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The sirtuin family’s role in aging
and age-associated pathologies

Jessica A. Hall, John E. Dominy, Yoonjin Lee, and Pere Puigserver

Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.

The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the
defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neuro-
degeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation
of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age-related
decline. Here we review experimental evidence both for and against this proposal, as well as the implications that
isoform-specific sirtuin activation may have for healthy aging in humans.

Introduction

Human life spans have doubled since the 1800s, albeit not with-
out complication. As average life expectancy increases, so does the
propensity for aging-associated maladies. Part and parcel with this
trend in life span, therefore, has been the quest to manage age-
related disease and extend an individual’s healthy life. To date, the
only successful intervention to significantly slow the aging pro-
cess is caloric restriction (CR). CR extends life span in organisms
ranging from S. cerevisiae to rodents (1). In addition, CR can delay
the onset of numerous diseases associated with aging, such as can-
cer and diabetes, as possibly evidenced in non-human primates
(2, 3). This ability of CR to retard the aging process is dependent,
at least in part, upon activation of the sirtuin family of proteins.
In 1999 it was reported that a sirtuin protein in brewer’s yeast,
silent information regulator 2 (Sir2), could extend life span in
S. cerevisiae (4). Subsequent studies suggested that a similar effect
occurred in worms and flies (5), and a large field of research into
the age-related biology of sirtuins was cultivated. Although recent
reports have questioned the role of sirtuins as direct determinants
of longevity (6), the consensus is that they certainly can influence
the physiological/pathological quality of life. Herein, we review
the role of sirtuins in healthy aging, with particular emphasis on
the implication for sirtuin-targeted therapy in protecting humans
from age-related physiological decline.

Overview of the mammalian sirtuin family

There are 7 mammalian sirtuins, SIRT1-7, which are evolution-
arily united by their highly conserved NAD*-binding, catalytic
domain (7). Despite this commonality, however, a growing body
of evidence suggests that their differences may far outweigh their
similarities. This is highlighted by distinct expression patterns,
catalytic activities, and — ultimately — biological functions. The
mammalian sirtuins have discrete subcellular localizations, with
a subset of sirtuins residing in predominantly nuclear (SIRT1,
SIRT6, and SIRT?7), cytosolic (SIRT2), or mitochondrial (SIRT3,
SIRT4, and SIRTS) compartments (8). Most sirtuins display pro-
tein deacetylase activity, such that they deacetylate internal lysine
residues that are acetylated upon their e-amino groups. Exceptions
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include SIRT4, which is known only for ADP-ribosyltransferase
activity (9), and SIRTS, which has very effective demalonylase and
desuccinylase activity and only weak deacetylase activity (10, 11).

In the case of acetylation, this reversible post-translational
modification quickly manipulates a protein’s activity and regu-
lates processes as diverse as metabolic flux and DNA repair (12).
The specific activation of sirtuins, therefore, would favor an over-
all deacetylated protein state in the cell. Interestingly, dietary
stress, such as that accompanying fasting or CR, can produce
selective protein deacetylation (13-15), although dietary stress
can induce protein acetylation as well. A significant portion of
diet-induced deacetylation has been shown to occur through the
enhanced activity of certain sirtuins (13), suggesting that stress
resistance pathways activated by CR may depend, at least in part,
on sirtuin deacetylase activity.

Among the mammalian sirtuins, SIRT1 has been the most exten-
sively characterized for its role in aging. Although much of the
attention has gone to SIRT1 and its protection from the onset of
chronic diseases, its effect on longevity per se is as of yet uncon-
vincing. Indeed, transgenic mice that overexpress SIRT1 have
similar life spans as controls (16). In contrast, recent work with
SIRT6 suggests that this sirtuin might hold the most potential
for actual life span extension. Mice deficient in SIRT6 show severe
metabolic defects and have shorter life spans (17), whereas SIRT6-
overexpressing male mice (but not female mice) have increased life
spans (18). Additionally, SIRT3 is the only sirtuin for which there
is evidence for an association with human aging; some (but not all)
studies have linked polymorphisms in the SIRT3 genomic locus to
survival in elderly (19-22). Given the dearth of evidence for clear
life span-extending effects for the sirtuin family as a whole, this
Review will focus on the disease-ameliorating potential of the
sirtuin protein family. The promise of sirtuin-directed therapies
can be inferred from data acquired using sirtuin knockout and
sirtuin-overexpressing transgenics, as well as data from putative
small-molecule sirtuin activators and inhibitors, an area of intense
interest and controversy (see ref. 23 for a review).

