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Introduction
Danio rerio, better known as zebrafish, is a small vertebrate tropical 
water fish that has become one of the favored animal model systems for 
studying developmental processes and human disorders (Figure 1).  
Zebrafish share a high genetic similarity to humans, and approxi-
mately 70% of all human disease genes have functional homologs 
in zebrafish (1). Many advantages of zebrafish biology make it an 
attractive model for researchers: they have a high fecundity and can 
lay 200–300 eggs/week, the embryos are transparent and develop 
outside the body, making them particularly easy to study, and devel-
opment is rapid, with major organs formed by 24 hours after fertil-
ization. In addition, zebrafish are easy and inexpensive to raise and 
maintain, making it possible to keep thousands of animals in a labo-
ratory at a reasonable cost. As a nonmammalian species, zebrafish  
do have certain disadvantages for modeling human disease; they 
lack some of the mammalian organs, such as lung and mammary 
gland, and phenotypic characteristics of diseases caused by ortholo-
gos genes can be very different in fish and human. In addition, the 
zebrafish genome includes many gene duplications, resulting in 
gene subfunctionalization and neofunctionalization (2).

Tools to model disease in zebrafish. Traditionally, zebrafish have been 
utilized as a forward genetic system. Chemical and insertional muta-
genesis screens have led to the identification of a myriad of mutants 
with disruption of conserved genes that correlate to human disease 
loci (refs. 3, 4, and Figure 2). In addition, the DNA transposon system 
Sleeping Beauty — used in mouse for insertional somatic mutagenesis —  
has been adopted in zebrafish and successfully used to identify con-
served and novel cancer genes (5). More recently, the development of 
efficient gene knockdown technology has transformed zebrafish into 
a reverse genetic system. Morpholinos — antisense oligonucleotides 
that inhibit translation or affect splicing — can be used to transiently 
inhibit gene expression. Morpholinos are injected into embryos at the 
1- to 4-cell stage and remain active for several days (6, 7); since most of 
the organs have formed and are functioning within the first 5 days fol-
lowing fertilization, this technology permits a quick and easy probing 
of specific gene function in vivo (Figure 3). In contrast, this technol-
ogy cannot be used to study gene function in mice because antisense 
oligonucleotides are rapidly diluted during mouse development.

In an effort to develop stable mutants, a technique called target-
selected mutagenesis (TILLING) was developed (8, 9). This method 

combines standard ethylnitrosourea (ENU) mutagenesis with gene 
targeting in which genomic DNA from a large library of ENU-
mutagenized zebrafish is analyzed by exon sequencing to identify 
mutation(s) (Figure 3 and ref. 10). For example, this procedure generat-
ed missense mutations in the tumor suppressor p53 (11). A Zebrafish  
TILLING consortium (https://webapps.fhcrc.org/science/tilling/) 
has been established to facilitate the isolation of specific mutant lines. 
Similarly, with the development of new sequencing technologies, 
the Sanger Institute has developed the Zebrafish Mutation Project 
(http://www.sanger.ac.uk/Projects/D_rerio/zmp/). The ultimate goal 
of this project is to create an archive containing mutant alleles for all 
of the genes in the zebrafish genome, which are made available to the 
research community through the Zebrafish International Resource 
Center (ZIRC). To date, 4,469 mutant alleles are available.

Alternative methods to generate stable mutants have also been 
developed. Zinc finger endonucleases (ZFNs) are chimeric fusions 
between DNA-binding zinc finger proteins and the nonspecific cleav-
age domain of the FokI endonuclease. They can induce double-strand 
breaks in a specific genomic target sequence, which are imprecisely 
repaired by nonhomologous end joining (NHEJ) (12). ZFN mRNA is 
injected into one-cell–stage embryos to generate zebrafish carrying 
the desired genetic lesions. It has been shown that germ cell mosa-
icism in the identified ZFN allele–bearing founder fish is up to 50% 
(Figure 3 and ref. 13). The bottleneck of this approach is the genera-
tion of ZFNs with high and specific activity in vivo. The zebrafish 
community has designed a public database (ZFN Sequence Tag; pgfe.
umassmed.edu/ZFNV1) to aid in the design and construction of 
ZFNs (14). ZFN-induced lesions have been reported in several genes 
including gata2, a zinc finger transcription factor that is essential for 
definitive hematopoiesis and that is associated with familial coronary 
artery disease (15). Its role in vasculature development is unknown, 
and the characterization of the ZNF mutant highlights a novel role 
for gata2 in artery morphogenesis (15). In a similar strategy, research-
ers have recently fused transcription activator-like (TAL) effectors to a 
FokI cleavage domain generating “TALENs” to disrupt target genes in 
zebrafish (16). These fusion proteins work very similarly to ZFNs, but 
are easier to design and assemble (17). It is not yet established whether 
TALENs induce off-target effects as have been shown for ZFNs (18).

