems) was injected i.p. on days 1 and 3 of treatment (50 μg). Control mice were treated in parallel with respective concentrations of DMSO (0.082 μl/g) in PBS as a vehicle control. Animals were stratified, and the pancreases were analyzed.

Flow cytometry. Harvested lungs were injected with 1.0 mg/ml collagenase D (Roche) and 1.0 mg/ml DNase I (Sigma-Aldrich) and minced. Single-cell suspensions of lung cells were immunolabeled with fluorescein isothiocyanate-conjugated antibodies in PBS that were supplemented with 2% heat-inactivated FBS (Gibco, Invitrogen) and 5 mM EDTA (Sigma-Aldrich). All antibodies were purchased from Ebioscience, including PE-conjugated antibody (clone M1/70). Cells were stained with propidium iodide (BD Biosciences) to assess viability. Flow cytometry analysis was performed on a Gallios flow cytometer (Beckman Coulter) after gating and excluding dead cells. Data were analyzed using FlowJo software.

Human samples. Patients with AP who were admitted to Scania University Hospital (Malmö, Sweden) were included in the study. AP was defined as upper abdominal pain and elevated serum amylose levels (minimum 3 times the upper reference limit) and/or radiological findings that confirmed AP. No patients were referred from other hospitals. Patients were considered to have SAP (n = 6) or mild pancreatitis (n = 20) based on the Atlanta criteria (51). Blood samples were placed in PST tubes and centrifuged (2,000 g, 25°C, 10 minutes), and plasma was frozen at –80 °C.

Statistics. Data are presented as mean ± SD and were analyzed with a built-in 2-tailed t test using Microsoft Excel. A P value less than 0.05 was considered significant.

Study approval. All animal experiments were reviewed and approved by the Regierung von Oberbayern (reference no. 55.2-1.54-2531-189-09; Munich, Germany). The human study was approved by the regional research ethics committee at Lund University (approval no. 2009/413). Oral and written informed consent was provided by all patients before entrance into the study.

Acknowledgments

We thank Karen Dlabatz for excellent technical assistance, Georg Waetzig (Comaris Research Institute, Kiel, Germany) for help with preparing sgp130Fc, Andreas Blutke for help with blood pressure experiments, and Paul Ziegler for assisting with flow cytometry analysis. This work is a part of the doctoral thesis of P. Neuhöfer. H. Zhang was supported as a guest scientist by Sonderforschungsbereich 576 (Teilprojekt A 10). Y. Akihiko received grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation. The work of S. Rose-John was supported by Deutsche Forschungsgemeinschaft (SF8841, TP C1) and the Cluster of Excellence – “Inflammation at Interfaces.” H. Algül and R.M. Schmid were supported by Deutsche Forschungsgemeinschaft (SF8576, TP A10; AL1174/3-1) and the Else Kröner Fresenius Stiftung (2010-A144).

Received for publication May 23, 2012, and accepted in revised form December 17, 2012.

Address correspondence to: Hana Algül, II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany. Phone: 49.89.4140.5215; Fax: 49.89.4140.6794; E-mail: hana.alguel@lrz.tum.de.

