Supplemental Figure 1. BAT transplantation decreases body weight, fat mass, and effects metabolic parameters. (A-D) Male C57BL/6 mice were transplanted with 0.1g BAT into the visceral cavity. Mice were studied at indicated times post-transplantation. (A), Body weight, (B) fat mass, (C) lean mass, and (D) food intake. Data are means \pm s.e.m. Asterisks represent statistically significant differences between 0.1g BAT and control groups (n=8-24/group; *P<0.05). (E-G) At 12 weeks post-transplantation mice were housed in metabolic cages for 48 hours. Data are expressed as AUC for (E) Total energy expenditure, (F) Activity, and (G) RER. Data are means \pm s.e.m. Asterisks indicate a significant difference between 0.1g BAT and control groups (n=9-15/group; *P < 0.05). (H) GTT of mice transplanted with 0.1g BAT into the Visceral and Subcutaneous cavity (n=8/group). (I-J) Quantitation of western blots of BAT transplanted into Visceral and Subcutaneous cavity to determine (I) vascularization measured by CD31 and (J) innervation measured by tyrosine hydroxylase (TH). Data are means \pm s.e.m. (n=6/group; **P<0.01). (K) GTT of mice receiving autonomous transplanted BAT. Data are means \pm s.e.m. (n=4/group; *P<0.05 0.1g BAT transplant vs. Sham; *P<0.05 autonomous BAT transplant vs. Sham).

Supplemental Figure 2. BAT transplantation increases visceral white adipose tissue GLUT1, decreases adipocyte size, and does not change histology of heart. A, Mice were transplanted with 0.1g BAT or Sham-operated and GLUT1 was measured 12 weeks post-transplantation. GLUT1 protein was significantly increased in the visceral WAT of the mice transplanted with 0.1g BAT compared to Sham 12 weeks post-transplantation. Data are means ± s.e.m. (n=8/group; ***P<0.001). **B-C**, Basal glycogen content was significantly increased in mice transplanted with 0.1g BAT compared to Sham-operated mice when normalized per mg of tissue weight (B), and trended to be increased when normalized for total fat mass (C) (P=0.07). Data are means ± s.e.m. (n=5/group; **P<0.01). (**D-F**) Mice were transplanted with 0.1g BAT

or were Sham-operated and 12 weeks following transplantation hemotoxylin and eosin (H&E) staining of visceral WAT was performed in (D) adipocyte size was measured on the H&E slides with ImageJ software with three sections of three slides per animal. Sham and (E) 0.1g BAT-transplanted mice and (F). Data are means ± s.e.m. (n=6/group,***P*<0.01). (G) Cross sections of the hearts of mice that were either Sham-operated or transplanted with 0.1g BAT were taken and H&E stains were performed 12 weeks post-transplantation. No difference was observed in general heart histology or morphology between groups (n=6/group).

Supplemental Figure 3. Concentration of FGF21 in $\emph{Il-6}^{-2}$ **mice. (A-B).** FGF21 was measured in the liver of 12-wk old wild-type (WT) and $\emph{Il-6}^{-2}$ mice at room temperature (A) and serum FGF21 was measured after 24h cold exposure (4 0 C) (B). Data are means \pm s.e.m. (n=3-6/group; *P<0.05)

Supplemental Figure 4. Characterization of transplanted (transplanted) BAT. (A-B) At 12 weeks post-transplantation, awake mice were housed at 4°C and body temperature measured. Data are means ± s.e.m. (n=6/group; *P<0.05 compared to Sham). (C-D) H&E stains of transplanted BAT at 2 and 12 weeks post-transplantation. (C) Arrows indicate the presence of some multilocular droplets at 2 weeks, which are absent at 12 weeks. (D) H&E staining of endogenous BAT from Sham and BAT-transplanted mice. (E) Tyrosine hydroxylase was measured by qPCR. (n=6/group). (F-G), Immunofluorescence of transplanted BAT 12 weeks post-transplantation of (F) tyrosine hydroxylase and (G) UCP1. Data are displayed with (+) and without (-) primary anitbody. (H) Glucose uptake in transplanted BAT from mice transplanted with 0.1g or 0.4g BAT. (n=6/group; *P<0.05 compared to Basal).

Supplementary Table 1. Muscle and liver triglyceride content. Mice were sham-operated (Sham) or transplanted with 0.1g BAT and studied 12 weeks post-transplantation. Data are means \pm s.e.m. (n=5/group).