To facilitate the over- and misexpression of genes of interest, germ 
line transgenesis has been greatly improved in zebrafish using several 
transposon-mediated systems (19, 20). Injection of these constructs 
into fertilized eggs can result in germ line transgenesis with 50%–80% 
efficiency. An expanding panel of transgenic zebrafish expressing 
fluorescent proteins in various cell types, organs, and anatomical 
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patterns has also been generated (21). Transgenic systems have been 
developed to provide precise temporal or spatial control of gene acti-
vation or inhibition, including inducible Cre-lox models, in which it 
is possible to control the temporal activity of the Cre recombinase by 
fusing it to a form of the estrogen receptor ligand-binding domain 
that has been modified to bind to tamoxifen (20, 22–24). The ease 
of making transgenic animals has led to many experiments prob-
ing overexpression of wild-type, constitutively active, or dominant-
negative versions of a gene of interest. This has been useful for the 
generation of many disease models, including melanoma (25, 26).

Below, selected examples illustrate the distinct uses of zebrafish 
technology to create a model, explore disease biology, and to find 
new therapies.

Hematological disorders
The first zebrafish model of a human disease derived from positional 
cloning was established in 1998 (27). Isolated from a large forward 
genetic screen, the zebrafish mutant sauternes (sau) has a defect in 
hemoglobin production. The mutated gene encodes erythroid syn-
thase δ-aminolevulinate synthase (ALAS-2), which regulates the first 
step in heme biosynthesis; inactivation of this gene leads to congeni-
tal sideroblastic anemia in zebrafish and humans (27). Since then, 
several other mutants have been isolated from genetic screens that 
resemble human hematological diseases, including anemia (28–30), 
polycythemia (31), and porphyria (4, 32). The positional cloning of 
the hypochromic anemia mutant weissherbst (weh) identified ferro-
portin 1 as a novel iron transporter (28). The human ortholog was 
subsequently found mutated in patients affected by hemochroma-
tosis, a disorder characterized by iron absorption defects (33). Other 
anemias have been phenocopied using morpholino-mediated knock-
down (34, 35), including diamond blackfan anemia (DBA), which is 
modeled by knockdown of ribosomal protein RSP19 (36). Charac-

terization of the RSP19 morphants and other ribosomal mutants 
revealed an activation of the p53 pathway, raising the possibility that 
a p53 family member could be targeted for DBA treatment (34, 37).

Acute lymphoblastic leukemia. Acute lymphoblastic leukemia (ALL) 
is the most common type of childhood leukemia (38). The first 
transgenic cancer model established in zebrafish was a T cell leu-
kemia model generated using a chimeric transgene encoding the 
mouse c-Myc gene fused to GFP driven by a rag2 promoter (39). 
Within two months, injected zebrafish developed tumors in the 
thymus that spread to the gills, eye, abdominal organs, and muscle 
(39). Later, a double-transgenic line was developed carrying the 
lox-dsRED2-lox EGFP:mMyc and Cre driven by a heat shock pro-
moter. After induction, these fish developed tumors with 81% pen-
etrance (40). Another T-ALL leukemia model was established using 
an activated form of NOTCH1, which is mutated in over 50% of 
all human T-ALL cases. Zebrafish carrying the mutated NOTCH1 
develop tumors with late onset, but when crossed to a line overex-
pressing bcl2, a more rapid tumor onset was observed, suggesting 
cooperation between the Notch pathway and bcl2-mediated apop-
tosis (41). bcl2 overexpression in both Notch- and Myc-induced 
T-ALL led to more aggressive tumors that were resistant to radia-
tion (42). These studies demonstrate the utility of modifier screens 
in the identification of genetic interactions. These zebrafish T-ALL 
models are sensitive to the same chemotherapeutic drugs used in 
patients (43) and thus may be used in drug screens to identify 
novel therapeutics. In addition, a comparative study on copy num-
ber aberrations (CNAs) in zebrafish and humans revealed an over-
lap between T-ALL CNA genes across species, supporting zebrafish 
as a relevant model for studying human leukemias (44).

Solid tumor models
Fish and human solid tumors share a high degree of histological 
similarity. Chemical treatment, transplantation of mammalian 
cells, forward genetic screens, and reverse genetic approaches using 
knockouts and transgenes have been employed to generate zebrafish  
cancer models (reviewed in refs. 45, 46).