Disease states

Metabolic dysfunction

Declines in basal metabolic rate and physical activity contribute
to an elevated incidence of insulin resistance, obesity, and meta-
bolic syndrome with age (24). Activation of pathways that restore
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insulin sensitivity and improve the utilization of glucose and fatty
acids would therefore be of benefit to stemming the pathologies
associated with age-related metabolic dysfunction.

SIRTI. Many studies have indicated that SIRT1 is an important
target for mitigating metabolic dysfunction. SIRT1 levels increase
in response to CR, and the enzyme is able to deacetylate a variety
of transcription factors and enzymes involved in central metabo-
lism and energy expenditure (see ref. 25 for a review). Key among
these factors is PPARy coactivator-1a (PGC-1a), a transcriptional
coactivator that regulates expression of metabolic genes involved
in processes such as hepatic gluconeogenesis, fatty acid oxidation,
and mitochondrial biogenesis (26, 27). Of particular importance
to metabolic syndrome, the deacetylation of PGC-1a by SIRT1
enhances PGC-1a activity, yielding increased expression of trans-
porters and catabolic enzymes necessary for the uptake and utili-
zation of free fatty acids (28). The process is most evident during
exercise, which promotes the utilization of fatty acid in skeletal
muscle (29). Consistent with these effects, SIRT1 promotes brown-
ing of adipose tissue by increasing the interaction between PPARY
and PRDM16 (30), a potent inducer of PGC1A expression (31).

Several transgenic models have shown that heightened SIRT1
activity protects against the metabolic derangement associ-
ated with obesity. More specifically, it was found that mild
overexpression of SIRT1 in mice on a high-fat diet (HFD) and
in diabetic db/db mice causes a significant reduction in blood
glucose and plasma insulin levels without significant change in
body weight or fat content (16, 32, 33). A portion of these effects
may be due to the ability of SIRT1 to maintain f§ cell integrity
and function. B Cell-specific overexpression of SIRT1 markedly
improves insulin secretion and glucose tolerance (34). Similar-
ly, pancreatic expression of SIRT1 diminishes p cell death that
has been induced by the pro-diabetic drug streptozotocin (35).
In addition, the protective effects of SIRT1 may occur through
attenuation of inflammatory responses, as SIRT1 overexpression
mitigates HFD-induced hepatic steatosis and adipose tissue-spe-
cific inflammation (33, 36). Conversely, hepatocyte-specific Sirt1
deletion induces hepatic steatosis and inflammation with chronic
HEFD feeding (37) and an age-dependent onset of hepatic steatosis
with normal-diet feeding (38); this suggests that SIRT1 activation
might be useful in treating non-alcoholic fatty liver disease, which
shows a strong age-dependent onset.

Highlighting the promise for the therapeutic potential of SIRT1
activation are studies proclaiming beneficial effects of putative
SIRT1 activators. One such small molecule, the pharmaceutically
engineered sirtuin-activating compound SRT1720 (39, 40), was
shown to improve the overall health and significantly attenuated
the premature death of mice fed a HFD (41). Many of the hallmarks
of metabolic syndrome such as insulin resistance, hepatic steatosis,
and multi-organ inflammation — but not weight gain — were mark-
edly improved by SRT1720 supplementation. In obese humans, 30
days of supplementation with the putative SIRT1 activator res-
veratrol produced mild to moderate improvements in a number
of different clinical parameters including systolic blood pressure,
circulating cytokines, intrahepatic fat content, intramyocellular
lipid content, and muscle mitochondrial oxidative phosphoryla-
tion capacity (42). Nevertheless conflicting results regarding the
mechanism of action of these compounds has resulted in much
controversy over their true mechanism (see refs. 43, 44 for reviews).

Additionally, some evidence suggests that reduced SIRT1 activ-
ity may be desirable for treating certain types of metabolic dys-
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function. Transient knockdown of hepatic SIRT1 improved whole
body insulin sensitivity and reduced elevated hepatic gluconeogen-
esis in two rodent diabetic models (45, 46). In mice with the LDL
receptor deleted, whole body overexpression of SIRT1 improved
glycemia but promoted hepatic lipid production and secretion and
increased the development of atherosclerotic plaques (47). Sirt1*/-
and Sirtl-/- mice were also found to have lower cholesterol levels
and blunted responses to LXR agonists in another study (48).
These data stress the importance of context and tissue specificity
for the potential application of SIRT1-targeted therapy.

SIRT2. Current evidence suggests a role for SIRT2 in regulating
adipose tissue development and function. Whereas SIRT2 expres-
sion is induced in adipose tissue during CR (49), its expression is
significantly blunted in white adipose tissue of obese patients (50).
Targets of SIRT2-mediated deacetylation include the FOXO fam-
ily of transcription factors. SIRT2 deacetylation of FOXO1 leads to
its retention in the nucleus and increases FOXO1-mediated repres-
sion of the master regulator of adipogenesis, PPARG, culminating
in an inhibition of adipocyte differentiation (51, 52). Also, cell-
based assays have suggested a role for SIRT2 in promoting fatty
acid oxidation in a PGC-1a-dependent manner (50).Thus, SIRT2
activation may prove to be protective against obesity, and its role
in metabolic homeostasis deserves further exploration.

SIRT3. Of the mitochondrial sirtuins, SIRT3 is the major deacet-
ylase and the best characterized (53). SIRT3 increases in adipose
tissue, skeletal muscle, and liver during CR or fasting (13, 54-56),
and conversely decreases in response to caloric excess (54, 57-59)
or in diabetic models (60, 61). As such, SIRT3 functions to acti-
vate enzymes important during CR, such as 3-hydroxy-3-methyl-
glutaryl-CoA synthase 2 for generation of ketones (62) and long-
chain acyl-CoA dehydrogenase for oxidation of long-chain fatty
acids (13). SIRT3 also deacetylates and activates components of
the electron transport chain, thereby increasing oxidative phos-
phorylation (57, 58, 63-65). Accordingly, in Sirt3 germline knock-
out mice, a chronic HFD regimen results in lower energy expendi-
ture, greater adiposity, and higher insulin resistance. Additionally,
these mice develop severe hepatosteatosis, increased inflamma-
tory cytokine levels, and higher plasma lipid levels (59). Another
study found that SIRT3 deficiency results in glucose intolerance,
decreased insulin signaling, and increased oxidative stress in skel-
etal muscle (60). Of note, patients with a functional SNP in SIRT3,
specifically rs11246020, which results in a point mutation of its
catalytic domain that decreases activity, have an increased suscep-
tibility to developing metabolic syndrome (59). However, it is still
unknown which tissue(s) are directly responsible for mediating the
effects of SIRT3, and interest was recently refueled by a report of
both muscle-specific and liver-specific Sirt3-/- mice lacking overt
metabolic phenotypes (66).

SIRT4. In contrast to SIRT3, hepatic SIRT4 expression declines
slightly during CR and increases in genetic models of diabetes (9,
55, 67). SIRT4 ADP-ribosylates and inactivates glutamate dehy-
drogenase, which results in decreased insulin release from f cells
(9). Notably, this negative regulation of SIRT4 on insulin secre-
tion opposes the positive regulation mentioned above with SIRT 1.
Likewise, SIRT4 negatively regulates fatty acid oxidation and respi-
ration in hepatocytes and myocytes (67). Cumulatively, these data
suggest reciprocal coordination, in which SIRT4 antagonizes the
metabolically favorable effects of SIRT1 and SIRT3.

SIRTS. SIRTS is only beginning to be appreciated for its role in
metabolism. Carbamoyl phosphate synthetase 1, mitochondrial
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(CPS1), which limits the rate of the urea cycle in detoxification and
disposal of ammonia, is a target of SIRT5-mediated deacetylation
(68) and desuccinylation (10). As such, although SIRTS5-deficient
mice were not found to display overt phenotypes (69), elevated
blood ammonia was detected during a prolonged fast (68), seem-
ingly due to a lack of CPS1 regulation. Other SIRTS targets for
demalonylation and desuccinylation include additional metabolic
enzymes (10), but the biological significance of such modifications
remains to be determined. Future efforts will need to explore these
targets in order to better define the role of SIRTS in metabolism
and age-related diseases.

