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Calcium cycling proteins and heart failure:
mechanisms and therapeutics

Andrew R. Marks

Department of Physiology and Cellular Biophysics and The Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine,
College of Physicians and Surgeons of Columbia University, New York, New York, USA.

Ca?*-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contrac-
tion. Ca?* cycling refers to the release and reuptake of intracellular Ca?* that drives muscle contraction and relaxation.
In failing hearts, Ca?* cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhyth-
mias. The key defects in Ca?* cycling occur at the level of the sarcoplasmic reticulum (SR), a Ca?" storage organelle
in muscle. Defects in the regulation of Ca?* cycling proteins including the ryanodine receptor 2, cardiac (RyR2)/
Ca?" release channel macromolecular complexes and the sarcoplasmic/endoplasmic reticulum Ca?* ATPase 2a
(SERCA2a)/phospholamban complex contribute to heart failure. RyR2s are oxidized, nitrosylated, and PKA hyper-
phosphorylated, resulting in “leaky” channels in failing hearts. These leaky RyR2s contribute to depletion of Ca?*
from the SR, and the leaking Ca?* depolarizes cardiomyocytes and triggers fatal arrhythmias. SERCA2a is downregu-
lated and phospholamban is hypophosphorylated in failing hearts, resulting in impaired SR Ca?* reuptake that con-
spires with leaky RyR2 to deplete SR Ca?*. Two new therapeutic strategies for heart failure (HF) are now being tested
in clinical trials: (a) fixing the leak in RyR2 channels with a novel class of Ca?*-release channel stabilizers called
Rycals and (b) increasing expression of SERCA2a to improve SR Ca?* reuptake with viral-mediated gene therapy.
There are many potential opportunities for additional mechanism-based therapeutics involving the machinery that

regulates Ca?* cycling in the heart.

Excitation-contraction coupling

With each beat of the heart, Ca?" is released from the sarcoplas-
mic reticulum (SR) via the ryanodine receptor 2, cardiac (RyR2),
raising the cytosolic Ca?" concentration about ten-fold (~1 uM)
and activating cardiac muscle contraction (Figure 1). The Ca?* is
then pumped back into the SR by the sarcoplasmic/endoplasmic
reticulum Ca?" ATPase 2a (SERCA2a), lowering the cytosolic Ca?*
concentration to baseline levels (~100 nM) and causing relax-
ation. The Ca?* release and reuptake cycle is initiated by the action
potential, an electrical signal that depolarizes the plasma mem-
brane and the specialized invagination called the transverse tubule
(T tubule). Voltage-gated Ca?* channels on the T tubule are acti-
vated by depolarization and allow a small amount of Ca?* to run
down its concentration gradient from mM external Ca?* concen-
tration to nM internal Ca?* concentration. This entering Ca?*
binds to and activates RyR2 channels, which release Ca?* stored at
high concentration (in the millimolar range) in the SR. The Ca?*
binds to troponin C, allowing actin-myosin cross-bridging and the
thick and thin filaments of the sarcomere to slide past each other,
shortening the sarcomere and causing cardiac muscle contraction.

Heart failure

Heart failure (HF) is the leading cause of mortality and morbidity
in developed countries. The incidence of HF continues to increase
after age 65, affecting nearly 1in 100 individuals (1). This is despite
substantial advances in the care of patients, brought about by cor-
onary care units and the development of devices for the treatment
of HF including biventricular pacing and left ventricular assist
devices (LVADs) (2). The most common cause of HF in developed
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countries is atherosclerosis and concomitant ischemic heart dis-
ease. Other causes include hypertension (which leads to hyper-
trophy that can degenerate to dilated cardiomyopathy and HF),
dilated non-ischemic cardiomyopathies, and much rarer genetic
causes. While HF initially involves the myocardium, resulting in
decreased cardiac performance, it rapidly affects multiple organs
including, most prominently, the neurohormonal, circulatory, and
renal systems. Indeed, patients with HF have chronic activation
of the sympathetic nervous system, which results in a maladap-
tive attempt to improve cardiac function. Moreover, 3-adrenergic
agonists or phosphodiesterase (PDE) inhibitors do increase con-
tractility by increasing cAMP and increasing Ca?* release, but they
also increase mortality. In fact, blocking neurohormonal pathways
is the focus of current HF therapy, and while this improves surviv-
al, it is limited by side effects and the requirement to titrate drugs
to physiological parameters such as heart rate (HR) and blood
pressure (3). Additional current therapies are aimed at reducing
the symptoms of HF (e.g., diuretics for pulmonary and peripheral
congestion), but they do not inhibit HF progression.

The search for novel therapeutics for HF has led investigators to
examine the mechanisms underlying HF with the hope that this
approach will uncover potential therapeutic targets to slow HF
progression, improve quality of life, and reduce mortality.

Much attention has been paid to understanding the role of defects
in Ca?" regulation in HF (4). This is because, as noted above, Ca?*
is the signal that regulates cardiac muscle contraction. Cardiac con-
tractility is determined by the amplitude and kinetics of Ca?* cycling,
which in turn are regulated by phosphorylation and dephosphoryla-
tion of key proteins involved in excitation-contraction (EC) coupling
by kinases and phosphatases. Stress-induced activation of G protein-
coupled B-adrenergic receptors (B-ARs) activates adenylyl cyclase,
which in turn leads to cAMP production and PKA activation. PKA
phosphorylates many proteins in cardiac muscle, including those
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involved in EC coupling: the L-type Ca?* channel, RyR2, and phos-
pholamban (Figure 2), as well as troponin I, myosin binding protein
C, and protein phosphatase inhibitor-1. PKA phosphorylation of
these proteins (e.g., RyR2) results in increased HR as well as increased
amplitude and velocity of Ca?* release and reuptake and enhanced
contractility (5). Whereas PKA is the “on switch” for cardiac HR and
contractility, the off switches are the protein phosphatases, includ-
ing PP1 and PP2A, as well as PDE4D3, which hydrolyzes cAMP (6).

It is now generally accepted that defective SR Ca?* handling plays
an important role in HF pathophysiology (7). This defective SR Ca?*
handling is characterized chiefly by leaky RyR2 channels, due to
stress-induced dissociation of the stabilizing RyR2 subunit calsta-
bin2 (also known as FKBP12.6) resulting in a diastolic SR Ca?* leak,
reduced SR Ca?* content, and decreased Ca?* transient (6-10). Com-
pounding this problem is impaired SR Ca?" uptake due to reduced
activity of SERCA2a, as a consequence of both reduced SERCA2a
expression and increased inhibition of the pump by phospholamban
(11). Thus, these two major players in cardiac EC coupling, the SR Ca?*
release channel (RyR2) and the SR Ca?" uptake pump (SERCA2a),
conspire to deplete the SR of Ca?* and lead to impaired cardiac con-
tractility (4). Not surprisingly, therefore, both the RyR2 leak and the
impaired uptake have been targeted with novel therapeutics, both of
which are now undergoing clinical testing in HF patients.

Ca?* signaling defects in HF: leaky RyR2 channels,
decreased SR Ca?* content, and reduced transients
Over 20 years ago, reports of reduced Ca?* transient amplitude,
increased Ca?* transient duration, prolonged Ca?* transient decay
time, and more recently reduced SR Ca?* load suggested that a
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Figure 1

Ca?* cycling in cardiomyocytes and regulation by PKA. EC coupling in
the heart starts with depolarization of the T tubule, which activates volt-
age-gated L-type Ca?* channels (LTCCs) in the plasma membrane. Ca2*
influx via LTCCs triggers Ca?* release from the SR via RyR2 (SR Ca?*
release channel). During systole, the free intracellular Ca2+ concentra-
tion increases ten-fold from ~100 nM to ~1 uM, which enables muscle
contraction. The f3-AR signaling pathway can increase the Ca?* transient
by activating the trigger (LTCC), release (RyR2), and uptake (SERCA/
phospholamban [SERCA/PLN]) pathways. Catecholamine activation of
B-ARs allows for the activation of adenylate cyclase (AC), mediated by
specific G proteins (Gs), and the generation of cAMP, which in turn acti-
vates PKA. Relaxation occurs after intracellular Ca2+ is pumped out of
the cytoplasm by SERCA2a, which is regulated by phospholamban. In
addition, Ca2* is extruded from the cell by the sarcolemmal NCX. RyR2
is a macromolecular complex comprised of four RyR2 monomers, PP1-
spinophilin, PP2A-PR130, PKA-PDE4D3-mAKAP, calstabin2, CaMKII,
and calmodulin. Calsequestrin regulates luminal SR free Ca2*, and junc-
tin and triadin help maintain the integrity of the T tubule—SR junction.
B-ARK, p-AR kinase.

decrease in systolic Ca?* transient amplitude secondary to reduced
SR Ca?* stores was responsible for the decreased contractility and
reduced cardiac output in HF (12). Moreover, aberrant diastolic
release of SR Ca?* can generate a transient inward current that
causes delayed afterdepolarizations (DADs) (10, 13).

Impaired SERCA2a function and enhanced Na?*/Ca?* exchanger
(NCX) activity have been proposed as causes of reduced SR Ca?*
load in HF (14). However, over the past 12 years the role of a
pathological diastolic SR Ca?" leak via calstabin2-depleted leaky
RyR2 has been recognized as an important contributor to altered
Ca?" handling in HF (5). In failing hearts, the RyR2-mediated Ca?*
leak is caused by the chronic hyperadrenergic state observed in
patients with HF, which in turn induces chronic PKA hyperphos-
phorylation at Ser2808 and oxidation of RyR2, causing depletion
of calstabin2 (5) from the channel complex that destabilizes the
closed state of the channel (Figure 3). The term hyperphosphory-
lation describes RyR2 in which 3-4 of the four RyR2 monomers
are chronically PKA phosphorylated. PKA-hyperphosphorylated/
calstabin2-depleted channels are sensitized to cytosolic Ca?*, lead-
ing to inappropriate Ca?* release during diastole, referred to as a
diastolic SR Ca?* leak. Ca?* leak reduces SR Ca?* stores and acti-
vates the transient inward current (15).

The RyR2 Ca?* leak model of HF is supported by studies dem-
onstrating that: (a) B-adrenergic stimulation causes depletion of
calstabin2 from the RyR2 complex; (b) HF patients have PKA-
hyperphosphorylated and calstabin2-depleted RyR2 (16-23);
and (c) patients whose cardiac function has been normalized by
treatment with LVADs have reduced levels of circulating catechol-
amines (24) and reduced phosphorylation of RyR2 at Ser2809 (35).
Indeed, improved cardiac function in patients treated with LVAD
is associated with restoration of calstabin2 binding to RyR2 (5).

The RyR2 leak is caused by stress-induced remodeling of the
RyR2 macromolecular complex due to PKA hyperphosphoryla-
tion, nitrosylation, and oxidation of the channel that results in
depletion of calstabin2, phosphatases (25), and PDE4D3 (6) from
the RyR2 channel in HF (7). Depletion of PDE4D3 and phospha-
tases results in elevated levels of cAMP at RyR2 (6) and a decreased
rate of dephosphorylation of a hyperphosphorylated channel,
promoting further PKA hyperphosphorylation (7, 25). The deple-
tion of the channel subunit calstabin2 from the channel results
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in destabilization of the channel closed state and the diastolic SR
Ca?* leak that reduce the SR Ca transient, resulting in impaired
contractility and trigger fatal cardiac arrhythmias (S, 26). Impor-
tantly, the same stress-induced remodeling affects the skeletal
muscle RyR1 complex and contributes to weakened skeletal mus-
cle function and impaired exercise capacity in HF (27, 28).

The discovery of leaky RyR2 in failing hearts also provides a
mechanism to explain the therapeutic efficacy of f-AR blockers in
HF. Indeed, B-blockers inhibit PKA phosphorylation of Ser2808 in
murine RyR2 (Ser2809 in human RyR2) by blocking -ARs, indi-
rectly prevent calstabin2 depletion from the RyR2 complex, and
thereby reduce SR Ca?" leak in HF patients, resulting in improved
contractility and decreased arrhythmogenesis (7, 29, 30).

Multiple animal models have been used to support a role for PKA
hyperphosphorylation of RyR2 in HF progression (31). Genetically
altered mice harboring RyR2 that cannot be PKA phosphorylated
(RyR2-S2808A) were protected against calstabin2 depletion from
the RyR2 complex and HF progression 4 weeks after myocardial
infarction (MI) (32). PDE4D3-deficient mice develop age-depen-
dent cardiomyopathy and arrhythmias, RyR2 PKA hyperphos-
phorylation, and calstabin2 depletion. The crossing of PDE4D3-
deficient mice and RyR2-S2808A mice has been shown to be
protective against HF progression and arrhythmias (6). Transgenic
mice expressing a mutant calstabin2-D37V, which remains bound
to PKA-phosphorylated RyR2 channels, are also protected against
post-MI HF (33). Calstabin2-deficient mice exhibit DADs and exet-
cise-induced ventricular tachycardia (VT) (13), and RyR2s from cal-
stabin2-deficient mice exhibit slightly increased open probability at
baseline that increases substantially when the mice are exercised.
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Figure 2

Defective Ca?+ handling in failing hearts due to sympathetic overactivity.
Chronic activity of the sympathetic nervous system leads to phos-
phorylation of the -AR, activation of 3-AR kinase, and desensitization
of B-ARs. The LTCC is also phosphorylated, and NCX expression is
upregulated. An important contributor to impaired Ca?* handling in HF
is PKA hyperphosphorylation of RyR2. This leads to a higher sensitivity
to Ca?*-induced Ca?* release at low cytoplasmic Ca?* concentrations,
resulting in increased RyR2 open probability at low Ca2* concentrations
and a diastolic SR Ca?* leak. The long-term effect of the diastolic Ca2*
leak is depletion of SR Ca?*+ stores. SERCA2a expression and activity
are decreased in HF, which is linked to phospholamban hypophos-
phorylation. In contrast, NCX expression and activity are upregulated in
HF. Arrows indicate increased or decreased expression or activity in HF.

Arrhythmias: lessons from catecholaminergic
polymorphic VT

Catecholaminergic polymorphic VT (CPVT) is a rare inherited
form of exercise-induced sudden cardiac death (SCD) that occurs
in individuals with structural normal hearts and normal ECGs.
Mutations in RyR2 have been linked to CPVT (13, 34).

We originally reported that RyR2 CPVT mutations reduced the
affinity for calstabin2, resulting in leaky channels during exercise
(13). Treating mice with a Rycal (a novel class of drugs described
below that prevent diastolic SR Ca?" leak via RyR2 channels) has
been shown to prevent exercise-induced depletion of calstabin2
from the RyR2 complex and reduced VT and SCD (9, 13). Calsta-
bin2-deficient and haploinsufficient mice exhibit CPVT (13) but
do not develop HF. Presumably the reason for the lack of cardiac
dysfunction is that, in contrast to the post-MI model, in which
calstabin2 depletion from the RyR2 complex has been shown to
promote HF progression, the calstabin2-deficient mice have oth-
erwise normal cardiac function and are able to compensate for
the chronic diastolic SR Ca?" leak in the absence of a compro-
mised ventricle (e.g., no MI). However, PDE4D3-deficient mice
that have chronic PKA hyperphosphorylation of RyR2 and RyR2-
$2808D mice that mimic chronically PKA-hyperphosphorylated
RyR2 both have calstabin2 depletion from the RyR2 complex, and
both exhibit progressive cardiac dysfunction leading to a dilated
cardiomyopathy in the absence of MI (6). This indicates that the
combination of calstabin2 deficiency plus another insult (e.g.,
PKA hyperphosphorylation of RyR2) is sufficient to cause car-
diac dysfunction in the absence of MI (7). However, the loss of
calstabin2 alone, without another insult to the myocardium, can
be compensated for at baseline, although this causes SCD with
exercise due to leaky RyR2.