	Sham	0.1g BAT	P Value
Muscle Triglycerides (mg/g)	12.4 ± 1.3	10.1 ± 0.6	P=0.12
Liver Triglycerides (mg/g)	26.7 ± 2.9	21.9 ± 2.9	P=0.30

Supplementary Table 2. Blood pressure and heart rate. Mice were sham-operated (Sham) or transplanted with 0.1g BAT and studied 12 weeks post-transplantation. Data are means \pm s.e.m. (n=12/group).

	Sham	0.1g BAT	P Value
Resting Heart Rate (beats/min)	612 ± 18	625 ± 22	P=0.66
Systolic Blood Pressure (mmHg)	102 ± 2	106 ± 3	P=0.27
Diastolic Blood Pressure (mmHg)	74 ± 3	78 ± 2	P=0.32

Supplementary Table 3. Circulating hormone and lipid levels. Mice were sham-operated (Sham) or transplanted with 0.1g or 0.4g BAT and studied 12 weeks post-transplantation. Data are means \pm s.e.m. (n=23, 23, and 9 for Sham, 0.1g BAT, and 0.4g BAT). Asterisks indicate statistical significance compared to Sham (*P<0.05, **P<0.01).

	Sham	0.1g BAT	0.4g BAT	P Value
Insulin (ng/mL)	0.61 ± 0.13	0.37 ± 0.06 *	0.38 ± 0.05 *	P=0.03
Cholesterol (mg/dL)	132 ± 12	104 ± 6*	121 ± 10	P=0.04
Triglycerides (mg/dL)	83.0 ± 20	66.7 ± 7.2	71.1 ± 9.8	P=0.67
Free Fatty Acid (mEq/mL)	0.74 ± 0.13	0.54 ± 0.04	0.51 ± 0.09	P=0.28
Adiponectin (μg/mL)	10.6 ± 1.1	8.9 ± 1.0	8.2 ± 1.4	P=0.27
Leptin (ng/mL)	9.8 ± 0.9	$6.4 \pm 0.7**$	4.5 ± 0.8**	P=0.007
T3 (ng/mL)	1.7 ± 0.5	1.4 ± 0.1	n.d.	P=0.68
TNF-a (pg/mL)	16 ± 4	13 ± 3	14 ± 5	P=0.86
Norepinephrine (ng/mL)	2.0 ± 0.3	4.3 ± 0.6**	$3.3 \pm 0.6*$	P=0.01

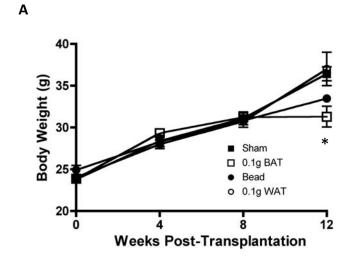
Supplementary Table 4. Characterization of endogenous brown adipose tissue and transplanted brown adipose tissue. Citrate synthase are results of enzyme activity assay; all other data are protein expression determined by Western blotting. Mice were sham-operated (Sham mice) or transplanted with 0.1g BAT (BAT mice) and studied 12 weeks post-transplantation. Data are mean \pm s.e.m. (n=4-6/group; *P<0.05, **P<0.01). Asterisks indicate statistical significance compared to endogenous BAT.

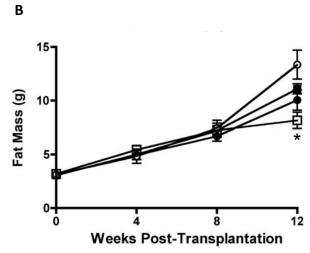
	Endogenous BAT		Transplanted BAT	
	Sham mice	BAT mice		P Value
Citrate Synthase (nmol/mg/min)	2641 ± 103	2590 ± 46	1135 ± 27**	P=0.0001 vs. endogenous
Glut1 (A.U.)	17.9 ± 0.9	18.3 ± 0.6	19.4 ± 0.8	P=0.70
Glut4 (A.U.)	16.9 ± 1.1	16.3 ± 1.2	14.2 ± 2.6	P=0.69
UCP1 (A.U.)	39.3 ± 3.9	39.9 ± 5.8	29.8 ± 6.2	P=0.06 vs.
				endogenous
PRDM16 (A.U.)	53.8 ± 2.9	50.6 ± 4.2	$37.0 \pm 1.1*$	P=0.02 vs.
				endogenous
CD36 (A.U.)	16.4 ± 0.6	19.3 ± 0.6	14.1 ± 1.3	P=0.83
ACC (A.U.)	24.7 ± 0.4	26.6 ± 1.5	21.6 ± 3.8	P=0.67
eNOS (A.U.)	39.0 ± 2.7	42.4 ± 2.6	n.d.	P=0.41
Stat3 (A.U.)	19.5 ± 4.0	22.4 ± 3.9	n.d.	P=0.62
pStat3 (A.U.)	13.8 ± 0.6	15.4 ± 2.9	n.d.	P=0.61

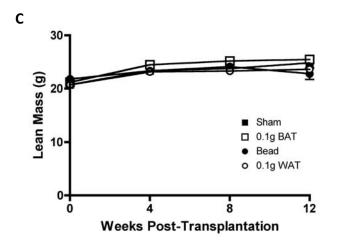
Supplementary Table 5. Characterization of visceral white adipose tissue. Citrate synthase are results of enzyme activity assay; all other data are protein expression determined by Western blotting. Mice were sham-operated (Sham) or transplanted with 0.1g BAT and studied 12 weeks post-transplantation. Data are means \pm s.e.m. (n=4-6/group; *P<0.05, **P<0.01).

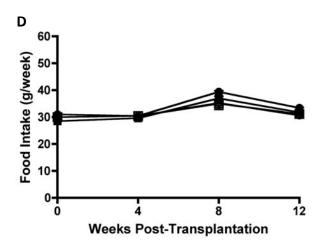
F F		O F))) .
	Sham	0.1g BAT	P Value
Citrate Synthase (nmol/mg/min)	11.6 ± 1.0	18.1 ± 2.0*	P=0.05
Glut1 (A.U.)	6.1 ± 1.2	22.8 ± 4.4**	P=0.01
Glut4 (A.U.)	11.3 ± 0.8	11.8 ± 0.6	P=0.65
UCP1 (A.U.)	11.8 ± 1.3	14.6 ± 0.8	P=0.08
PRDM16 (A.U.)	22.6 ± 1.8	24.6 ± 2.6	P=0.82
CD36 (A.U.)	21.5 ± 1.3	22.5 ± 0.8	P=0.51
FATP1 (A.U.)	7.1 ± 5.3	14.0 ± 1.9	P=0.19
ACC (A.U.)	11.5 ± 6.5	9.3 ± 1.0	P=0.71
COX4 (A.U.)	22.8 ± 0.6	18.3 ± 5.4	P=0.61
eNOS (A.U.)	35.1 ± 0.8	36.8 ± 2.5	P=0.66
Stat3 (A.U.)	15.9 ± 3.8	20.3 ± 1.2	P=0.34
nStat3 (A U)	33.4 ± 10.3	41.9 ± 28.4	P=0.79

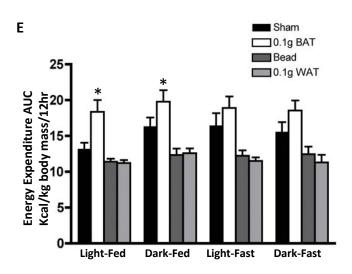
Supplementary Table 6. Characterization of heart tissue. Mice were sham-operated (Sham) or transplanted with 0.1g BAT and studied 12 weeks post-transplantation. Data are protein expression determined by Western blotting, and are expressed mean \pm s.e.m (n=4-6/group; (**P<0.01).

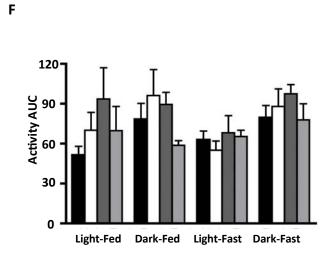

	Sham	0.1g BAT	P Value
Glut1 (A.U.)	15.7 ± 0.4	17.8 ± 0.5**	P=0.008
Glut4 (A.U.)	18.6 ± 0.4	18.5 ± 0.7	P=0.92
UCP1 (A.U.)	14.9 ± 2.2	15.1 ± 0.5	P=0.90
CD36 (A.U.)	17.4 ± 0.2	16.3 ± 2.1	P=0.82
FATP1 (A.U.)	55.0 ± 15.1	69.0 ± 23.4	P=0.59
ACC (A.U.)	18.0 ± 2.1	19.9 ± 0.6	P=0.33
COX4 (A.U.)	24.5 ± 0.1	24.5 ± 0.1	P=0.49

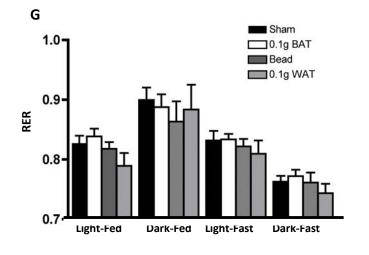

Supplementary Table 7. Characterization of gastrocnemius tissue. Mice were shamoperated (Sham) or transplanted with 0.1g BAT and studied 12 weeks post-transplantation. Data are protein expression determined by Western blotting, and are expressed mean \pm s.e.m. (n=4-6/group).

