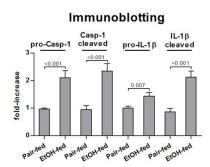
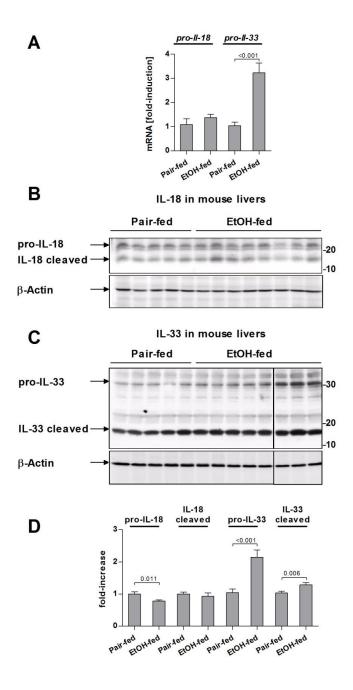
# IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice


Jan Petrasek, Shashi Bala, Timea Csak, Dora Lippai, Karen Kodys, Victoria Menashy, Matthew Barrieau, So-Yun Min, Evelyn A. Kurt-Jones, Gyongyi Szabo

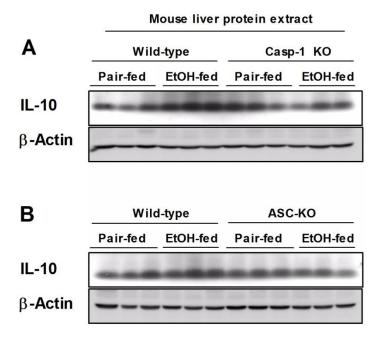
Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA

#### **Supplementary material**


- A. Supplementary figures
- B. Supplementary table
- C. Supplementary references

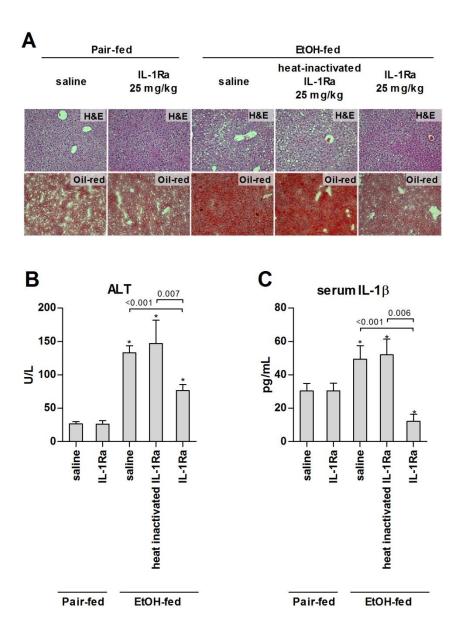
## A. Supplementary figures




**Supplementary Fig. 1** - Activation of the inflammasome and IL-1 $\beta$  in alcohol-induced liver injury

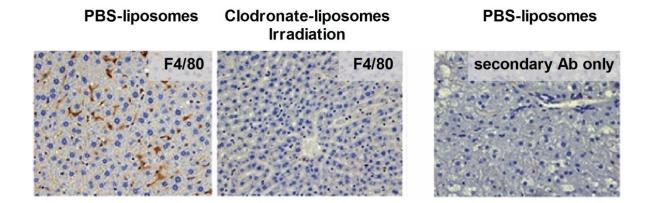
Wild-type mice were fed with control (pair-fed) or alcohol (EtOH-fed) diet and sacrificed 4 weeks later. Cleaved forms of caspase-1 and IL-1β in the livers were analyzed using antibodies that identify both full-length pro-form and cleaved forms, normalized to beta-actin and subjected to densitometry. Total number of mice used for statistical analysis were n=14 (pair-fed); n=19 (EtOH-fed). Means and SEM values are shown. Numbers in the graph denote *P* values. Representative Western blots are shown in Fig. 1 G, H.

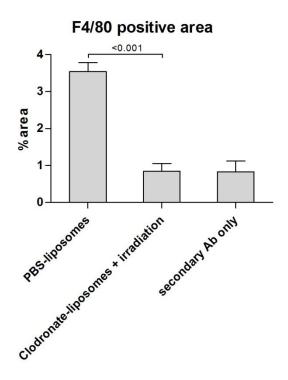



**Supplementary Fig. 2-** Alcoholic liver disease is associated with increased IL-33, but not IL-18, in the liver

Wild-type mice were fed with control (pair-fed) or alcohol (EtOH-fed) diet and sacrificed 4 weeks later. IL-18 and IL-33 (encoded by *pro-Il-18* and *pro-Il-33*, respectively) in the livers were analyzed by qPCR (A). IL-18 and IL-33 proteins in the liver were analysed in the livers using antibodies that identify both full-length and cleaved forms (B,C), normalized to beta-actin, and measured using densitometric analysis (D). Total number of mice used were n=5 (pair-fed); n=8 (EtOH-fed). Vertical line in (C) is used to divide two non-contiguous parts of the same blot. Numbers in graphs denote *P* values.