SIRTG. Of the nuclear sirtuins, SIRT6 is unique for its specific
localization to heterochromatin, where it is best appreciated for
its role in histone modification of metabolically relevant genes.
Indeed, SIRT6 was discovered to negatively regulate glycolytic gene
expression through deacetylation of histone H3 lysine 9 (H3K9) at
their promoters (70). So crucial is this regulation that Sirt6 whole
body knockout mice succumb to severe hypoglycemia around
4 weeks of age (17). Similarly, Sirt6 liver-specific knockout mice
exhibit increased glycolysis and disruption of glucose homeostasis
(71). Interestingly, mice with neural deletion of Sirt6 have normal
glycemia but develop adult-onset obesity, again highlighting the
importance of tissue specificity (72).

Conversely, SIRT6 overexpression protects from diet-induced
obesity, with mice showing increased glucose tolerance and
reduced fat accumulation (73). SIRT6 overexpression also highly
reduces the IGF-1 signaling pathway, together leading to increased
life span in male mice (18). Combined with other non-metabolic
roles of SIRTG, including regulation of the inflammatory path-
way (74), DNA damage response (17, 75), and genomic integrity
(76,77), SIRTG activation provides protection from the onslaught
of metabolic dysfunction associated with aging (i.e., diabetes and

obesity) and perhaps from aging itself.

Cardiovascular disease

Age is one of the major risk factors associated with cardiovascu-
lar disease. Part of this complex phenomenon is the deterioration
of tissues that constitute the heart and its associated vasculature.
This deterioration is aggravated by secondary stresses to the car-
diovascular system from lifestyle changes (i.e., decreased physi-
cal activity), increases in inflammation and oxidative stress, and
metabolic disorders (i.e., insulin resistance). Activation of restor-
ative pathways that could intervene at any level of these dys-
functions could theoretically attenuate the progression of age-
related cardiovascular disease.

SIRTI. The ability of SIRT1 to exert cardioprotective benefits
is dependent upon the tissue in which it is manipulated and the
degree to which its activity is modulated. As mentioned above,
whole body augmentation of SIRT1 activity confers resistance to
many of the cardiovascular sequelae associated with metabolic
syndrome. In the heart, however, the effects of SIRT1 activation
are dependent upon the degree of activity increase. Transgenic
mouse lines overexpressing SIRT1 at low to moderate levels in a
cardiac-specific fashion show reduced myocardial hypertrophy,
interstitial fibrosis, and senescence markers such as p15™&# and
p19ARF (78). Under these same conditions, low-level SIRT1 trans-
geneity confers increased resistance to oxidative stress (78). On
the other hand, transgenic lines possessing high levels of SIRT1
expression have impaired mitochondrial function, lower levels of
ATP, and higher levels of oxidative stress (78).
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Also, activation of SIRT1 in endothelial tissues may be of benefit
in the protection of endothelial cell function with age. Mice with
endothelial-specific SIRT1 overexpression on an Apoe”~ genetic
background exhibit attenuated development of atherosclerotic
lesions (79). Conversely, SIRT1 insufficiency results in greater
foam cell formation and atherosclerotic lesioning (80).

SIRT3. SIRT3 has also been proposed to play a role in aging-
related heart disease. SIRT3-deficient mice show mild cardiac
hypertrophy and interstitial fibrosis at baseline and severe car-
diac hypertrophy in response to hypertrophic stimuli, whereas
SIRT3-overexpressing mice are protected from similar stimuli (81).
Although the exact mechanism for the anti-hypertrophic effects
of SIRT3 remains unclear, some have suggested that the cardiac
pathology of Sirt3 knockout mice stems from an increased activa-
tion of the mitochondrial permeability transition pore (mPTP),
leading to apoptosis of cardiomyocytes (82). SIRT3 deacetylates
and inhibits cyclophilin D, a regulatory component of mPTP, and
cardiomyocytes from Sirt3 knockout mice show an age-dependent
increase in mitochondrial permeability transition (82). These data
suggest that SIRT3 is necessary to prevent mitochondrial dysfunc-
tion and cardiac hypertrophy during aging.

SIRT7. Although SIRT7 lacks extensive characterization, the tip
of the iceberg seems promising. SIRT7-deficient mice develop a
lethal heart hypertrophy, and pS3 has been shown to be a target of
SIRT7 deacetylation, suggesting that in the absence of SIRT7, p53
activation leads to increased apoptosis in the myocardium (83).
Further studies are required to examine whether other SIRT7 tar-
gets are related to cardiovascular function.