Melanoma. 50%–60% of melanoma tumor samples carry the acti-
vating mutation BRAFV600E, which results in sustained activation 
of the BRAF/MEK1/2/ERK1/2 MAP kinase pathway (47). In addi-
tion to BRAF, another member of the MAP kinase pathway, the 
RAS oncogene (rat sarcoma viral oncogene homolog), is found 
mutated in approximately 20% of metastatic melanoma. In 2005, 
Patton et al. generated the first zebrafish melanoma model, in 
which human BRAFV600E was expressed in melanocytes using the 
promoter of microphthalmia-associated transcription factor a 
(mitfa) (48). Fish injected with this mutant form of BRAF devel-
oped moles similar to human nevi, whereas injection of BRAF into 
p53M214K mutant fish led to the formation of melanoma starting at 
four months of age. Although p53 mutations are rare in human 
melanoma tumors, the gene is frequently functionally inactivat-
ed by loss of CDKN2A or other tumor suppressor pathways (49). 
More recently, a model of melanoma formation independent of 
p53 activity was developed using a UAS\GAL4 system. A cross 
between a driver line expressing the transactivator GAL4 driven 
by the c-kit (kit-a in fish) promoter and a responder line expressing 
the human activated form of H-RASG12V led to the generation of 
fish that display a hyperpigmented phenotype and the formation 
of tumors beginning at four weeks after fertilization (50).

Ceol et al. used the BRAFV600E/p53M214K fish model to develop 
a method for testing the role of genes in a recurrently amplified 

Figure 1
Drawing depicting zebrafish. Shown are larval (A) and adult (B) zebrafish  
organs. Larval age is 3 to 5 days post fertilization (dpf).
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region of human chromosome 1 in melanoma. They found that 
SETDB1, a histone methyltransferase that is amplified in as many 
as 30% of human melanomas, accelerated tumor formation (51). 
These melanoma models recapitulate the pathology of the human 
melanoma and can be utilized as a cost-effective system for screen-
ing of anticancer compounds.

Heart disorders
Zebrafish are well suited for studying heart development and disor-
ders because oxygen and nutrients can reach tissues by passive diffu-
sion in embryos, so those with malformed hearts can still develop and 
survive for 2 to 3 days after fertilization. Forward genetic screens led 
to the identification of mutants with heart defects resembling human 
dilated cardiomyopathies (DCMs) (52) characterized by enlargement 
of the ventricle, atrium, or both and by decreased myocardial contrac-
tility. The silent heart and pickwick mutants are characterized by poor 
heart contractility, and cloning of the mutations led to the identi-
fication of cardiac troponin T (tnnt2) (53) and the large sarcomeric 
Titin protein (54), respectively. Mutation of TNNT2 in humans causes 

DCM and sudden death in young athletes. Similarly, laminin α-4 and 
integrin-linked kinase mutations cause heart failure in zebrafish by 
affecting cardiomyocytes and endothelial cells, and mutations in 
these genes have been linked to familial DCM in humans (55).

Additional heart mutants, including reggae and breakdance, which 
display short QT syndrome and long QT syndrome, respectively, 
have been identified in mutagenesis screens (56). Both mutants 
carry mutations in the ether-à-go-go–related gene (zERG), the 
major subunit of a potassium channel (57, 58). Peal et al. per-
formed a small molecule screen using the breakdance mutants and 
identified flurandrenolide and a novel compound 2-methoxy-N-
(4-methylphenyl) benzamide (2-MMB) as small molecules that can 
rescue the breakdance phenotype. Such screens may lead to novel 
therapeutics for human arrhythmia (58).

Myocardial infarction. Compared with humans, young mice (59) 
and fish (60) have faster ability to regenerate heart tissue. Myocar-
dial infarction (MI) has been recently modeled in fish using cryoin-
jury, which results in massive cell death (61). To identify the source 
of the newly formed cardiomyocytes following this injury, Jopling 
et al. used a Cre/lox lineage tracing system and found that regen-
erated cardiomyocytes arise from differentiated cardiomyocytes 
that undergo limited dedifferentiation characterized by structural 
changes and expression of cell-cycle progression genes (62). These 
data suggest that zebrafish heart regeneration is driven by preex-
isting cardiomyocytes rather than by progenitors, as previously 
suggested (63). Thymosin b4, a small ubiquitous protein, appears 
to be one signal that triggers the formation of new cardiac tissue 
and blood vessels in fish and in mouse (64, 65). These observations 
raise the hope of finding new heart-repair drugs using zebrafish.

Muscle disorders
Duchenne muscular dystrophy. Duchenne muscular dystrophy (DMD) 
is a lethal genetic disorder characterized by wasting of muscle tissue 
caused by mutations in the dystrophin gene. Zebrafish strains with 
mutations in the dystrophin gene (called dmd or sapje) were identi-
fied from a large forward genetic screen (66) and have a phenotype 
similar to the human disease, displaying progressive degeneration 
of skeletal muscle. Currently, there is no cure for DMD and the 
treatments employed so far are aimed at controlling symptoms to 
maximize quality of life. Zebrafish dmd mutants have been used 
in a chemical suppressor screen to identify potential compounds 
that can correct the disease pathology, as detected by alterations 
in birefringence, which measures muscle integrity (67). This screen 