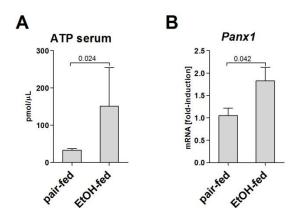



**Supplementary Fig. 3** - Deficiency of caspase-1 or ASC prevents upregulation of IL-10 in the livers of alcohol-fed mice


Wild-type, caspase-1- or ASC-deficient mice were fed with control (pair-fed) or alcohol (EtOH-fed) diet and sacrificed 4 weeks later. IL-10 in the livers was analyzed using immunoblotting, and normalized to beta-actin. Densitometric analysis of these blots is presented in Fig. 2 I (for A) or Fig. 4 G (for B).



**Supplementary Fig. 4**- Active form of human recombinant IL-1Ra is required for protection from alcoholic liver disease


Wild-type mice were fed with control (pair-fed, n=5) or alcohol diet (EtOH-fed, n=10 per treatment group), treated daily with saline, recombinant human IL-1Ra (Anakinra) or heat-inactivated IL-1Ra i.p., as described in Methods. Mice were sacrificed 4 weeks later. Liver injury and steatosis was quantified by H&E and Oil-red-O staining (A) and by serum ALT (B). Serum levels of the inflammatory cytokine IL-1 $\beta$  (C) were measured using specific ELISA. Total number of mice used was n=5 (pair-fed), n=10 (EtOH-fed, per treatment). Means and SEM values are shown. Numbers in graphs denote *P* values. Original magnification 200x. \**P* < 0.05 vs. pair-fed, saline-treated mice.





**Supplementary Fig. 5** - Depletion of Kupffer cells in the liver following treatment with clodronate and whole-body irradiation

Wild-type mice were injected with clodronate-liposomes or control PBS-liposomes i.v. (n=3 per group) and subjected to whole body irradiation, as described in Methods. Depletion of Kupffer cells was assessed 48 hours after clodronate or PBS-liposome injection using the F4/80 staining. Means and SEM values are shown. Number in the graph denotes *P* value. Original magnification 200x.



**Supplementary Fig. 6** - Alcoholic liver disease is associated with increased levels of ATP in the serum and upregulation of pannexin-1 in the liver

Wild-type mice were fed with control (pair-fed, n=5) or alcohol (EtOH-fed, n=10) diet and sacrificed 4 weeks later. Levels of ATP were measured in the serum (A) and expression of pannexin-1, encoded by *Panx1* (B) was measured in the liver by qPCR, as described in Methods. Means and SEM values are shown. Numbers in graphs denote *P* values.

#### B. Supplementary table

qPCR primers

| Target gene | Forward primer (5' $\rightarrow$ 3') | Reverse primer $(5' \rightarrow 3')$ |
|-------------|--------------------------------------|--------------------------------------|
| 18S         | gta acc cgt tga acc cca tt           | cca tcc aat cgg tag tag cg           |
| Asc         | gaa get get gac agt gea ac           | gee aca get eca gae tet te           |
| Nlrp3       | age ett eea gga tee tet te           | ctt ggg cag cag ttt ctt tc           |
| Panxl       | tgt ggc tgc aca agt tct tc           | aca gac tet gee eea cat te           |
| pro-Casp-1  | aga tgg cac att tcc agg ac           | gat cct cca gca gca act tc           |
| pro-Col1a1  | get eet ett agg gge eac t            | cca cgt ctc acc att ggg g            |
| pro-Il-1a   | gge acg ggg act gec etc tat          | tgt cgg ggt ggc tcc act              |
| pro-Il-1b   | tct ttg aag ttg acg gac cc           | tga gtg ata ctg cct gcc tg           |
| pro-Il-18   | cag gcc tga cat ctt ctg caa          | tct gac atg gca gcc att gt           |
| pro-Il-33   | age tet cea eeg ggg ete ac           | gcc tgc ggt gct gct gaa ct           |
| Tgfb1       | att cct ggc gtt acc ttg              | ctg tat tee gte tee ttg gtt          |

Quantitative polymerase chain reaction (qPCR) was performed using the iCycler (Bio-Rad Laboratories, Hercules, CA). The PCR conditions were: 95°C for 15 minutes followed by 40 cycles at 95°C for 15 seconds, 60°C for 10 seconds, and 72°C for 30 seconds. The reaction mixture for the SYBR Green assay contained 12.5  $\mu$ L SYBR Green PCR Master Mix (Bio-Rad laboratories, Hercules, CA, USA), 0.5  $\mu$ M of forward and reverse primer and 1  $\mu$ L of complementary DNA (corresponding to 100 ng RNA) for a total volume of 25  $\mu$ L. All amplifications and detections were carried out in a MicroAmp optical 96-well reaction plate with optical tape. At each cycle, accumulation of PCR products was detected by monitoring the increase in fluorescence by double-stranded DNA-binding SYBR Green. After PCR, a dissociation melting curve was constructed in the range of 55°C to 95°C. All data were analyzed using Bio-Rad iCycler software. The 18S was used for normalization of all experiments. Data was analyzed using the comparative Ct method ( $\Delta\Delta$ Ct method) using the following formula:  $\Delta$ Ct = Ct (target) - Ct (normalizer). The comparative  $\Delta\Delta$ Ct calculation involved finding the difference between the sample  $\Delta$ Ct and the baseline  $\Delta$ Ct. Fold increase in the expression of specific mRNA compared with 18S was calculated as  $2^{-(\Delta\Delta Ct)}$ .

