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Mantle cell lymphoma is a B cell malignancy in which constitutive dysregulation of cyclin D1 and the cell cycle, dis-
ruption of DNA damage response pathways, and activation of cell survival mechanisms contribute to oncogenesis. 
A small number of tumors lack cyclin D1 overexpression, suggesting that its dysregulation is always not required 
for tumor initiation. Some cases have hypermutated IGHV and stable karyotypes, a predominant nonnodal disease, 
and an indolent clinical evolution, which suggests that they may correspond to distinct subtypes of the disease. In 
this review, we discuss the molecular pathways that contribute to pathogenesis, and how improved understanding 
of these molecular mechanisms offers new perspectives for the treatment of patients.

Introduction
Mantle cell lymphoma (MCL) is a B cell malignancy with a broad 
spectrum of clinical, pathological, and biological features. The 
identification of the translocation event t(11;14)(q13;q32) and the 
resulting cyclin D1 overexpression were of paramount importance 
in recognizing the clinical and biological diversity of this tumor. In 
addition to this constitutive dysregulation of the cell cycle, other 
mechanisms such as DNA damage response alterations and activa-
tion of cell survival pathways are integrated to drive MCL patho-
genesis (1, 2). New observations are expanding our views on the 
ontogeny and pathogenesis of this lymphoma. Furthermore, these 
new insights into MCL oncogenesis are promoting the develop-
ment of new therapeutic strategies, intended to target the molecu-
lar mechanism of the disease, and opening up new clinical perspec-
tives for optimal diagnosis and management of the patients.

Initial oncogenic steps
The t(11;14)(q13;q32) translocation that juxtaposes the proto-
oncogene CCND1 at 11q13 to the immunoglobulin heavy chain 
complex (IGH) at chromosome 14q32 is considered the primary 
oncogenic mechanism in the development of MCL. This translo-
cation forces the constitutive overexpression of cyclin D1, which 
is not detected in normal B lymphocytes, and deregulates the cell 
cycle at the G1/S phase transition (1). In addition to the primary 
translocation event, additional mechanisms that further increase 
cyclin D1 expression are frequently observed in MCL, underscor-
ing its central importance in MCL lymphomagenesis. These 
mechanisms include secondary chromosomal rearrangement 
at 3′ of the CCND1 locus or mutations in the 3′ untranslated 
region (3′UTR) that lead to the expression of truncated cyclin D1 
transcripts missing part of the 3′UTR (3, 4). These shorter tran-
scripts, depleted of the destabilizing AU-rich elements and the 
binding sites for different microRNAs, have an extended half-life 
resulting in higher cyclin D1 protein levels and increased tumor 
aggressiveness (4, 5). Alternatively, increased overexpression of 
cyclin D1 can occur in MCL following the amplification of the 
translocated t(11;14) allele (6).

Cell(s) of origin and ontogeny
The initial translocation event t(11;14)(q13;q32) occurs at the 
pre–B stage of differentiation during the recombination of the 

V(D)J segments of the IGH variable region (IGHV) in the bone 
marrow. However, the tumor is composed of a specific popula-
tion of mature B lymphocytes, indicating that the full neoplastic 
phenotype is acquired at later stages of the B cell differentiation 
process (7). Historically, naive B cells have been considered the 
normal counterpart to MCL tumor cells based on IgM/IgD and 
CD5 expression by the tumor cells, their topographic distribution 
in the mantle zones, and early descriptions of the predominant 
use of unmutated IGHV. More recently, comprehensive analysis 
of B cell receptor (BCR) diversity in MCL has shifted this view to 
a more complex ontogenetic model, in which antigen selection 
plays an important role in pathogenesis, at least for a subset of 
tumors. Recent studies have shown that 15%–40% of MCLs carry 
IGHV hypermutations, with a strong bias in the IGHV gene rep-
ertoire (8–10). As is the case for chronic lymphocytic leukemia 
(CLL), stereotyped heavy complementarity-determining region 3  
(VH CDR3) sequences have been recognized in 10% of MCL. 
Although the stereotyped subsets are clearly distinct from those 
described in CLL, their existence suggests a strong role of antigen-
driven selection in the clonogenic expansion of MCL tumor cells. 
These findings open a complex scenario with more than one pos-
sible cell subtype dominating in different subtypes of MCL (Fig-
ure 1). In the absence of IGHV mutations, MCL may still derive 
from naive B cells, but cases with stereotyped BCR are likely anti-
gen selected. Furthermore, MCL carrying a high mutational load 
may originate from cells strongly influenced by the germinal cen-
ter microenvironment. Finally, the progenitor cells of cases with 
a low number of somatic mutations may derive from cells of the 
marginal zone, intermediate cells between naive and germinal 
center cells already expressing AID or transitional B cells resem-
bling murine B-1 B cells (11, 12).