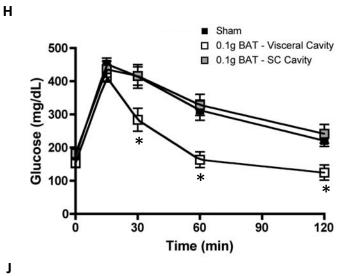

	Sham	0.1g BAT	P Value
Glut1 (A.U.)	22.3 ± 0.4	22.4 ± 0.1	P=0.91
Glut4 (A.U.)	22.2 ± 0.3	22.3 ± 0.1	P=0.89
UCP1 (A.U.)	18.9 ± 1.7	19.1 ± 0.7	P=0.90
CD36 (A.U.)	$12.5 \pm .9$	13.3 ± 1.4	P=0.62
FATP1 (A.U.)	10.1 ± 0.2	10.8 ± 0.5	P=0.07
ACC (A.U.)	19.3 ± 0.9	18.1 ± 1.0	P=0.41
COX4 (A.U.)	24.4 ± 0.3	23.9 ± 0.5	P=0.58

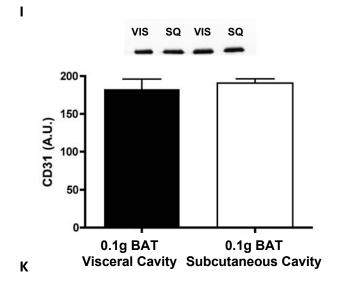

Supplementary Table 8. Characteristics of mice transplanted with transplanted BAT from WT and $II-6^{-/-}$ mice. Mice were sham-operated (Sham) or transplanted with 0.1g WT BAT or 0.1g $II-6^{-/-}$ BAT and studied 12 weeks post-transplantation. Data are mean \pm s.e.m.; (n=6/group). Asterisks represent statistical significance compared to both Sham and 0.1g $II6^{-/-}$ BAT (*P<0.05; **P<0.01) with the exception of norepinephrine, where 0.1g WT BAT vs. 0.1g $II6^{-/-}$ BAT P=0.07.

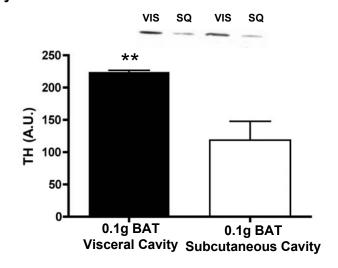

	Sham	0.1g WT BAT	0.1g <i>II6</i> -/- BAT	P Value
IL-6 (pg/mL)	0.2 ± 0.1	8 ± 5*	1.4 ± 0.6	P<0.05
Norepinephrine (ng/mL)	3.4 ± 0.6	6.0 ± 0.4 **	4.9 ± 0.3	P<0.01; P=0.07
% Fat Mass	32 ± 2	28 ± 2*	35 ± 1	P<0.05
% Lean Mass	68 ± 2	72 ± 1*	67 ± 2	P<0.05