## C. Supplementary references

Adachi, M., and Brenner, D.A. 2005. Clinical syndromes of alcoholic liver disease. Dig. Dis. 23:255-263.

Adachi, Y., Moore, L.E., Bradford, B.U., Gao, W., and Thurman, R.G. 1995. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108:218-224.

Alcoholic liver disease by country, World Health Organisation Statistical Information System. Retrieved from http://www.NationMaster.com/graph/mor\_alc\_liv\_dis-mortality-alcoholic-liver-disease.

Baeck, C., Wehr, A., Karlmark, K.R., Heymann, F., Vucur, M., Gassler, N., Huss, S., Klussmann, S., Eulberg, D., Luedde, T. et al. 2012. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416-426.

Ceccanti, M., Attili, A., Balducci, G., Attilia, F., Giacomelli, S., Rotondo, C., Sasso, G.F., Xirouchakis, E., and Attilia, M.L. 2006. Acute alcoholic hepatitis. J. Clin. Gastroenterol. 40:833-841.

Clement, S., Juge-Aubry, C., Sgroi, A., Conzelmann, S., Pazienza, V., Pittet-Cuenod, B., Meier, C.A., and Negro, F. 2008. Monocyte chemoattractant protein-1 secreted by adipose tissue induces direct lipid accumulation in hepatocytes. Hepatology 48:799-807.

Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27:519-550.

Granowitz, E.V., Porat, R., Mier, J.W., Pribble, J.P., Stiles, D.M., Bloedow, D.C., Catalano, M.A., Wolff, S.M., and Dinarello, C.A. 1992. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine 4:353-360.

Hritz, I., Velayudham, A., Dolganiuc, A., Kodys, K., Mandrekar, P., Kurt-Jones, E., and Szabo, G. 2008. Bone marrow-derived immune cells mediate sensitization to liver injury in a myeloid differentiation factor 88-dependent fashion. Hepatology 48:1342-1347.

Huang, Y.S., Chan, C.Y., Wu, J.C., Pai, C.H., Chao, Y., and Lee, S.D. 1996. Serum levels of interleukin-8 in alcoholic liver disease: relationship with disease stage, biochemical parameters and survival. J. Hepatol. 24:377-384.

Iimuro, Y., Gallucci, R.M., Luster, M.I., Kono, H., and Thurman, R.G. 1997. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26:1530-1537.

Lemmers, A., Moreno, C., Gustot, T., Marechal, R., Degre, D., Demetter, P., de Nadai, P., Geerts, A., Quertinmont, E., Vercruysse, V. et al. 2009. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49:646-657.

Listing, J., Strangfeld, A., Kary, S., Rau, R., von Hinueber, U., Stoyanova-Scholz, M., Gromnica-Ihle, E., Antoni, C., Herzer, P., Kekow, J. et al. 2005. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum. 52:3403-3412.

Mandal, P., Pritchard, M.T., and Nagy, L.E. 2010. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World J. Gastroenterol. 16:1330-1336.

McClain, C.J., Barve, S., Barve, S., Deaciuc, I., and Hill, D.B. 1998. Tumor necrosis factor and alcoholic liver disease. Alcohol. Clin. Exp. Res. 22:248S-252S.

Menon, K.V., Stadheim, L., Kamath, P.S., Wiesner, R.H., Gores, G.J., Peine, C.J., and Shah, V. 2004. A pilot study of the safety and tolerability of etanercept in patients with alcoholic hepatitis. Am. J. Gastroenterol. 99:255-260.

O'Shea, R.S., Dasarathy, S., and McCullough, A.J. 2010. Alcoholic liver disease. Am. J. Gastroenterol. 105:14-32; quiz 33.

Purohit, V., Gao, B., and Song, B.J. 2009. Molecular mechanisms of alcoholic fatty liver. Alcohol. Clin. Exp. Res. 33:191-205.

Rongey, C., and Kaplowitz, N. 2006. Current concepts and controversies in the treatment of alcoholic hepatitis. World J. Gastroenterol. 12:6909-6921.

Sarphie, T.G., D'Souza, N.B., and Deaciuc, I.V. 1996. Kupffer cell inactivation prevents lipopolysaccharide-induced structural changes in the rat liver sinusoid: an electron-microscopic study. Hepatology 23:788-796.

Tilg, H., Jalan, R., Kaser, A., Davies, N.A., Offner, F.A., Hodges, S.J., Ludwiczek, O., Shawcross, D., Zoller, H., Alisa, A. et al. 2003. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J. Hepatol. 38:419-425.