Genetically deregulated oncogenic pathways
The role of cyclin D1 in promoting MCL lymphomagenesis is 
related to its function in the cell cycle regulating the cyclin-depen-
dent kinases CDK4 and CDK6. Cyclin D1 binding to CDK4/6 acti-
vates the transcription factor E2F by phosphorylating its inhibi-
tor, retinoblastoma 1 (RB1), and further promotes cyclin E/CDK2 
activation to trigger entry into the S phase of the cell cycle (1).

Cyclin D1 may have additional oncogenic effects beyond its role 
in the cell cycle. Studies in solid tumor models have shown cyclin 
D1 in transcription regulation as interacting with transcription 
factors, chromatin-remodeling, and histone-modifying enzymes 
(13–15). Cyclin D1 may also promote chromosome instability 
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by binding to genes that regulate chromosome segregation and 
chromatin reorganization (16). Intriguingly, cyclin D1 has been 
implicated in promoting DNA repair by binding to RAG1 and 
homologous DNA recombination (17). How this DNA-repairing 
function reconciles with the cyclin D1 oncogenic role is not clear, 
but it may help the cells to survive under DNA-damaging onco-
genic stress or the action of genotoxic drugs (18). These non–cell 
cycle–related functions of cyclin D1 have not been properly inves-
tigated in MCL. However, the complete inactivation of the RB1 by 
mutations and deletions in some MCLs (19), making cyclin D1 
dispensable for cell cycle functions, would support the idea that 
cyclin D1 may play additional oncogenic roles in these tumors. 
Interestingly, the recent description of cyclin D1 as promoting cell 
survival in MCL by sequestering the proapoptotic BAX protein 
reinforces this concept (20).

Several observations suggest that cyclin D1 dysregulation is not 
sufficient for cell transformation, nor does it explain the aggres-

sive behavior of MCL. Secondary chromosome alterations that 
target genes involved in molecular pathways, such as cell cycle 
control, DNA damage response, and cell survival pathways, are 
frequently found in aggressive MCL. The INK4a/CDK4/RB1 and 
ARF/MDM2/p53 cell cycle pathways are very frequently target-
ed by secondary genetic alterations in MCL. Both pathways are 
connected through the CDKN2A locus (9p21), which encodes 
for both the CDK inhibitor INK4a and the positive p53 regula-
tor ARF, and this locus is frequently deleted in MCL. Other key 
elements of these pathways, such as TP53 and RB1, are also fre-
quently inactivated by point mutations or gene deletions (19, 
21). In addition, gene amplification events have been found to 
deregulate additional genes, including CDK4, polycomb ring fin-
ger gene BMI1, and MDM2 (19, 22). Accordingly, the proliferation 
gene expression signature is the best predictor of patient survival, 
underscoring the importance of cell cycle dysregulation in dictat-
ing the behavior of MCL (23).