Fixing leaky RyR2 channels
Identification of the diastolic SR Ca?* leak via RyR2 as a mecha-
nism underlying HF progression and cardiac arrhythmias has led
to novel therapeutic approaches. JTV-519 (K201), a 1,4-benzothi-
azepine, was noted to have effects on intracellular Ca?* (35) and
cardioprotective effects (36). However, the target was not known
and there was no mechanism of action for JTV-519. Moreover,
JTV-519 was found to inhibit Na*, Ca?*, and K* currents (37, 38).
Using a canine model of pacing-induced HF, Matsuzaki and col-
leagues reported that JTV-519 improved cardiac function (19).
Testing the drug in calstabin2-deficient mice showed that the
ability of JTV-519 to prevent HF progression and fatal cardiac
arrhythmias and improve skeletal muscle function requires stabi-
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Dysfunctional RyR2 in failing hearts. (A) The RyR2 macromolecular complex includes four identical RyR2 subunits (numerals 14 indicate the
four monomers). Each RyR2 subunit binds one calstabin2 (also known as FKBP12.6) as well as mAKAP, to which PKA catalytic and regulatory
subunits and PDE4D3 are bound; PP2A and its targeting protein PR130; and PP1 and its targeting protein sphinophilin (accessory molecules are
only shown for one of the four RyR2 subunits, except calstabin2, which is shown for all four RyR2 subunits). The f-adrenergic signaling pathway
can activate PKA through the second messenger cAMP. (B) In HF, PKA hyperphosphorylation of Ser2809, due to reduced PDE4D3, PP1, and
PP2A levels in the RyR2 macromolecular complex, depletes calstabin2 from the RyR2 channel complex. The functional effect of these changes
in the macromolecular composition of RyR2 is a pathological increase in Ca2*-dependent activation of RyR2 and depletion of SR Ca?* stores, as
well as functional uncoupling of RyR2 from their neighboring channels. Ca?* leak due to abnormal RyR2 channel openings may be prevented by
treatment with 3-blockers (BBs), which interfere with the upstream B-AR signaling pathway, or with Rycals, which selectively increase the binding

affinity of calstabin2 to PKA-phosphorylated and oxidized RyR2.

lization of the closed state of RyR2 by calstabin2 (28, 39). More-
over, JTV-519 had no effect on the gating properties of normal
RyR channels and no effects in healthy dogs and mice (9).

My laboratory generated many derivatives of the 1,4-benzothi-
azepine JTV-519 and have developed a novel class of Ca?* release
channel stabilizers known as Rycals. An orally available Rycal,
S107, improves skeletal muscle force generation and exercise
capacity, reduces arrhythmias, and improves muscle function in
mice with Duchenne muscular dystrophy by reducing pathologic
SR Ca?* leak in cardiac and skeletal muscle (7, 9, 40-43). Rycals
are protective against post-MI HF progression (7, 44) and have
been shown to suppress VT/ventricular fibrillation (VT/VF) and
SCD in murine models of human CPVT. S107 also raises the sei-
zure threshold in mice with leaky neuronal RyR2 channels and
improves exercise capacity in mouse models of sarcopenia (age-
related loss of muscle function) (6, 9, 10, 34, 41).

Dantrolene, a drug used to prevent malignant hyperthermia in
patients with mutations in RyR1 who have been exposed to vola-
tile anesthetics, has been proposed to have therapeutic potential
in heart disease (45). The Na* channel antagonist flecainide pre-
vents ventricular arrhythmias in patients with CPVT mutations
(46). Based on single-channel data, flecainide has been proposed
as an open channel blocker of RyR2. However, it is unlikely that
this could be the mechanism of its anti-arrhythmic activity in
CPVT, since blocking the open state of RyR2 would seriously
impair cardiac contractility. Moreover, the leak that triggers the
fatal ventricular arrhythmias in CPVT is a diastolic SR Ca?* leak
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that occurs when the channel is supposed to be tightly shut, not
open (8, 13, 39). Finally, it is more likely that some other activ-
ity of flecainide, such as its well-documented sodium channel
blockade (47), is the mechanism underlying its anti-arrhythmic
actions in CPVT.

Focus on the pump

SERCA activity and protein levels are decreased in failing hearts
(11). Mice that are haploinsufficient for the SERCA2a gene
(Atp2a2) develop accelerated HF progression compared with
wild-type controls (48). However, patients with an ATP2A2
mutation and haploinsufficiency (Darier disease) do not have
cardiac dysfunction (49). Nevertheless, restoration of normal
levels of SERCA2a has been targeted as a novel therapeutic for
HF (4). Phospholamban controls the affinity of SERCA2 for Ca?*.
Unphosphorylated phospholamban inhibits SERCA2 Ca?* affin-
ity, and phosphorylation by PKA and Ca?*/calmodulin-dependent
protein kinase II (CaMKII) relieves this inhibition and results in
enhanced SR Ca?* uptake. However, a human mutation in phos-
pholamban results in severe dilated cardiomyopathy (50).

Increasing SR Ca?* uptake

Both SERCA overexpression and phospholamban inhibition
have been targeted as therapeutic strategies for HF. Cardiac-spe-
cific expression of SERCA2a was shown to improve contractility
(51). However, results regarding arrhythmias are controversial.
Chen et al. reported increased arrhythmias leading to mortality
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after MI in transgenic rats (52), whereas decreases in ventricular
arrhythmias after postischemic injury were reported (53). Ben-
eficial results observed in preclinical testing have led to clinical
trials in patients with HF to enhance SR Ca?" uptake, including
a first-in-human gene therapy trial, Calcium Upregulation by
Percutaneous administration of gene therapy In cardiac Disease
(CUPID), usingan adeno-associated type 1 vector carrying SERCA2a.
In 39 patients with New York Heart Association class III/IV HF,
treatment with the SERCA2a adenovirus resulted in improve-
ment or stabilization in the New York Heart Association class,
Minnesota Living With Heart Failure Questionnaire, 6-minute
walk test, peak maximum oxygen consumption, N-terminal pro-
hormone brain natriuretic peptide levels, and left ventricular
end-systolic volume, as well as decreased frequency of cardio-
vascular events and duration of hospitalizations (54). Further
trials are planned.

Controversies in the field

The diastolic SR Ca?* leak model for HF and arrhythmias first pro-
posed in 2000 (5) has generated great interest and has led to clini-
cal trials for HF and arrhythmias as noted above. Indeed, many lab-
oratories have examined aspects of our findings. While essentially
all of our findings have been reproduced by others (16, 17, 19-23,
55-57), controversy surrounding our work has emerged over the
years, with reports challenging our studies as summarized recently
(58). I have previously addressed this controversy and pointed out
that most of the differences are based either on opposite interpre-
tations of the same findings or on profound differences in experi-
mental approach (59).

We originally reported that RyR2s are PKA hyperphosphory-
lated in human and canine failing hearts (5) and defined PKA
hyperphosphorylation as phosphorylation of 3-4 of the four
PKA sites (Ser2808) in the RyR2 homotetramer (60, 61). We
also reported that PKA hyperphosphorylation of RyR2 was
associated with depletion of the stabilizing subunit calstabin2
from the channel (there are four calstabin2 bound to each
RyR2 channel, again one per monomer; ref. 5) and that this
renders the channel “leaky,” meaning that at diastolic cytosolic
Ca?* concentration (~100 nM) when the RyR2 channel should
be tightly closed, the PKA-hyperphosphorylated, calstabin2-
depleted channels are not tightly closed; that is, HF RyR2
channels have increased single-channel open probability when
recorded in planar lipid bilayers (S). This results in a diastolic
SR Ca?* leak that depletes SR Ca?", contributing to impaired
contractility and HF progression, and provides signals that lead
to membrane depolarization and triggering of fatal ventricular
arrhythmias in failing hearts (13, 34).

Alternative mechanisms have been proposed to explain SR Ca?*
leak in HF. CaMKII®J levels are elevated in human HF (62), and
there is an increase in CaMKII-dependent phosphorylation of
RyR2 in HF. The observation that mice expressing the CaMKII
inhibitory peptide AC3-I are protected against HF led to the pro-
posal that CaMKII inhibitors may prevent HF progression (63).
It has been reported that PKA hyperphosphorylation of RyR2 is
involved in ischemic (post-MI) but not in non-ischemic (aortic
banding) cardiomyopathy, and that CaMKII phosphorylation
of RyR2 is the mechanism for the leak (64). The aortic banding
model is a hypertrophy model in which cardiac function is initial-
ly increased and later decreases. It is possible that elevated CaMKII
phosphorylation of RyR2 is associated with the hypertrophy.
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Moreover, we developed genetically altered mice that harbor
RyR2 that cannot be phosphorylated by CaMKII (RyR2-S2814A)
and showed that they were not protected against post-MI HF pro-
gression (65). Instead, RyR2 CaMKII phosphorylation is required
for the rate-related increase in contractility (65). CaMKII is Ca?*
activated and is exposed to more Ca?* at higher HRs, resulting in
increased CaMKII phosphorylation of RyR2, increased SR Ca?*
release, and increased contractility (known as the Bowditch phe-
nomenon) (65). HR is typically elevated in HF due to increased
levels of catecholamines, and thus CaMKII activation during HF
is likely a result of increased HR.

We originally reported that PKA hyperphosphorylation of RyR2
causes depletion of calstabin2 from the RyR2 complex (5). We sub-
sequently observed that oxidation and nitrosylation of RyR2 also
cause depletion of calstabin2 from the RyR2 complex, and that the
combination of all three deplete nearly all of the calstabin2 from
the channel complex (7, 44). Some of the divergent results report-
ed in the literature concerning the effects of PKA phosphorylation
on calstabin binding to the channels could be due to variations in
the state of oxidation of the channels. For example, we found that
when RyR2-52808D channels were expressed in HEK cells, there
was progressive oxidation of the channel, such that the binding
of calstabin2 to the channel decreased each day the transfected
cells were in culture (7). This progressive oxidation is likely due to
mitochondrial Ca?* overload resulting from leaky RyR2 channels
and ROS production, which oxidizes the channel (41).

Future directions: new and old pathways, additional
therapeutic targets

It should be evident from Figure 1 that there are many potential
therapeutic targets in the key pathways that regulate Ca?* han-
dling in cardiac muscle. For example, the cardiac RyR2 is a mac-
romolecular signaling complex with multiple enzymes and target-
ing proteins (15), each of which should be explored as a potential
cause of, and therapeutic target for, HF at the cellular, animal, and
human genetic levels (8). Moreover, recent work on mechanisms of
SR Ca?* leak in different disease models has shown the critical role
of nitrosylation of RyR1 in muscular dystrophy (43) and RyR2s
(42) and of interactions between RyR1 and mitochondria in skel-
etal muscle, whereby oxidation of RyR1 causes Ca?" overload of
mitochondria and further oxidation of the channel, worsening the
SR Ca?* leak (41). These studies suggest that targeting molecules
involved in oxidation/nitrosylation and mitochondria should be
explored for future therapeutics.
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