Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice
Sun-Young Lee, … , Ren Xu, Mina J. Bissell
Sun-Young Lee, … , Ren Xu, Mina J. Bissell
Published August 13, 2012
Citation Information: J Clin Invest. 2012;122(9):3211-3220. https://doi.org/10.1172/JCI60498.
View: Text | PDF
Research Article

FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice

  • Text
  • PDF
Abstract

Breast cancers commonly become resistant to EGFR–tyrosine kinase inhibitors (EGFR-TKIs); however, the mechanisms of this resistance remain largely unknown. We hypothesized that resistance may originate, at least in part, from molecular alterations that activate signaling downstream of EGFR. Using a screen to measure reversion of malignant cells into phenotypically nonmalignant cells in 3D gels, we identified FAM83A as a candidate cancer-associated gene capable of conferring resistance to EGFR-TKIs. FAM83A overexpression in cancer cells increased proliferation and invasion and imparted EGFR-TKI resistance both in cultured cells and in animals. Tumor cells that survived EGFR-TKI treatment in vivo had upregulated FAM83A levels. Additionally, FAM83A overexpression dramatically increased the number and size of transformed foci in cultured cells and anchorage-independent growth in soft agar. Conversely, FAM83A depletion in cancer cells caused reversion of the malignant phenotype, delayed tumor growth in mice, and rendered cells more sensitive to EGFR-TKI. Analyses of published clinical data revealed a correlation between high FAM83A expression and breast cancer patients’ poor prognosis. We found that FAM83A interacted with and caused phosphorylation of c-RAF and PI3K p85, upstream of MAPK and downstream of EGFR. These data provide an additional mechanism by which tumor cells can become EGFR-TKI resistant.

Authors

Sun-Young Lee, Roland Meier, Saori Furuta, Marc E. Lenburg, Paraic A. Kenny, Ren Xu, Mina J. Bissell

×

Figure 4

FAM83A interacts with c-RAF and PI3K upstream of MEK1/2 activation.

Options: View larger image (or click on image) Download as PowerPoint
FAM83A interacts with c-RAF and PI3K upstream of MEK1/2 activation.
(A) ...
(A) Control and FAM83A-overexpressing T4-2 cells were tested for response to AG1478 (300 nM), LY294002 (LY; 8 μM), or PD98059 (PD; 20 μM) in 3D lrECM cultures in comparison to vehicle (DMSO) treatment. α6 integrin staining (green) was used to indicate basal polarity; blue, DAPI. Scale bars: 50 μm. (B) Size of colonies formed by control versus FAM83A-overexpressing cells after drug treatment as in A (P < 0.05, Kruskal-Wallis test). (C) Detection of tyrosine-phosphorylated FAM83A after EGF stimulation (0, 30, or 60 minutes) by reciprocal IP with an antibody against FAM83A or phosphotyrosine (pY). Rabbit preimmune serum was used as control. (D) Interaction of endogenous FAM83A with c-RAF and PI3K p85 subunit after EGF stimulation (0, 30, or 60 minutes) by reciprocal co-IP with an antibody against FAM83A or c-RAF. Preimmune serum was used as control. (E) Levels of phosphorylated PI3K p85 subunit (p-Y458) and c-RAF (p-S338) in control, FAM83A-overexpressing, and FAM83Ash-expressing T4-2 cells after treatment with EGF (1 hour) or AG1478 (2 hours). (F) Levels of phosphorylated AKT (p-S473), MEK1/2 (p-S217/221), and ERK1/2 (p-T202/Y204) in control, FAM83A-overexpressing, and FAM83Ash-expressing T4-2 cells after growth in 3D lrECM culture for 5 days. (G) Levels of phosphorylated AKT, MEK1/2, and ERK1/2 in control, FAM83A-overexpressing, and FAM83Ash-expressing T4-2 cells after treatment with AG1478 for 2 hours. (H) FAM83A interacts with c-RAF and PI3K upstream of MEK activation.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts