Supplemental Methods

Linkage analysis

A linkage analysis for Kindred A has been publiskeéskewhere (15). For Kindred B,
we extracted genomic DNA from cell lines or blocahples from patient P2.1 and both
parents. For these individuals, we genotyped therasatellites from D8S1722 to D8S1833
(17 microsatellites in and around the previousjyoréed region). Multipoint Lod scores were
calculated with MERLIN software

(http://www.sph.umich.edu/csg/abecasis/merlin/indewl), assuming that the gene

responsible for the defect was autosomal recessigalisplayed full penetrance.

Cédll purification and culture

Fresh human peripheral blood mononuclear cells (EBMwere isolated by Ficoll-
Hypaque density gradient centrifugation (Amershaharfacia Biotech, Sweden) from
heparin-treated whole-blood samples obtained fratirepts or healthy volunteers.

EBV-B cells were obtained by immortalizing PBMCsthwiEpstein-Barr virus and
culturing them in complete RPMI 1640 medium (Gib&RL, Invitrogen, USA)
supplemented with 10% heat-inactivated fetal caelus (FCS) (Gibco BRL, Invitrogen,
USA).

Primary human fibroblasts were obtained from skapby specimens from patients or
healthy controls and were cultured in DMEM (GibcRIB Invitrogen, USA) supplemented
with 10% fetal calf serum (FCS) (Gibco BRL, Invigen, USA). They were then transformed
with SV40-large T antigen vector, to obtain immbrid SV40-fibroblast cell lines.

Polymorphonuclear leukocytes (PMNs) were prepartedn fheparin-treated blood

from patients and healthy controls. Peripheral Bla@s subjected to dextran sedimentation



and the buffy coat was centrifuged through FicofisBlque (Amersham Pharmacia Biotech,
Sweden). The remaining red blood cells were remdwyelalypotonic shock.

B cells, monocytes, T cells and NK cells were itadafrom peripheral PBMCs by
positive immunomagnetic depletion, with antibodagginst CD19, CD14, CD3 and CD56
(Macs; Miltenyi Biotec, Germany), respectively, amting to the kit manufacturer's
instructions. The preparations of B cells, monogyfecells and NK cells were >90%, >80%,
>70% and >90% pure, respectively (flow cytometigt, shown).

Monocyte-derived dendritic cells (MDDCs) were oh&d from purified monocytes
cultured in the presence of GM-CSF (50 ng/ml; R&ipstBms, USA) and IL-4 (10 ng/ml;
R&D Systems, USA). We plated 2 x°I@onocytes in complete RPMI 1640 medium (RPMI
medium supplemented with 10% heat-inactivated pbdi®S (Gibco BRL, Invitrogen,
USA)) in 20 cnf flasks and incubated them at 37°C under an atnessptontaining 5% CO
the medium was replaced every two days during théaly culture period.

Monocyte-derived macrophage cells (MDMs) were atgdifrom purified monocytes
cultured in the presence of M-CSF (50 ng/ml; R&Ds®ys, USA). We plated 2 x 0
monocytes in complete RPMI 1640 medium (RPMI medsupplemented with 10% heat-
inactivated pooled FCS), in 100 x 20 mm tissueutaldishes, and incubated them at 37°C
under an atmosphere containing 5%,Cthe medium was replaced every 5 days during the

15-day culture period.

DNA, RNA, PCR, sequencing and sequence alignment

Genomic DNA was purified from EBV-B cells or SV4Oibrioblasts, by
phenol/chloroform extraction. Total RNA was extegttfrom EBV-B cells from P1.2 and
controls, and from SV40-fibroblasts of P2.1 andtoas, with Trizol (Invitrogen, USA). The

RNA was reverse-transcribed with SuperS¢Mpt Reverse Transcriptase (Invitrogen, USA),



according to the manufacturer’s instructiofCM4 cDNA was amplified with two pairs of
primers: Pair 1 (-183Forward: CCAGGTGGACTCGGAGTCL360Reverse:
CGAGGTTGTACACGTACTGC) and Pair 2 (+1380Forward:
GAGGCTTGCTTCAGCCTTGG/+3228Reverse: CCATAAGCATACTGBATGGC). The
sequences of the primers used for the PCR ampiditaf exons and cDNA for all genes in
the candidate region are available upon requesR ®@s performed witifaq polymerase
(Invitrogen, USA). The products were sequenced with Big Dye Terminator cycle
sequencing kit and analyzed on a 3130 ABI PrismeBerAnalyzer (Applied Biosystems,
USA). The MCM4 sequences froEnsembl were aligned, with the CLUSTALW2 multiple

sequence alignment tool.

Deter mination of MRNA levels by quantitativereal-time RT-PCR

Total RNA was extracted from cells with Trizol reag (Invitrogen, USA). Each RNA
preparation was reverse transcribed directly wiie High Capacity RNA-to-cDNA kit
(Applied Biosystems, USA), after purification witlhe RNeasy plus Micro Kit (Qiagen,
Germany) according to the manufacturer’s instrungtjdo determin®dCM4 transcript levels
(Hs00381539 m1, Applied Biosystems, USA). Quantitatreal-time PCR (gPCR) was
performed in an ABI PRISM® 7700 Sequence DetecBgstem (Applied Biosystems, USA).
The PCR program was as follows: 95°C for 20 secarabs then 40 cycles of 95°C for 3
seconds and 60°C for 1 minute. The results werenaliwed with respect to values for
transcripts of the housekeeping gene encofiigtuicuronidase (GUS). Results are expressed

according to thCt method, as described by the kit manufacturer.



SIRNA transfection

SV40-fibroblasts from P2.1 and healthy controls evaansfected with 3 different
siRNAs (si793 (GCAUUGAAGACUAAGAAUA), si1299
(UGAAGAAGCAGAACAGAAA) and si1325 (CAGAGAAACGUGUGGAAJV)) directed
against MCM4 (from Dharmacon), and negative consfBINAs directed against luciferase
(GL3) and Epstein-Barr virus nuclear antigen (EBN&pm Dharmacon). Cells were lysed

and analyzed 48 hours after transfection.



Supplemental Table legends

Supplemental Table 1 Details of the intra- and extrauterine growth retardation and adrenal
insufficiency phenotypes of patients. Full-face and profile images of P1.1, P1.2 and P1.3 are

shown.

Supplemental Table 2 Detailed chromosomal aberrations of primary and SV40-fibroblast
cells in P1.3 and P2.1. Comparison with controls, in the presence or absence of APH
treatment. Detailed descriptions of the chromosomal aberrations in cells transduced with

lentiviral particles containing empty, WT MCM4 or mutated MCM4 allele vectors.

Supplemental Table 3 Detailed chromosomal aberrations in lymphocytes. Chromosomal
aberrations, with the number of normal cells, and numbers of gaps, breaks and exchanges in
total cells and in control cells included in the same experiment, after treatment with DEB,

MMC and HN2.



Supplemental Figure legends

Supplemental Figure 1 (A) Table of all variants (other than the caub&CM4 variant)
identified in the coding region, splicing site ati® 5 and 3'UTRs of all coding genes and
one MIiRNA located in the centromeric region of chosome 8. ) Amplification of the
MCM4 cDNA as two fragments. Schematic diagram of WW€M4 cDNA, showing the
binding sites of the primers and the size of theldimation products. Amplification of the
MCM4 cDNA from SV40 fibroblatsts with various primeriggafor controls and patientsC)
Relative quantification oMCM4 mRNA in EBV-B cells from P1.2, family members (n=¥
WT/WT, 5 WT/c.71-2A>G) and controls (n=2) and S\Hfroblasts and primary fibroblasts
from P1.3, P2.1 and controls (n=2). We used onbbes specific foMCM4 mRNA. GUS
was used as endogenous gene for comparison. TiheofdlCM4 to GUS mRNA levels is
shown. Error bars indicate the standard deviaibhMCM4 was detected with a polyclonal
antibody, at a size of 100 kDa, in total extradt€BV-B cells from P1.2, WT/WT family
members (n=2), WT/c.71-2A>G family members (n=63 aontrols (n=2). An antibody

against GAPDH was used as a protein loading cantrol

Supplemental Figure 2 (A) MCM4 protein production in SV40-fibroblasts fromntools,
P1.3 and P2.1 was assessed by western blottingawtilyclonal antibody against either the
N-terminal domain or the C-terminal domain of MCiAd a polyclonal antibody against the
first 300 amino acids of the MCM4 proteipractin antibody was used as a protein loading
control. (B) MCM4 protein levels after transient transfectiotha8 different SIRNAs against
MCM4 in primary and SV40-fibroblasts from contra@lsd P1.3 assessed by western blotting.
Transient transfection with the control siRNAs (E8MNd GL3) was used as a negative

control. Total protein extracts from controls arid3primary and SV40-fibroblasts were used



as a positive control for the antibody-Tubulin antibody was used as a loading contr@). (
Cell cycle of SV40-fibroblasts from controls andipats after treatment with 0.3 uM Aph.
Representative flow cytometry plots. Control (lef)L.3 (middle) and P2.1 (right) after Aph
treatment. P1 corresponds to normal G1 phase, PP48orrespond to normal S phase, P5
corresponds to normal G2 phase plus abormal Gailedfmitosis, P6+P7 correspond to re-
replication S phase and P8 corresponds to 8C DNAeotd. The patients’ SV40-fibroblasts
had a lower proportion of BrdU-positive cells at phase than the control cell®)(
Representative spreads of chromosome breaks indiidbd presence or absence of APH. A
P2.1 metaphase with some aberrations indicatedrbws (left) and a P2.1 metaphase with
aphidicolin-induced breaks indicated by arrowshiigThe number of chromosome breaks
(mean) per metaphase in P1.3 and P2.1 primarybiidsts was not significantly different

from that in control primary fibroblasts. Error bandicate SEM.

Supplemental Figure 3 The N-terminal domain of the MCM4 protein in humans ahd
corresponding region in 45 other eukaryotic spec@nservation of the first 83 amino acids

of the MCM4 protein, with the position of the thr&&€G codons in frame.

Supplemental Figure 4 Hematopoietic cell phenotypes humans and miceA) Flow
cytometry for lymphocyte subsets: B cells, T cé@®3+, CD3+CD4+,CD3+CD8+) and NK
cells were detected in the peripheral blood of mstand patients (P1.1, P1.2, P1.3 P1.4,
P1.5 and P2.1). Horizontal bars represent med{@)d:low cytometry for monocyte subsets:
CD14+, CD16+, CD14/16+ and PDCsBDCA2+ and MDCsBD&Aklls were detected in
the peripheral blood of controls of various ageugso (5 to 10 y, 10 to 15 y and >15 vy),
heterozygous subjects and homozygous patients ,(PL2 and P1.3). Error bars for the

controls indicate the standard deviaticdd) MCM4 was detected with a polyclonal antibody,



at a size of 100 kDa, in cell subsets from blooBL&® PMNs, T cells, B cells, NK cells,
monocytes, MDDCs and macrophages), EBV-B cellsnary and SV40 fibroblast cells from
a control individual. An antibody againsttubulin was used as a loading control. This result
is representative of 3 independent experimentS). IK cell percentage in WT/WT,
Chaos3/WT, Chaos3/Chaos3 mice. The percentage of NK cells is significanltibyver in
Chaos3/Chaos3 (n=11) than in WT/WT (n=25) micd>(<0.05 indicated by *, non parametric
Wilcoxon test). Horizontal bars indicate the mealtse percentage of B cells is significantly
higher inChaos3/Chaos3 (n=11) than in WT/WT (n=25) micd>(<0.005 indicated by **, non
parametric Wilcoxon test). A significant differenicethe percentage of T cells was observed
between WT/WT (n=19) an€haos3/Chaos3 (n=11) mice P <0.05 indicated by *, non

parametric Wilcoxon test).

Supplemental Figure 5 T-cell phenotypes and stimulation respons&3¥ Percentage of
different T- and B-cell subsets in whole-blood s&spfrom healthy siblings either
homozygous WT or heterozygous, and patie®$.Rroliferation of PBMCs determined by
thymidine incorporation from healthy homozygous \WTheterozygous siblings and patients
were not stimulated (medium) or were stimulatechwRHA (2.5 mg/ml) over 3 daysCj
Apoptosis of PHA-activated T-cell blasts from a toh P1.2 and P1.3 was assessed by
determining propidium iodide staining in the preseor absence of stimulation with various
doses of IL-2 or IL-15 over 3 dayD) Flow cytometry counts of CD3+Perforin+ T cells fo
controls (n=6), heterozygous siblings (n=2) andepds (P1.1, P1.2 and P1.3). Horizontal

bars indicate medians. A non significant differe(fee0.05) is indicated by “ns”.



Supplemental Figure 6 Homozygous MCM4 mutation and specific NK CD56dim
deficiency.(A) Flow cytometry counts of CD56+ NK cells that weleoaCD16+, for controls
(n=17), heterozygous siblings (n=2) and patienisi(PP1.2 and P1.3), Perforin+ for controls
(n=6), heterozygous siblings (h=2) and patientsiPR1.2 and P1.3) and CD57+ for controls
(n=8) and patient P1.3. Horizontal bars indicatelianes. A significanf <0.05 is indicated
by *, aP <0.005 is indicated by ** and R <0.0005 by ***  in Student’s-test.(B) MCM4
was detected with a polyclonal antibody, at a €400 kDa, in nuclear extract from the
CD56bright and CD56dim NK cell subsets of contrioldal. An antibody againgt-actin was
used as a protein loading control. The ratio of MCId 3-actin protein levels is shown for 3
independent controls from independent experimegtsor bars indicate the standard
deviation.(C) Flow cytometry counts of the two subsets of CDE6 cells expressing CD94
in controls (n=11), heterozygous siblings (n=2) aatents (P1.1, P1.2 and P1.3). Horizontal
bars indicate median® <0.05 is indicated by *, & <0.005 is indicated by ** and a non
significant difference (P>0.05) by “ns”. Represént@flow cytometry plots of a homozygous
WT sibling, a heterozygous sibling and one patiéd}j.PBMCs from healthy controls (n=6)
and from one patient (P1.3) tested in two indepehdgperiments were stained with CFSE
and stimulated for 72 h with various doses of IL-Apoptosis was assessed on NK subsets,

by 7AAD staining Error bars indicate the standard deviation.
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Mild cognitive
38 241 46 324 22.4 (3rd) 123 (<3rd) NA (<3rd)
P1.1 +4days v M (<3rd) | (<3rd) [ (3rd) at 10years at 10 years at 1.1lyears deve(lj(?arl);r;/ental NA NA NA
1.64 44 33 31.8 (<3rd) | 142.5(<3rd) | 51 (normal)
PL21 37 CS F (<3rd) | (<3rd) [ (3rd) at 17.4years | at 17.4years | at 17.4years Normal 1Q <28 <10 <28
Mild cognitive
1.8 45 30.6 21.8 (<3rd) | 126.6 (<3rd) | 49.5 (<3rd)
PL3| 34 = M (<3rd) | (<3rd) | (<3rd) | atl12.7years | at 12.7years | at 12.7 years deve(lj(?arl);r;/ental 92 >2000 88
31.9 (75 Mild cognitive
P1.4| 38 CSs M 2.3 46 30.6 centile) 111.9 (3rd) NA developmental 244 NA 192
(<3rd) | (<3rd) [ (3rd) at 7.1years
at 10years delay
Mild cognitive
40 25 47 335 13.6 (<3rd) 98 (<3rd) 48.5 (<3rd)
PL.5 +5days CS F (<3rd) | (<3rd) [ (3rd) at5.5years | at5.5years | at3.8years developmental 215 >1250 (323) 151
delay
Mild cognitive
2.2 44 34 34.2 (<3rd) 158 (<3rd)
P2.11 40 CS M (<3rd) | (<3rd) | (normal) | at 17.9years | at 17.6years NA deve(ljc‘)aﬁ);?/ental 30 532 32
P1.1 P1.2 P1.3

NA: Not available NR: Normal Range
Supplemental Table 1 Details of the intra- and extrauterine growth retardation and adrenal insufficiency phenotypes of patients. Full-face and profile images of P1.1, P1.2 and P1.3 are shown.



Concen- Total Total Total Total Total Metaphases
Cell . Breaks Chromatid : . Metaphases with Breaks per
Sample Drug tration Metaphases Tri- Quadri- . .
Type . (ctb, Breaks . : with Breaks Multiple Metaphase
of Drug Studied radials radials
rad*) (ctb*®) Breaks
Control Primary None - 50 0 0 0 0 0 0 0
P1.3 Primary None - 50 0 0 0 0 0 0 0
pP2.1 Primary None - 26 1 1 0 0 1 0 0.04
Control Primary APH 0.3 uM 50 16 16 0 0 12 4 0.32
P1.3 Primary APH 0.3 uM 57 42 36 1 2 28 9 0.74
P2.1 Primary APH 0.3 uM 28 9 9 0 0 7 2 0.32
Control Sv40 None - 54 0 0 0 0 0 0 0
P1.3 SV40 None - 45 10 8 0 1 4 4 0.22
P2.1 SV40 None - 34 6 2 1 1 3 1 0.18
Control SV40 APH 0.3 uM 45** 37 29 1 3 16 7 0.82
P1.3 SV40 APH 0.3 uM 24%%* 259 233 9 4 24 22 10.79
P2.1 SV40 APH 0.3 uM 10 69 61 2 2 9 9 6.9
P1.3 +
empty
vector SV40 APH 0.3 uM 20 194 172 5 6 17 14 9.7
P1.3 +
MCM4wt SV40 APH 0.3 uM 50 180 140 16 4 33 27 3.6
P1.3 +
MCM4mut SV40 APH 0.3 uM 30F** 292 258 9 8 26 25 9.73

Ctb: chromatid break, rad: radial, ** 2 metaphases with significant damage (rad +ctb) were included in analysis, *** 2 metaphases with severe damage were

not included in the analysis, **** 4 metaphases with severe damage were not included in the analysis.

Supplemental Table 2 Detailed chromosomal aberrations of primary and SV40-fibroblast cells in P1.3 and P2.1. Comparison with controls, in the presence or absence of APH treatment. Detailed
descriptions of the chromosomal aberrations in cells transduced with lentiviral particles containing empty, WT MCM4 or mutated MCM4 allele vectors.



A Control Control Control Control Control
Drug Associated P1.1 Associated P1.2 Associated P1.3 Associated P1.4 Associated P2.1
with P1.1 with P1.2 with P1.3 with P1.4 with P2.1
35/40 cells 26/40 cells*
. normal normal
79/80 cells 60/80 cells* 4 gaps 5 gaps 39/40 cells N
normal normal 1 break 13 breaks normal 25/40 ceIIIS
DEB 1gap 9 gaps 1 exchange | 10 exchanges ND° ND 1 gap n70rr;1as NG D"
(0.1pug/ml) 0 break 10 breaks 73/80 cells 68/80 cells* 0 break 7 b?efks
0 exchanges 4 exchanges normal normal 0 exchanges 4 exchanges
5 gaps 5 gaps
2 breaks 9 breaks
0 exchanges 1 exchange
36/40 cells 28/40 cells* 31/40 cells 22/40 cells*
normal normal normal normal
3 gaps 5 gaps 6 gaps 16 gaps
1 break 11 breaks 2 breaks 6 breaks
Reported abnormal’ 0 exchanges 4 exchanges 32/40 cells 30/40 cells* 1 exchange | 2 exchanges 32/40 cells 31/40 cells*
in clinical test for patient, in normal normal 46/60 cells 33/60 cells* normal normal
MMC comparison with control 9 gaps 6 gaps normal normal 5 gaps 8 gaps
(6x10° M) 23/30 cells 22/30 cells 1 break 7 breaks 10 gaps 23 gaps 1 break 5 breaks
normal normal 0 exchanges | 3 exchanges 6 breaks 10 breaks 2 exchanges 1 exchange
7 gaps 6 gaps 3 exchanges | 6 exchanges
2 breaks 5 breaks 77/200 cells | 55/100 cells*
0 exchanges 2 exchanges normal normal
16 gaps 39 gaps
8 breaks 16 breaks
4 exchanges 8 exchanges
40/40 cells 27/40 cells* 35/40 cells* 36/40 cells 26/40 cells*
normal normal . normal normal normal
0 gap 9 gaps NA 2 gaps 1 gap 8 gaps
0 break 8 breaks 3 breaks 1 break 5 breaks
d 0 exchanges 2 exchanges 37/40 cells 29/40 cells* 0 exchanges 2 exchanges 3 exchanges
HNZ | in clincal tes for patient, i norml normal 54760 cels*
(10® M)b comparison withpcontro’I n 2 gaps 8 gaps f normal
P 27/30 cells 25/30 cells 1 break 2 breaks NA 2 gaps 29/40 cells 29/40 cells*
normal normal 0 exchanges 6 exchanges 5 breaks normal normal
0gap 2 gaps 0 exchanges 9 gaps 5 gaps
4 breaks 4 breaks 89/100 cells* 3 breaks 6 breaks
0 exchanges 0 exchanges . normal 0 exchanges 1 exchange
NA 4 gaps
8 breaks
0 exchanges

c d.f . . e
2Drug used for DNA breakage, ® Concentration of drug, Numbers of cells normal and numbers of cells with gaps, breaks and exchanges  Details not available Not done * Breakage level
increases after drug treatment but not to the levels observed in Fanconi anemia patients. "No difference between the cells of the patient and the control

Supplemental Table 3 Detailed chromosomal aberrations in lymphocyte cells. Chromosomal aberrations, with the number of normal cells, and numbers of gaps, breaks and exchanges in total
cells and in control cells included in the same experiment, after treatment with DEB, MMC and H2N.



A Sequence Ref dbSNP
Gene analyzed Variation Region database AF2 Status
TACC1 cDNA G/A coding rs2013586 ND Sb
PLEKHA2 cDNA c/- 5'UTR rs76319743 ND -
ADAM9 cDNA /T coding rs61753674 0.013 S
ADAM32 gDNA c/T 5'UTR rs59118660 0.4547 -
IDO2 gDNA (-/A) 3'UTR rs78742566 0.056 -
IDO2 gDNA A/T 3'UTR rs33976899 ND -
ANK1 gDNA Cc/T coding rs1137177 0.194 S
ANK1 gDNA /T coding rs2304880 0.181 S
ANK1 gDNA G/C coding rs504574 0.389 S
AP3M2 cDNA T/A coding rs1050263 ND Cc>S
AP3M2 cDNA /T coding rs1050264 ND L>F
HGSNAT cDNA T/C coding rs1126058 ND S