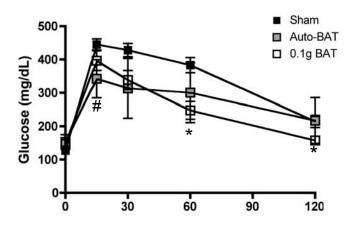


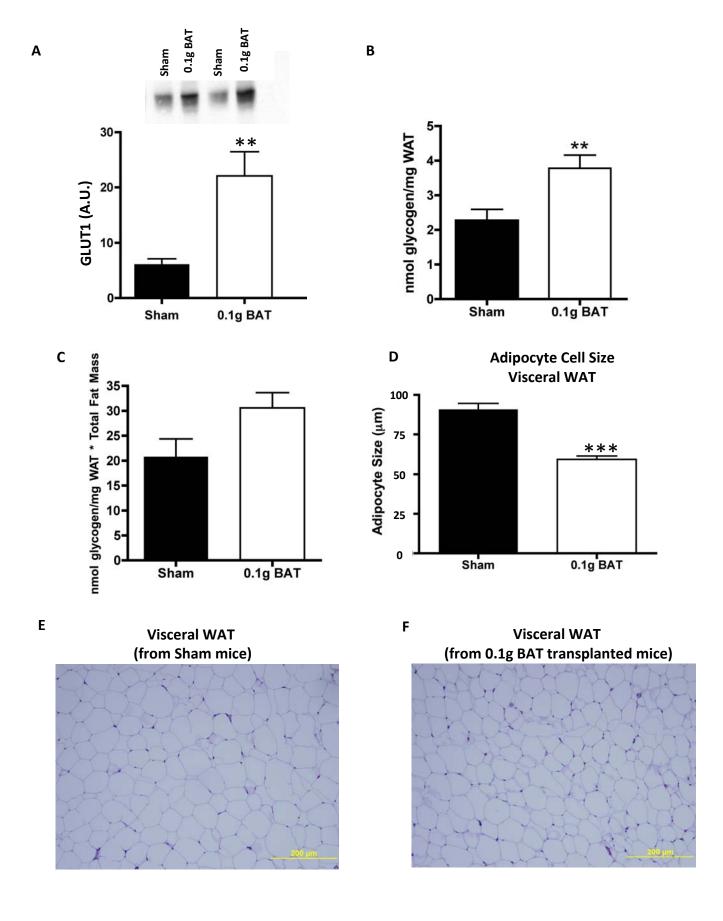


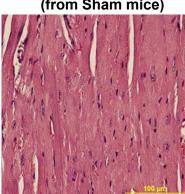


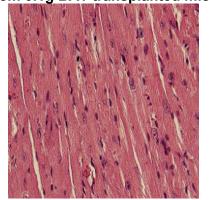


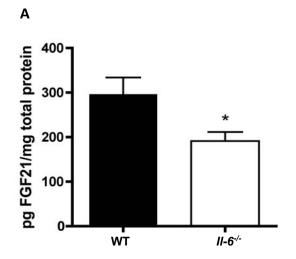


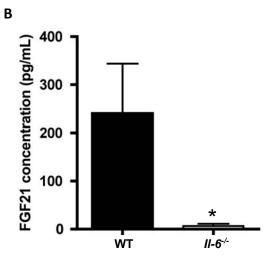




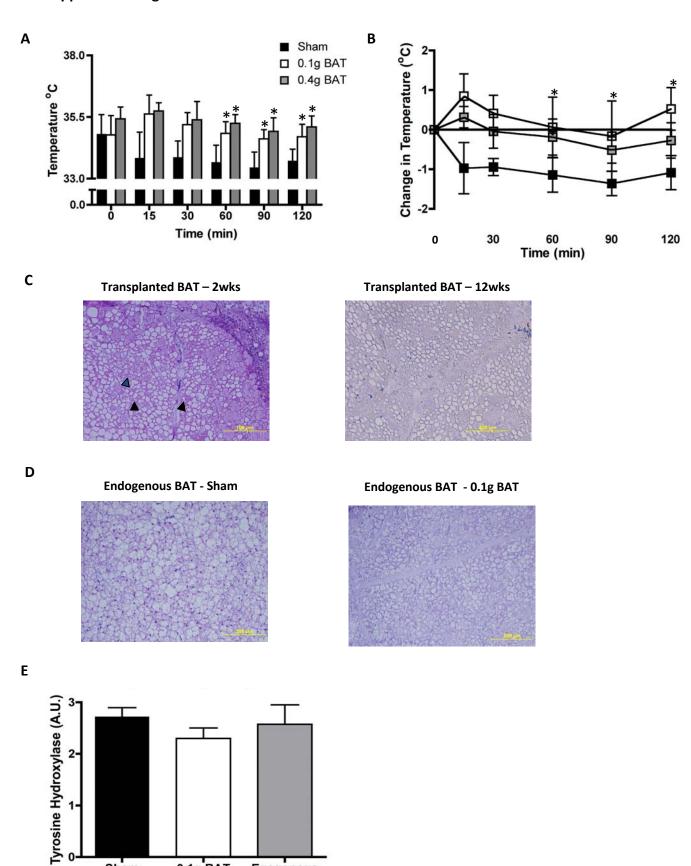


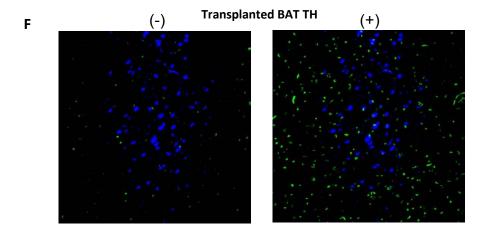


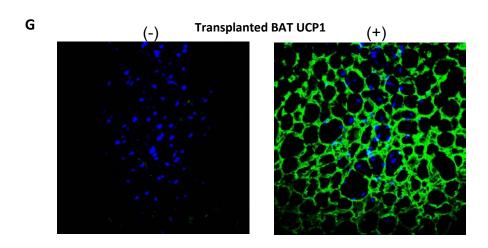



G Heart (from Sham mice)

Heart (from 0.1g BAT transplanted mice)




Sham


Endogenous


0.1g BAT

Exogenous

