

Supplemental Figure 1. Adenosine receptor ($A_{2A}R$, $A_{2B}R$, $A_{1}R$ and $A_{3}R$) mRNA expression in kidney DCs from sham or IRI mice following 24 h reperfusion. Kidney CD45⁺CD11c⁺7AAD⁻ DCs were sorted, and mRNA levels were measured by real-time PCR. N=6.

Suppl. Figure 2

Supplemental Figure 2 Adoptive transfer of DC- α GC-ATL313 prevents the increase in neutrophil infiltration into kidney after IRI. Gating on CD45⁺7AAD⁻ live leukocytes, CD11b⁺GR-1⁺ infiltrating kidney neutrophils were measured by FACS. The increase in neutrophil infiltration in the kidney of WT mice subjected to sub-threshold IRI following activation of the DC-NKT axis by adoptive transfer of WT DC- α GC was inhibited if the DCs were incubated with ATL313 (1 nM) during priming with α GC (DC- α GC-ATL313) then washed out prior to adoptive transfer. This protective effect of ATL313 was not observed with adoptive transfer of DC-αGC-ATL313 from Adora2a^{-/-} mice.

Supplemental Figure 3

Supplemental Figure 3. (**A**) Representative morphology (by H&E staining) of kidney outer medulla 24 h after renal artery occlusion. Insets show a 2X magnified image. Mice received either PBS, DC, DC- α GC or DC- α GC-ATL313 pre-treatment 2 days prior to 35 min renal artery clamping, and mouse kidneys were removed after 24 h of reperfusion. Scale bar = 100 μ m. (**B**) Administration of DC- α GC-ATL313 24 h after moderate kidney ischemia did not protect kidneys from injury. Plasma creatinine was measured after 24 or 48 h of reperfusion. Values are mean ± SEM N.S., not significant. N=3-5.

Suppl. Figure 4

Supplemental Figure 4. No changes in co-stimulatory molecule (IA, ICOS and B7-H1) or CD1d expression on DC- α GC-ATL313. The experimental process was similar to Figure 5. Representative flow cytometry histogram of CD1d, IA, ICOS and B7-H1 from gated CD11c⁺ BMDC. N=3 experiments.

В

Supplemental Figure 5. IL-10- producing cells detected by FACS. Similar to Figure 3, IL-10-GFP reporter (X-Vert) mice received either PBS or DC- α GC-ATL313 2 days prior to moderate kidney IRI surgery. **(A)** Mice splenocytes were collected and stained with CD11c, B220, CD11c, CD4 and CD8. Gating on the live leukocyte population, leukocyte subpopulations (X-axis) were plotted with IL-10-GFP (Y axis). **(B)** Mean Fluorescence Intensity (MFI) of IL-10 from spleen B220⁺ and CD11c⁺ cells . N=3-8. *p<0.05.

Supplemental Table 1. Quantitative real-time PCR primers

Gene	5' to 3' sequence
Rps29 f	GATCCGCAAATACGGGCTGAACAT
Rps29 r	GACTAGCATGATCGGTTCCACTTG
Adora1 f	CTCTGAAGAGATGCCATGGAACAG
Adora1 r	CTCAGAGAACAGCCAGGAATGATG
Adora2a f	ACCTGCAGAACGTCACCAACTTCT
Adora2a r	AGCCAAGAGGCTGAAGATGGAACT
Adora2b f	CTGGGACACGAGCGAGAG
Adora2b r	GCTGGTGGCACTGTCTTTAC
Adora3 f	GTGAGTTCTCTGGACTGTTGTGAC
Adora3 r	GATGTAGGTGATGTTCAGCCAGTC
<i>ll10</i> f	TGAATTCCCTGGGTGAGAAGCTGA
<i>ll10</i> r	TGGCCTTGTAGACACCTTGGTCTT
Foxp3 f	CACCCAGGAAAGACAGCAACC
<i>Foxp</i> 3 r	GCAAGAGCTCTTGTCCATTGA

f - forward primer, r – reverse primer