aAllele frequency ® Synonymous ND : Not determined
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Supplemental Figure 1 (A) Table of all variants (other than the causal MCM4 variant) identified in the coding region, splicing site and the
5 and 3'UTRs of all coding genes and one miRNA located in the centromeric region of chromosome 8. (B) Amplification of the MCM4
cDNA as two fragments. Schematic diagram of the MCM4 cDNA, showing the binding sites of the primers and the size of the amplification
products. Amplification of the MCM4 cDNA from SV40 fibroblatsts with various primer pairs for controls and patients. (C) Relative
quantification of MCM4 mRNA in EBV-B cells from P1.2, family members (n=7, 2 WT/WT, 5 WT/c.71-2A>G) and controls (n=2) and SV40-
fibroblasts and primary fibroblasts from P1.3, P2.1 and controls (n=2). We used only probes specific for MCM4 mRNA. GUS was used as
endogenous gene for comparison. The ratio of MCM4 to GUS mRNA levels is shown. Error bars indicate the standard deviation. (D) MCM4
was detected with a polyclonal antibody, at a size of 100 kDa, in total extracts of EBV-B cells from P1.2, WT/WT family members (n=2),
WT/c.71-2A>G family members (n=6) and controls (n=2). An antibody against GAPDH was used as a protein loading control.
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Supplemental Figure 4 Hematopoietic cell phenotypes in humans and mice (A) Flow cytometry for lymphocyte subsets: B cells, T cells
(CD3+, CD3+CD4+,CD3+CD8+) and NK cells were detected in the peripheral blood of controls and patients (P1.1, P1.2, P1.3 P1.4, P1.5 and
P2.1). Horizontal bars represent medians. (B) Flow cytometry for monocyte subsets: CD14+, CD16+, CD14/16+ and PDCsBDCA2+ and
MDCsBDCA1+ cells were detected in the peripheral blood of controls of various age groups (5 to 10 y, 10 to 15 y and >15 y), heterozygous
subjects and homozygous patients (P1.1, P1.2 and P1.3). Error bars for the controls indicate the standard deviation. (C) MCM4 was detected
with a polyclonal antibody, at a size of 100 kDa, in cell subsets from blood (PBLs, PMNs, T cells, B cells, NK cells, monocytes, MDDCs and
macrophages), EBV-B cells, primary and SV40 fibroblast cells from a control individual. An antibody against a-tubulin was used as a loading
control. This result is representative of 3 independent experiments). (D) NK cell percentage in WT/WT, Chaos3/WT, Chaos3/Chaos3 mice.
The percentage of NK cells is significantly lower in Chaos3/Chaos3 (n=11) than in WT/WT (n=25) mice (P <0.05 indicated by *, non parametric
Wilcoxon test). Horizontal bars indicate the means. The percentage of B cells is significantly higher in Chaos3/Chaos3 (n=11) than in WT/WT
(n=25) mice (P <0.005 indicated by **, non parametric Wilcoxon test). A significant difference in the percentage of T cells was observed
between WT/WT (n=19) and Chaos3/Chaos3 (n=11) mice (P <0.05 indicated by *, non parametric Wilcoxon test).
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Supplemental Figure 5 T-cell phenotypes and stimulation responses (A) Percentage of different T- and B-cell subsets in whole-blood
samples from healthy siblings either homozygous WT or heterozygous, and patients. (B) Proliferation of PBMCs determined by thymidine
incorporation from healthy homozygous WT or heterozygous siblings and patients were not stimulated (medium) or were stimulated with
PHA (2.5 mg/ml) over 3 days. (C) Apoptosis of PHA-activated T-cell blasts from a control, P1.2 and P1.3 was assessed by determining
propidium iodide staining in the presence or absence of stimulation with various doses of IL-2 or IL-15 over 3 days. (D) Flow cytometry
counts of CD3+Perforin+ T cells for controls (n=6), heterozygous siblings (n=2) and patients (P1.1, P1.2 and P1.3). Horizontal bars indicate

medians. A non significant difference (P>0.05) is indicated by “ns”.
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CD56+ NK cells that were also

CD16+, for controls (n=17),
heterozygous siblings (n=2) and

patients (P1.1, P1.2 and P1.3),

n Perforin+ for controls (n=6),
R heterozygous siblings (n=2) and
patients (P1.1, P1.2 and P1.3)
and CD57+ for controls (n=8) and
patient P1.3. Horizontal bars
indicate medians. A significant P
W CDo4ms W CDodow B CDoames <0.05 is indicated by *, a P <0.005
is indicated by ** and a P <0.0005

105 105 by ** in Student's t-test. (B)
MCM4 was detected with a
polyclonal antibody, at a size of
100 kDa, in nuclear extract from
the CD56bright and CD56dim NK
cell subsets of control blood. An
. antibody against B-actin was used
L LU N N i IR IR BRALLL B as a protein loading control. The
0 103 10* 10° 0 103 10 10° 0 103 10% 10° ratio of MCM4 to B-actin protein
WT/WT WT/c.71-2A>G P1.3 - levels is shown for 3 independent
CcD94 g controls from independent

experiments. Error bars indicate

the standard deviation. (C) Flow

cytometry counts of the two

subsets of CD56 NK cells

expressing CD94 in controls

20 4 —o— WTMWT (n=11), heterozygous siblings
(n=2) and patients (P1.1, P1.2 and

—a— . 71-2A>G/c.71-2A>G P1.3). Horizontal bars indicate
10 4 medians. P <0.05 is indicated by
* a P <0.005 is indicated by **
and a non significant difference
o (P>0.05) by “ns”. Representative
flow cytometry plots of a

0 IL:—L15 (ng/riL) 10 homozygous WT sibling, a
25 - 150 - heterozygous sibling and one
patient. (D) PBMCs from healthy
controls (n=6) and from one
patient (P1.3) tested in two
independent experiments were

stained with CFSE and stimulated
for 72 h with various doses of IL-
15. Apoptosis was assessed on
NK subsets, by 7AAD staining.
Error bars indicate the standard
deviation.
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