Cancer

Based upon statistics from the National Cancer Institute, 54%
of all cancer cases occur in people over the age of 65. This same
cohort of individuals shoulders 70% of all cancer-related deaths. In
this section, we review the literature for a potential role of sirtuin
proteins in attenuating cancer susceptibility in the elderly.

SIRTI. SIRT1 expression is elevated in a wide array of cancers,
including prostate cancers (84), acute myeloid leukemia (85),
colon carcinomas (86), and non-melanoma skin carcinomas (87).
This elevated expression suggests that SIRT1 may be a cancer
promoter. Inhibition of SIRT1, therefore, could theoretically be a
starting point for inducing cell cycle arrest and cause apoptosis in
transformed cells. Indeed, some reports indicate that tempering
the activity of SIRT1 by either genetic or pharmacological means
results in cancer cell death (88-91). Further, the SIRT1 activator
SRT1720 was recently reported to promote metastasis in a breast
cancer mouse model (92). The proposed mechanisms for these
effects are diverse and have been reviewed elsewhere (93).

Other research, however, points to a tumor suppressor role for
SIRT1. Certain cancer types, such as mutant breast cancer 1, early
onset-mutant (BRCA1) breast cancer cells, contain significantly
lower levels of SIRT1 expression than BRCA1 wild-type cells;
restoration of SIRT1 levels in these cells results in inhibition of
tumor growth (94). Overexpression of SIRT1 has also been shown
to reduce the growth rate of fibrosarcoma cells in a tissue allograft
model (95). In other mouse models of cancer, SIRT1 can protect
against the development of intestinal tumors in a beta-catenin-
driven colon cancer model (96), sarcomas, lymphomas, teratomas,
and carcinomas arising from deletion of p53 (97), HFD-induced
hepatocarcinomas (98), and age-associated spontaneous tumor
development (98). It remains to be seen what cellular determi-
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nants underlie SIRT1 being a tumor suppressor under some cir-
cumstances and an oncogenic promoter under others.

SIRT2. Mounting evidence implies a role for SIRT2 in cancer.
SIRT?2 is well appreciated for its regulation of cell cycle progres-
sion (99-101) and chromatin assembly (102, 103). These roles are
best showcased in Sirt2 knockout mice, in which SIRT2 deficiency
leads to tumorigenesis due to failed mitosis complex regulation
and disrupted genomic integrity (104). However, others have
shown that pharmacological inhibition of SIRT2 delays tumor
growth through activation of p53 (91, 105). Further studies will
be required to flesh out these conflicting results and determine the
therapeutic potential of SIRT2-specific targeting in cancer.

SIRT3. Several studies indicate that SIRT3 is a tumor suppressor
(see ref. 106 for review). Important among these are the findings
that SIRT3-deficient mice develop mammary tumors, and embry-
onic fibroblasts from these mice exhibit a malignancy-prone phe-
notype with increased stress-induced superoxide levels and genomic
instability (64). These cellular defects can be rescued by the expres-
sion of SOD2, a target of SIRT3 deacetylation that is involved in
the detoxification of reactive oxygen species (107, 108). Coinciding
with animal data, SIRT3 expression is decreased in many human
cancers, with loss of at least one copy of SIRT3 occurring in 40%
of human breast and ovarian cancers (64, 109). Nonetheless, there
are also reports that SIRT3 overexpression promotes survival and
enhances tumorigenesis, such as with oral cancer, emphasizing the
importance of tumor type (reviewed in ref. 110).

SIRT6. Although the effect of SIRT6 on tumor formation and
growth is a topic still in its infancy, current evidence suggests that
SIRTG6 is important in the preservation of genomic integrity upon
DNA damage and stress stimuli (76, 77, 111). Thus, in addition to
metabolic defects observed in Sirt6 knockout mice, these mice also
have an impaired DNA damage response (17), including genomic
instability upon irradiation. And although Sirt6 transgenic mice do
not show a significant decrease in age-associated tumor formation
(18), SIRT6 overexpression might still serve a protective role against
tumorigenesis, and this avenue deserves further exploration.
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Figure 1

Anticipated effect of isoform-specific sirtuin activation on various age-
related diseases. Based on the current literature, this figure depicts
the potential outcomes associated with individual sirtuin activation
(SIRT1=7). The sirtuin isoforms with substantial data indicating either
a protective or aggravative role for specific age-related diseases are
indicated. There are specific disease states in which there is significant
uncertainty in the literature as to whether activation or inhibition of the
sirtuin is more beneficial, and these instances are thus classified as
“disputed.” In the case of cancer, the tumor-suppressor role of certain
sirtuin proteins is dependent on cell and tissue type.