Figure 1
Hypothetical models of two different molecular subtypes of MCL. The naive B cell carrying the t(11;14) colonizes the mantle zone of the lymphoid 
follicle and generates an in situ MCL lesion. Most MCLs evolve from these cells or cells in the marginal zone with no or limited IGHV somatic 
mutations. These tumors express SOX11, are genetically unstable, and tend to accumulate alterations in genes dysregulating cell cycle, DNA 
damage response pathways, and cell survival mechanisms. Alternatively, some cells with the t(11;14) may enter the germinal center and undergo 
IGHV somatic hypermutations. These cells are genetically stable and do not express SOX11. The tumors derived from these cells tend to spread 
to the peripheral blood and spleen more than to lymph nodes. The disease seems to be stable for long periods of time, but some of these tumors 
may acquire mutations in genes such as TP53 that lead to disease progression. Intriguingly, some tumors with the pathological and genetic 
features of MCL do not carry translocations of the CCND1, CCND2, and CCND3.
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Chromosome aberrations observed in MCL are consistent with 
an important role for dysregulation of the DNA damage response 
in this lymphoma (24). The ataxia telangiectasia mutated (ATM) 
gene, located at 11q22-23, is frequently deleted and mutated in 
MCL cases with increased genomic instability (25). Additional 
downstream elements of this pathway, including CHK1 and CHK2, 
are occasionally deregulated in MCL, suggesting that mutation 
of DNA damage response contributes to oncogenesis (1). Recent 
studies have also shown that genes involved in cell survival are tar-
gets of recurrent genetic alterations in MCL. Amplifications and 
overexpression of antiapoptotic genes such as BCL2 (18q21) (6) 
and homozygous deletions of proapoptotic genes such as BCL2L11 
(2q13) have been described in primary tumors (26).

A recent study found NOTCH1 mutations in 12% of MCL cases 
to be associated with poor survival (27). This gene encodes for a 
transmembrane protein that functions as a ligand-activated tran-
scription factor. Similarly to NOTCH1 mutations described recent-
ly in CLL (28, 29), mutations in MCL occur in the PEST domain 

and generate a truncated, more stable and transcriptionally active 
protein. In the study mentioned above, inhibition of this pathway 
reduced proliferation and induced apoptosis of MCL cells (27).

Cyclin D1 may be dispensable for MCL pathogenesis
The existence of uncommon lymphomas with pathological fea-
tures of MCL in the absence of cyclin D1 dysregulation suggests 
that cyclin D1 overexpression is not the only mutation that can 
initiate MCL development (Figure 1). These tumors have a similar 
gene expression profile and share the same type of secondary chro-
mosomal alterations, supporting the idea that they correspond to 
the same molecular disease. Chromosomal translocations fusing 
the CCND2 gene, but not the CCND3 gene, to IG loci are found in 
50% of the cases, suggesting that this may be an alternative mecha-
nism to CCND1 translocation (30, 31). However, the absence of 
any cyclin D gene alterations in a subset of otherwise convention-
al MCL raises the intriguing question about the initial driver for 
pathogenesis in these cases.

Figure 2
Major aberrant pathways in MCL susceptible to targeted therapies. Numerous signaling pathways are constitutively activated and/or deregulated 
in MCL, including BCR, BAFF-R, mTOR, WNT, and NOTCH1 signaling as well as pathways that promote the cell cycle and inhibit apoptosis. 
mTOR and proteasome inhibitors are the only two pathways for which specific drugs have been approved. Several small molecules targeting the 
BCR and the PI3K/AKT/mTOR pathway at different levels (indicated by white text) are currently being studied in clinical trials. Other clinical tri-
als are using small molecules to target the BCL2 family proteins directly involved in apoptosis and the cyclin-dependent kinases (CDKs) directly 
involved in the progression through G1/S and G2/M phases of the cell cycle. The WNT and NOTCH1 pathways are potential targets for β-catenin 
(β-cat) inhibitors and NOTCH1 inhibitors, respectively. Pharmacologic inhibition of PARP activity has become an interesting therapeutic strategy 
in tumors with dysfunctional DNA repair mechanisms, such as MCL.
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In a search for new genes relevant in MCL pathogenesis, SOX11, 
a neuronal transcription factor, was identified as a very specific 
marker of MCL (32). SOX11 is highly expressed in virtually all 
MCL tumors but is not expressed in other mature lymphoid neo-
plasms and normal lymphocytes at any stage of differentiation. 
Interestingly, SOX11 is highly expressed in both cyclin D1–nega-
tive and –positive MCL, suggesting that in addition to its value 
as a diagnostic biomarker, it may be an important factor in the 
pathogenesis of MCL (33). SOX11 expression in normal and neo-
plastic lymphoid cells is regulated by epigenetic changes, but its 
function in tumor development is not well understood yet (34). 
Further studies of potential oncogenic mechanisms common to 
cyclin D1–positive and –negative MCL may provide new insights 
into the primary genetic events that drive the development of one 
of the most aggressive lymphomas.

Signaling pathways deregulated in MCL
In addition to the multiple genetic alterations observed in MCL, 
these tumors carry dysregulation of different signaling pathways 
involved in cell proliferation, survival, and interactions with the 
microenvironment. Some of them are beginning to be targeted 
with new therapies and open a new perspective for the treatment 
of patients (Figure 2).

The PI3K/AKT/mammalian target of rapamycin (PI3K/AKT/
mTOR) pathway plays a critical regulatory role in cell growth and 
death processes. The causes for the activation of this pathway 
are not well understood but may include BCR, tumor necrosis 
factor (ligand) superfamily, member 13b (BAFF), and CD40 sig-
naling. High levels of activated AKT, mTOR, and their respec-
tive downstream targets have been identified in MCL (35–37). 
Loss of expression or inactivating phosphorylation of PTEN, a 
negative PI3K regulator, have been found in some MCLs associ-
ated with the constitutive activation of AKT (37). No genetic or 
epigenetic alterations of PTEN have been identified in MCL, but 
the microRNA (miRNA) miR17–92 cluster, which is frequently 
amplified and overexpressed in MCL (38), was recently shown to 
target the PTEN transcript (39). Overexpression of these miRNAs 
causes downregulation of PTEN and activation of the AKT path-
way and promotes resistance to chemotherapy-induced apopto-
sis in these tumors (39).

The influence of the microenvironment in the pathogenesis of 
different lymphoid neoplasms is receiving increased interest, but 
its potential role in MCL has been less investigated. The recent 
studies of the BCR supporting an antigen selection in the patho-
genesis of at least a subset of MCL suggest a role for the stimula-
tion of this pathway in the clonal expansion of tumor cells. Howev-
er, the specific mechanisms and downstream effectors potentially 
involved are not well known. Amplification and overexpression of 
the spleen tyrosine kinase (SYK) and the PI3K catalytic α polypep-
tide have been found in a subset of MCL (40, 41). Furthermore, 
different kinases of the BCR signaling, including SYK, LYN, and 
BTK, have been found to be phosphorylated in primary MCL, sug-
gesting activation of the pathway (42).

Activation of the JAK/STAT pathway may be a relevant mecha-
nism connecting external stimuli with cell survival and prolifera-
tion. Phosphorylated STAT3 has been observed in primary MCL 
(43, 44). This activation may occur through a cytokine-dependent 
autocrine IL-6 and/or IL-10 secretion loop and/or induced upon 
BCR engagement (43). The IL-10 receptor is overexpressed in some 
MCLs (45), and IL-10 has been shown to sustain cell proliferation 
in MCL primary cells (46). Inactivating mutations of SOCS1, an 
inhibitor of the JAK/STAT pathway, have been described in some 
MCLs (47). Interestingly, STAT3 activation seems to be more com-
mon in MCLs with hypermutated (compared with unmutated) 
IGHV, suggesting that these two subtypes of MCL may use differ-
ent cell survival mechanisms (43).

Expression of CD40 and responsiveness to the CD40 ligand 
(CD154) (48) suggest that MCL cells can interact with CD154-
positive T cells in tissues, where such cellular interactions could 
promote MCL cell survival and expansion (49). High levels of func-
tional CXCR4, CXCR5, and VLA-4 (CD49d) have been reported, 
suggesting a role in the migratory properties of the tumor cells (50). 
Further, the IL-22 receptor is aberrantly expressed in MCL, and 
stimulation by IL-22 promotes tumor cell growth and survival (51).

Constitutive activation of NF-κB has been detected in MCL cell 
lines and primary tumors with overexpression of several target 
genes, including the antiapoptotic proteins cFLIP, BCL2, BCLXL, 
and XIAP (52, 53). BCR signaling, microenvironmental stimuli, 
and TNF signaling may mediate NF-κB activation. Inactivation 
of the NF-κB pathway inhibitors TNFAIP3/A20 (6p23) and FAF1 

Figure 3
Multistep model in the progression of MCL. Clonal cells carrying the t(11;14) translocation may be detected in the peripheral blood of healthy 
individuals at very low levels. The risk of progression of these clones must be extremely low, if any. Cells expressing cyclin D1 and carrying the 
t(11;14) may be found in the mantle zone of lymphoid follicles in otherwise reactive tissues. Most of these lesions will not evolve into an overt 
lymphoma. The incidental detection of tumor cells in the mantle zone of reactive tissues in patients with MCL who appear to be in complete remis-
sion suggests that this microenvironment may sustain chemoresistant cells. Anecdotal clinical observations provide a timeframe for the potential 
evolution of these lesions. Original magnification, ×100 (right and left), ×400 (center).
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(1p32.3) by mutations and homozygous deletions, respectively, 
have been reported in primary MCL (26, 54).

The WNT canonical pathway has been found to be deregulated 
in MCL, with nuclear localization of β-catenin in primary tumors 
(36, 55). Concordantly, inactive phospho-GSK3B, a key compo-
nent of the destruction complex responsible for β-catenin inacti-
vation, was also found in MCL, suggesting that the WNT pathway 
may play a role in MCL pathogenesis. However, further studies are 
needed to confirm and expand these observations.

Are all MCLs created equal? An alternative pathogenetic 
pathway with clinical implications
MCL is classically considered an aggressive lymphoma. However, 
some studies have described a subset of patients with an indolent 
evolution of MCL even in the long-term absence of chemotherapy. 
The identification of these patients is puzzling given the current 
understanding of MCL as an aggressive tumor, which leads to the 
frequent recommendation of immediate treatment in almost all 
patients. These patients may benefit from a “watch and wait” man-
agement approach, at least for some period of time, but the chal-
lenge is in distinguishing them from patients who need aggressive 
therapy as soon as the disease is identified (56, 57).

MCLs with a very low proliferation index, a histological growth 
pattern restricted to the mantle zone of the lymphoid follicles 
(mantle zone pattern), and a limited clinical stage may have a more 
indolent behavior than MCLs without these features (58–61).  
These cases may correspond to early stages in the development  
of conventional MCL.

In addition, clinical studies have recognized a subgroup of MCL 
patients with an indolent behavior who, contrary to most cases of 
conventional MCL, present with a predominantly leukemic non-
nodal disease. The genetic and molecular mechanisms underly-
ing this distinct biological behavior are not fully understood, but 
recent studies comparing the groups of indolent nonnodal and 
conventional MCLs have revealed marked differences between 
the two (Figure 1). Most MCLs have complex karyotypes, but the 
nonnodal tumors have very few, if any, chromosomal alterations 
in addition to the t(11,14) translocation. The nonnodal MCLs 
frequently have hypermutated IGHV, suggesting an origin in cells 
with a strong influence of the germinal center microenvironment, 
whereas conventional MCLs typically have few or no mutations 
in IGHV (refs. 62–64 and Figure 1). The gene expression profiles 
of these two subtypes of MCL show differences in certain gene 
signatures. The indolent tumors have very low or no expression 
of a subset of genes of the high-mobility group of transcription 
factors, including SOX11, that are highly expressed in conven-
tional tumors (65). Nonnodal tumors also have downregulation 
of genes related to the DNA damage pathway and genes associ-
ated with cell adhesion (63).

The detection of SOX11 by immunohistochemistry or quan-
titative PCR in larger series of patients has confirmed the rela-
tionships among its lack of expression, hypermutated IGHV, low 
karyotype complexity, nonnodal leukemic disease, and longer 
survival with stable disease in independent cohorts of patients, 
suggesting that these biological and clinical features may iden-
tify a different subtype of MCL (63–67). Some patients with 
nonnodal disease may progress to an aggressive form of MCL 
after several years of a stable clinical course. In addition, some 
SOX11-negative tumors may progress rapidly after diagnosis 
and have a poor prognosis (61, 64). Interestingly recent stud-

ies have shown that the aggressive behavior of SOX11-negative 
MCL seems related to an extensive nodal disease, blastoid mor-
phology, complex karyotypes, and 17p/TP53 alterations (61, 64, 
68). These observations suggest that these aggressive tumors 
may correspond to a transformed phase of the SOX11-negative 
MCL (Figure 1). Therefore, SOX11 expression by itself should 
not be considered a prognostic parameter but a biomarker that 
may help to recognize a particular subtype of MCL with differ-
ent clinical and biological features than conventional MCL. The 
SOX11-negative tumors may have a long leukemic, nonnodal 
phase followed in some cases by the progression to an aggressive 
lymphoma associated with the acquisition of 17p/TP53 altera-
tions and complex karyotypes. Given the asymptomatic nature of 
the leukemic phase, some patients may only be diagnosed at the 
end of this process, when the extensive nodal disease develops. 
We recently proposed the term “nonnodal type of MCL” for this 
subtype of MCL (64) because it reflects the main, although not 
entirely specific clinical feature and because it gives credit to the 
initial clinical observations of this subgroup of tumors (62, 69).

Multistep development and progression in MCL
The contribution of multiple mutations to tumor development 
is not as well characterized in lymphoid neoplasms as in solid 
tumors. Recent observations have identified what may correspond 
to early molecular and pathological phases of MCL oncogenesis 
(Figure 3). Cells carrying the t(11;14) translocation have been 
detected at very low levels in the peripheral blood of a number of 
healthy individuals (8%). These clones can persist for long periods, 
but their potential to evolve into an overt lymphoma is not clear 
(70). Their high frequency in healthy individuals and low preva-
lence of MCL suggests that most clones bearing only the t(11;14) 
translocation will never transform into a malignant tumor. On the 
other hand, the observation of a simultaneous MCL with the same 
clonal origin in a recipient and donor 12 years after an allogenic 
bone marrow transplant underscores the long latency required by 
initial clones to develop an overt lymphoma (71).

Cells carrying the t(11;14) translocation and cyclin D1 over
expression have been occasionally found in the mantle zones of 
otherwise reactive lymphoid tissues in healthy individuals. These 
lesions have been referred to as “in situ MCLs,” but their malignant 
potential seems very limited (Figures 1 and 3). In a recent study, 
only 1 of 12 of these lesions developed an overt MCL four years 
after its detection. To avoid overtreatment, the alternative term “in 
situ MCL-like B cells” has been proposed (72). Retrospective analy-
sis in seven patients identified in situ lesions in tissues obtained  
2 to 15 years prior to diagnosis, suggesting that all MCLs pro-
ceeded through a stage of in situ lesions (73). Some in situ lesions 
express SOX11, whereas others are SOX11 negative, suggesting 
that the in situ lesion stage may be a common step in both SOX11-
negative and -positive subtypes of MCL (ref. 71 and Figure 1). Inci-
dents of in situ lesions have also been found in patients who are 
apparently in complete remission following treatment, suggesting 
that this microenvironment may sustain residual tumor cells resis-
tant to chemotherapy (ref. 71 and Figure 3).

Target therapy in MCL: a promise 
of more successful treatments
The heterogeneous biology and clinical presentation of MCLs 
are major challenges to define standard therapies (74). Recent 
protocols adjusted for the patients’ conditions are improving the 
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clinical outcome, but frequent relapses and progressive resistance 
to treatment emphasize the need for new approaches (75). The 
increasing understanding of the pathogenetic mechanisms pro-
vides attractive and promising targets. In the last six years, two new 
drugs for relapsed or refractory MCL have been approved: the pro-
teasome inhibitor bortezomib (approved by the US FDA; ref. 76) 
and the mTOR inhibitor temsirolimus (approved by the European 
Medicines Agency; ref. 77.

Proteasome inhibitors disrupt the ubiquitin-proteasome system 
(78). Bortezomib induces apoptosis in MCL through upregulation 
of the BH3-only protein NOXA (79). NOXA acts as a downstream 
effector of an integrated cellular stress response triggered by the 
accumulation of undegraded, polyubiquitinated proteins that 
induce endoplasmic reticulum stress and the generation of reac-
tive oxygen species (80). Single-agent bortezomib therapy was 
shown to induce responses in 30%–50% of cases, even in patients 
who failed to respond to prior dose-intensive therapy or who had 
bulky disease (81). A second generation of proteasome inhibitors, 
including NPI-0052 (salinosporamide A), PR-171 (carfilzomib), 
and MLN9708, are now entering the clinic. Efficacy has also been 
reported for proteasome inhibitors in combination with other 
cytotoxic agents and targeted therapies such as histone deacetylase 
inhibitors and HSP90 inhibitors (78, 82). Several proteins central to 
MCL, including cyclin D1, CDK4, AKT, and p53, bind to the molec-
ular chaperone HSP90, suggesting that HSP90 inhibitors may be a 
suitable therapeutic target (83). However, HSP90 inhibitors as well 
as histone deacetylase inhibitors have demonstrated only moderate 
clinical antitumor activity when used alone (78, 82, 84).

mTOR is another attractive target for new therapies (85). 
Temsirolimus is a rapamycin analog that allosterically inhibits 
mTORC1. As a single agent, temsirolimus was shown to induce 
responses in up to 40% of relapsed or refractory patients, and its 
efficacy was superior to that of traditional monotherapies (86). 
Phase I/II studies are currently being performed to explore the 
best chemotherapy that may be added to temsirolimus and its 
potential role as maintenance therapy (87–92). Other rapalogs, 
such as everolimus and deferolimus, and several PI3K inhibitors 
offer additional means to target the PI3K/AKT/mTOR pathway, 
although deferolimus has not showed clinical activity in relapsed 
MCL (93, 94). The PI3K-δ inhibitor CAL101 has shown an overall 
response rate of 62% in relapsed and refractory MCL cases (95). 
In addition, several ongoing clinical trials are using MK2206, an 
allosteric inhibitor of AKT, and OSI-027, a dual mTORC1 and 
mTORC2 inhibitor (82, 96).

Some therapies target cell cycle regulators and other key patho-
genetic pathways in MCL (22, 97, 98). The pan-CDK inhibitor 
flavopiridol has shown minimal antitumoral activity (99), but 
in contrast PD-0332991, an inhibitor of CDK4 and CDK6, has 
shown biological effects (reduced retinoblastoma phosphory-
lation and Ki67 index) and some clinical benefit in a subset of 
patients (100). Promising results are being obtained with drugs 
targeting the DNA repair pathway (25, 101), such as the poly(ADP-
ribose) polymerase 1 (PARP) inhibitor AG014699 (102–104). The 
use of proapoptotic molecules that mimic the activity of BH3-only 
proteins (105) has shown promising Results in preclinical mod-
els (106–108) but no responses or only modest activity in clinical 
studies (82, 109). However, these compounds may sensitize cells to 
the effect of other therapeutic agents.

Novel approaches include targeting the BCR pathway. Unfor-
tunately, PKCB inhibitors showed no objective responses in 

MCL patients (110), and an objective response to SYK inhibitors 
was reported in only 11% of patients (111). In contrast, the BTK 
inhibitor PCI-32765 (ibrutinib) induced a high rate of objective 
responses in patients with relapsed or refractory MCL (111, 112). 
In addition, a Phase I clinical trial using the oral JAK-2 inhibitor 
SB1518 showed activity in two of three MCL cases studied (113). 
The identification of recurrent NOTCH1 mutations provided a 
preclinical rationale for therapeutic inhibition of the NOTCH 
pathway using γ-secretase inhibitors or for immunotherapy using 
antibodies against NOTCH1 (114, 115).

Conclusions and future directions
The study of MCL, integrating multidisciplinary research from 
molecular biology and pathology to the clinic, has improved the 
understanding of its pathogenesis and guides the search to design 
new therapeutic strategies. Although advances in the last decade 
have been remarkable, recent clinical and biological observations 
have shown that our understanding of this tumor is far from com-
plete. The increasing evidence for a role for cyclin D1 beyond cell 
cycle in some tumor models raises the question of similar func-
tions in MCL. On the other hand, the absence of cyclin D1/D2 
dysregulation in some cases argues for additional mechanisms 
in the initiation of the tumor. The intricate networks of genetic 
alterations, deregulated signaling pathways, and their triggering 
elements are only starting to be elucidated. The identification of 
two subtypes of the disease sharing the cyclin D1 dysregulation 
but with different molecular, genetic, and clinical characteristics 
and evolution is intriguing and requires further study. The role of 
antigen selection and different cells of origin for these subtypes 
of MCL may highlight the influence of the microenvironment in 
the development of the disease. The investigation of these new 
observations should render a better understanding of the tumor 
and facilitate a more precise diagnosis and tailored management 
of patients, particularly in light of an increasing number of new 
potential therapeutic drugs.
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