



- Podocytes, negative IgG control
- Podocytes (Itga3<sup>fl/fl</sup>, Cd151<sup>fl/fl</sup>)
- Podocytes (*Itga3<sup>-/-</sup>, Cd151<sup>-/-</sup>*)

| Homo sapiens            | 336 | EEVGGAIYVFMNQ | Α | GTSFPAHPSLLLHGPSGSAFG | 376 |
|-------------------------|-----|---------------|---|-----------------------|-----|
| Pongo abelii            | 336 | EEVGGAVYVFMNQ | Α | GTSFPAHPSLLLHGPSGSAFG | 376 |
| Macaca mulatta          | 334 | EEVGGAVYVFMNQ | Α | GTSFPAHPSLLLHGPSGSAFG | 374 |
| Pan troglodytes         | 437 | EEVGGAIYVFMNQ | А | GTSFPAHPSLLLHGPSGSAFG | 477 |
| Bos taurus              | 335 | EEVGGAIYIFMNQ | А | GTSFPDHPSLLLHGPSRSAFG | 375 |
| Canis lupus familiaris  | 336 | EEVGGAIYVFMNQ | А | GTSFPAHPSLLLQGPSRSAFG | 376 |
| Mus musculus            | 337 | EEVGGAVYVFMNQ | Α | GASFPDQPSLLLHGPSRSAFG | 377 |
| Monodelphis domestica   | 336 | EEIGGAVYIFMNQ | G | GI-FPLHPSRHLHGPSGSTFG | 376 |
| Anolis carolinensis     | 461 | EEKGGAVYVYMNL | G | GTFHSSANLTLTGPSNSSFG  | 501 |
| Oreochromis niloticus   | 422 | AEVGGAVYVYMNV | G | GRFNSETS-MVLKGPAGSAFG | 462 |
| Ornithorynchus anatinus | 422 | AEVGGAVYVYMNV | G | GRFNSETS-MVLKGPAGSAFG | 462 |
| Xenopus laevis          | 311 | EEIGGAVYVYNNV | R | VFSLIKQQWCSMGPAFLG    | 351 |
| Danio rerio             | 331 | KEEGGAVYIFMNE | Ν | GSFQKKASLVLKGKKGSGFG  | 371 |
| Dicentrarchus labrax    | 335 | NDKGGAVYIFMNE | Ν | GSFQKTAS-VVLKGKTDSAFG | 475 |
|                         |     |               |   |                       |     |



calnexin  $\rightarrow$ 



pre- $\alpha$ 3  $\rightarrow$ 



WT α3



A349S  $\alpha 3$ 

| EXON    | FORWARD PRIMERS $5' \rightarrow 3'$ | REVERSE PRIMERS $5' \rightarrow 3'$ | PRODUCT SIZE (bp) |
|---------|-------------------------------------|-------------------------------------|-------------------|
| 1a      | cgtcacatccatcttgctc                 | atccgtgggtctatcttcct                | 460               |
| 1b      | ctccctcctgtcctccttg                 | cgaccgagtagccgaagag                 | 539               |
| 1c      | acgcctgatgctctgtgc                  | gactaccagcgaggtgctta                | 605               |
| 2       | ttttccttgcctgccttac                 | gcacctcacccatacttcag                | 583               |
| 3       | actcactgcccacaaggat                 | gacacacagccacaggaag                 | 601               |
| 4       | gtctctcatccttccctgct                | aagtcatggtggttgctgat                | 659               |
| 5       | ggcaaaatgctcaccaataa                | ttccaagtagggcaagaaag                | 490               |
| 6       | ctactttcttgccctacttgg               | ataaagcetgactgcaaacc                | 487               |
| 7       | atattggcatctccatgtcc                | acatetgeacatectete                  | 541               |
| 8       | ctctgtccctgatgctctg                 | gettetetecatggattace                | 389               |
| 9       | cccagcaggtacagagagac                | gagacaacagagccagacag                | 446               |
| 10      | tettetteatetttgtetgeae              | aatgaggttgggtagagagg                | 372               |
| 11+12   | cagacctgctttgtggactc                | acaccaatagcettecaaac                | 563               |
| 13      | agtaggaagtcgcaatttgg                | catetgeaagttgeteteae                | 483               |
| 14      | atecteaaccaggeacag                  | gcacctggaggagaaagc                  | 405               |
| 15      | aggtgggatggtcagaaac                 | attetecaageageagagae                | 477               |
| 16      | ctctggtctgggccttc                   | ggcctcttctcaccctctac                | 379               |
| 17 + 18 | gtggggtgggggggggggg                 | cagaggagtttgggagatagc               | 481               |
| 19      | gctateteceaaacteetetg               | aaccacetecatettaccaac               | 684               |
| 20      | ctgtggaggatgtaggaagc                | gaggaagaattgggagcag                 | 515               |
| 21      | caacecteteaaceteacte                | gceteateaceteateacae                | 435               |
| 22      | tgtgcatgagtgaaaggaag                | acacatccatgcaaagacac                | 414               |
| 23      | ctggctgacagatcctttg                 | agacaccagaactcctccag                | 382               |
| 24      | agcaggacaaacagcaggt                 | gtgtggtcagaagccagag                 | 457               |
| 25      | cttctgaccaccaccaa                   | cttgcccttgaccttgttc                 | 564               |
| 26      | tctggctttgaggagttctg                | gctctttggcttgttttgg                 | 599               |

## Supplemental Table 1: Primers used for *ITGA3* mutation analysis

## Supplemental table and figures

Supplemental Table 1. Primers used for *ITGA3* mutation analysis.

**Supplemental Figure 1.** Abnormalities in patient kidneys. (A) The upper glomerulus shows extensive mesangiolysis with "free-floating" cross-sections of irregularly widened capillaries. The lower glomerulus has a segmental scar (arrow head). (B) The upper segment of the upper glomerulus contains a cellular crescent (fresh extracapillary proliferation without interposition of silver-positive extracellular matrix, single arrow). The middle glomerulus displays a fibro-cellular lesion of extracapillary proliferation with fine lines of silver-stained extracellular matrix between the epithelioid cells (double arrow). The upper segment of the lower glomerulus shows segmental mesangial expansion with increased cellularity, and thickening and splitting of Bowman's capsule (triple arrow).

**Supplemental Figure 2.** Generation of CD151/ $\alpha$ 3-deficient podocytes. Podocytes were isolated from glomeruli from *Itga3*<sup>flox/flox</sup>;*Cd151*<sup>flox/flox</sup>;*Trp53*<sup>+/-</sup> mice, and the *Cd151* and *Itga3* genes were deleted by adenoviral delivery of Cre recombinase. Cell-surface expression of CD151 and  $\alpha$ 3 was examined by flow cytometry.

**Supplemental Figure 3.** Alignment of the amino acid sequence of  $\alpha$ 3 in different species. The affected residue (alanine 349 in humans) is boxed.

**Supplemental Figure 4.** The A349S mutation does not prevent interaction of the  $\alpha$ 3 precursor with the ER chaperone protein calnexin. Integrin subunits  $\alpha$ 3 (with antibody 29A3) or  $\beta$ 1 (using antibodies 9EG7 or MB1.2) were precipitated from podocyte lysates, and  $\alpha$ 3,  $\beta$ 1, and calnexin were detected by Western blotting.