SIRT7. An additional deacteylation target of SIRT7, H3K18, was
recently identified (112). Importantly, hypoacetylation at H3K18
has been linked to aggressive cancer phenotypes (113). Indeed,
SIRT7 knockdown reduces tumor growth of human cancer cell
xenografts in mice (112). It will be important for future studies to
analyze Sirt7 knockout mice for their resistance to tumor growth.

Neurodegeneration

Although the body’s organ systems experience a general decline in
function with age, perhaps the most emotionally and physically
devastating is the decline associated with the CNS. Impaired
CNS function, with its effects on cognition, memory, hearing,
balance, and motor control, can lead to a rapid loss of quality of
life. The ability of sirtuins to ameliorate CNS-specific disorders
is still a very inchoate area of investigation, yet its initial findings
offer significant promise.

SIRTI. Progress in understanding the neurobiological benefits
of SIRT1 has been focused on its ability to alter animal models
of different human CNS diseases. In mouse models of Alzheim-
er’s disease, brain-specific knockout of Sirt] caused a significant
elevation in B-amyloid plaques and reactive gliosis (114). On the
other hand, overexpression of SIRT1 caused a decrease in these
parameters, possibly due to deacetylation by SIRT1 of retinoic acid
receptor-f3 (114). Also, SIRT1 conferred neuroprotection in three
different mouse models of Huntington’s disease (115, 116). Brain-
specific deletion of SIRT1 exacerbated the neurotoxicity associ-
ated with mutant huntingtin protein, whereas overexpression of
SIRT1 attenuated the toxicity. The neuroprotective effect of SIRT1
in Huntington’s disease models appears to be mediated by the
activation of multiple targets, including CREB, CREB regulated
transcription coactivator 1, and FOXO3a. In a mouse model of
Parkinson’s disease, overexpression of SIRT1 reduced a-synuclein
aggregates, lessened gliosis, and attenuated lethality (117). Knock-
out of Sirtl, however, significantly increased aggregates, worsened
gliosis, and hastened mortality (117). Deacetylation and activation
of the heat shock factor HSF1 appears to be the major mechanism
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whereby SIRT1 confers protection against this mouse model of
Parkinson’s disease. Lastly, in a mouse model of injury-induced
axonal degeneration, NAD" biosynthesis and its support of SIRT1
activity was shown to be essential in preventing axonal loss follow-
ing axonal transection (118, 119).

SIRT2. Inhibition of SIRT2 by pharmacological and genetic
means in invertebrate and cell culture models has suggested
potential neuroprotective benefits. Two such studies demonstrat-
ed reduction of SIRT2 to be protective in fly and worm models
of Huntington’s disease by increasing photoreceptor neuron sur-
vival (120) and decreasing sterol biosynthesis (121). Partial rescue
of toxicity was also observed in a Drosophila model of Parkinson’s
disease (122). Unfortunately, however, Sirt2 knockout mice lacked
a remarkable phenotype related to neurodegeneration (123), call-
ing into question the effect of SIRT2 on neuronal health in mam-
mals. Interestingly, data from mice with Schwann cell-specific
Sirt2 deletion or overexpression have revealed a role for SIRT2 in
proper myelination of the peripheral nervous system, with impli-
cations for SIRT2 in demyelinating neuropathies (124).

SIRT3. Age-related hearing loss is a common disorder of the
elderly that involves oxidative damage to neurons and ciliated cells
of the cochlea. A recent study established that the ability of CR to
slow the progression of age-related hearing loss is SIRT3 depen-
dent (125). The authors suggested that SIRT3 mediates this effect
through deacetylation of isocitrate dehydrogenase 2 and protec-
tion of oxidative stress-induced cell death. Whether SIRT3 exerts
protection in other neuronal cell types remains to be seen.

Conclusion

Sirtuin proteins bolster stress resistance of mammalian cells by
virtue of their ability to remodel metabolism, alter inflammatory
responses, and enhance the ability to cope with oxidative species.
Because many of these same pathways are pathologically altered
in the aged, activation of sirtuins represents a feasible means for
attenuating age-related decline in physiological function (see
Figure 1). This directive is in part supported by promising pre-
liminary studies with putative SIRT1 activators, such as SRT1720.
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