

Supplementary Figure 1. Human CD11c+ dendritic cells are present throughout the female reproductive tract of BLT mice. Immunohistochemical analysis of the entire FRT of a HIV negative BLT mouse demonstrates the presence of CD11c+ cells in the vagina, cervix and uterus (CD11c positive cells are stained brown) (scale bars indicate $100 \mu \mathrm{~m})$.

Supplementary Figure 2. Human CD68+ macrophages are present throughout the female reproductive tract of BLT mice. Immunohistochemical analysis of the entire FRT of a HIV-negative BLT mouse demonstrates the presence of CD68+ cells in the vagina, cervix and uterus (CD68 positive cells are stained brown) (scale bars indicate $100 \mu \mathrm{~m}$). It should be noted that CD68 has conventionally been regarded as a macrophage marker $(24,72)$ and in this study, we have utilized CD68 as a marker for human macrophages present in the FRT. However, a subset of immature dendritic cells in PB and myeloid dendritic cells in the kidney have been shown to express CD68 and it is important to note that a small proportion of the CD68 expressing cells that we detected could be dendritic cells (72-76).

Human

Supplementary Figure 3. Comparable proportions of memory CD4 ${ }^{+}$T cells in PB from humans and BLT mice express $\alpha 4 \beta 7$. Flow cytometric analyses of $\alpha 4 \beta 7$ expression on memory CD4 ${ }^{+}$T cells of PB from humans (black dots, $\mathrm{n}=4$) and PB (grey dots, $\mathrm{n}=18$), FRT (grey diagonal stripes, $\mathrm{n}=5$) and CVS (grey solid color, $n=13$) from HIV negative BLT mice. A Mann-Whitney test with a Bonferroni step-down (Holm) correction was used to compare the percentages of memory CD4 ${ }^{+}$T cell expressing $\alpha 4 \beta 7$ in the PB of humans and PB, FRT and CVS of BLT mice (${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$). There was no significant difference in the percentage of memory CD4+ T cells expressing $\alpha 4 \beta 7$ in PB between humans and BLT mice ($p=0.13$). Further, the proportion of memory CD4 ${ }^{+}$T cell expressing $\alpha 4 \beta 7$ in the FRT and CVS in BLT mice were significantly lower than in the PB (PB vs. FRT $p=0.003$, PB vs. CVS p<0.0001), whereas there was no difference between the FRT and CVS $(p=0.13)$. Bars represent mean values $(\pm$ SEM $)$.

Supplementary table 1. Exposure route and inoculum used for HIV infected BLT mice

Figure	Total (n)	Exposure route and inoculum
3A	1	Vaginal: Cell-free HIVJR-CSF
3B	21	Vaginal: Cell-free HIVJR-CSF ($n=7$) Vaginal: Cell-associated HIVJR-CsF ($\mathrm{n}=12$) Vaginal: Cell-free HIV RHPA $^{(n=2)}$
3 C	16	Rectal: Cell-free HIVJR-CSF ($\mathrm{n}=16$)
3D	14	Oral: Cell-free HIVJR-CSF ($\mathrm{n}=7$) Oral: Cell-associated HIVJr-CsF (n=7)
4A	18	Vaginal: Cell-free HIVJR-CSF ($\mathrm{n}=7$) Vaginal: Cell-associated HIVJr-CSF ($n=9$) Vaginal: Cell-free HIV ${ }_{\text {RHPA }}(\mathrm{n}=2)$
4B	11	Rectal: Cell-associated HIVJR-CsF ($\mathrm{n}=11$)
4 C	12	Oral: Cell-free HIVJR-CSF $(\mathrm{n}=12)$
4D	7	Vaginal: Cell-free HIVJR-CsF ($\mathrm{n}=4$) Rectal: Cell-free HIVJR-CSF ($\mathrm{n}=2$) Oral: Cell-free HIVJR-CsF ($\mathrm{n}=1$)
5A	18	Vaginal: Cell-free HIVJR-CSF ($n=7$) Vaginal: Cell-associated HIVJR-CSF $(n=9)$ Vaginal: Cell-free HIV ${ }_{\text {RHPA }}(\mathrm{n}=2)$
5B	11	Rectal: Cell-associated HIVJR-CsF ($\mathrm{n}=11$)
5C	1	Oral: Cell-free HIVJR-CsF
6A, B and C	6	Vaginal: Cell-associated HIV ${ }_{\text {JR-CSF }}(\mathrm{n}=6)$
7A, left panel	8	Vaginal: Cell-free HIVJR-CsF ($n=1$) Vaginal: Cell-associated HIVJR-CSF $(n=4)$ Rectal: Cell-free HIVJR-CsF ($\mathrm{n}=2$) Oral: Cell-associated HIVJR-CSF $(\mathrm{n}=1)$
7A, right panel	5	Vaginal: Cell-associated HIVJR-CSF ($\mathrm{n}=4$) Oral: Cell-associated HIVJR-CSF $(\mathrm{n}=1)$
7B	16	Vaginal: Cell-free $\operatorname{HIV}_{\text {JR-CsF }}(\mathrm{n}=9)$ Rectal: Cell-free HIVJR-CsF ($\mathrm{n}=2$) Vaginal: Cell-associated HIVJR-CsF $(n=4)$ Oral: Cell-associated HIVJR-CsF $(\mathrm{n}=1)$
7C	13	Vaginal: Cell-free HIVJR-CsF ($\mathrm{n}=13$)
7D	9	Vaginal: Cell-free HIVJR-CsF ($\mathrm{n}=9$)
7E	8	Vaginal: Cell-associated HIVJR-CSF ($\mathrm{n}=8$)