Figure 2
Forward genetics approaches to generate zebrafish disease models. 
Chemical mutagenesis (left). Adult males that have been mutagenized by 
treatment with ENU are crossed to a wild-type female to create an F1 
generation that contains a random set of point mutations in their genome. 
In a diploid-based screen, members of the F1 are outcrossed to wild type 
to increase the number of fish carrying specific recessive mutations. The 
F2 generation is subsequently intercrossed to generate F3 progeny, which 
can be analyzed phenotypically for recessive defects. One-fourth of the 
F2 family intercrosses will produce mutant progeny in one-fourth of the F3 
embryos. In a haploid screen, eggs obtained from F1 females are fertilized 
with UV-treated sperm to generate haploid embryos. The haploid clutch 
derived from a heterozygous female (+/m) will contain 50% mutant and 
50% wild-type embryos. Insertional mutagenesis (right). Virus is injected 
into 1,000- to 2,000-cell–stage embryos. F1 fish carrying more then 3 
insertions are subsequently bred. The F2 generation is screened employ-
ing the same breeding scheme used for the chemical-based mutagenesis.
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revealed a number of compounds that appear to effectively reduce 
dystrophic symptoms in zebrafish. In particular, PDE5 inhibitors 
appear to be useful, and they have also been shown to be effective 
in the mdx mouse model of muscular dystrophy (68).

Kidney disorders
Zebrafish have become a popular model for studying renal dis-
eases thanks to the anatomical simplicity of their kidneys. Polycys-
tic kidney disease (PKD), nephronophthisis, acute kidney injury 
(AKI), and a range of ciliopathies have been modeled in zebrafish 
(reviewed in ref. 69).

Several studies suggest that cilia (microtubule-based hair like 
organelles) play a central role in the etiology of PKD. The proper 
function of cilia prevents cystic formation and this hypothesis has 

been largely supported by the characterization of several zebrafish 
mutants carrying mutations in cilia proteins, such as intraflagellar 
transport proteins and LRRC50 (70–72).

Several ciliopathies including Bardet-Biedl syndrome (BBS), 
nephronophthisis (NPHP), Jeune, Joubert, oro-facial-digital 
(OFD1), and Meckel (MKS) syndromes have been modeled in 
zebrafish using morpholinos for ciliopathy candidate genes. The 
use of drugs such as rapamycin and roscovitine ameliorate the 
renal phenotype observed in these morphant embryos, suggesting 
that zebrafish can be used to identify potential therapeutic agents 
for renal cystitis (73).

The zebrafish kidney is also a valuable system for studying AKI 
because, as opposed to mammals, fish can generate new nephrons 
throughout their life and regenerate new nephrons after injury 

Figure 3
Reverse genetic approaches to generating zebrafish disease models. (A) Morpholinos or mRNA are injected into embryos to transiently knock down 
or overexpress a potential disease gene. Phenotypic analysis is performed on these embryos. Alternatively, mRNA encoding ZFN or TALEN is injected 
into the embryos. Putative founders are raised to adulthood and outcrossed to identify carriers. Founders carrying the allele of interest are then out-
crossed to generate an F1 population. Heterozygous F1 carriers are identified by genotyping. (B) TILLING: adult males that have been mutagenized 
by treatment with ENU are crossed to wild-type females. A DNA library of tailfin clips or frozen sperm is prepared from F1 males. PCR amplification 
of exons of a specific gene of interest followed by sequencing is performed on the genomic library. Once a mutation is identified, the fish carrying the 
mutation will be recovered by crossing the corresponding fish from the live library to a wild-type fish or by thawing the cryopreserved sperm and using 
it for in vitro fertilization (IVF). The resulting progeny are then intercrossed to generate heterozygous and homozygous mutants for the disease gene.
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(74). Diep et al., in a series of transplantation experiments, were 
able to identify LIM homeobox 1a–positive (lhx1a-positive) cells 
as adult self-renewing nephron stem/progenitor cells (74). These 
findings pave the way for isolating similar cells in mammals with 
the aim of developing novel renal regenerative therapies.

Central nervous system disorders
Many studies have focused on the use of zebrafish as a model 
system for neurological, neurodegenerative, behavioral, and ocu-
lar disease, and these have been extensively reviewed elsewhere 
(75–78). Human neurodegenerative diseases including Parkinson, 
Huntington, and Alzheimer diseases have been successfully mod-
eled in zebrafish, and the orthologs of major disease-associated 
genes have been identified in zebrafish (78).

In recent years, zebrafish have also been successfully used for 
behavioral screening of neuroactive drugs (79, 80). The search for 
new drugs to alleviate psychiatric and central nervous system dis-
orders is a difficult task and, since in vitro studies cannot predict 
therapeutic outcomes in vivo, the use of whole-animal systems has 
become necessary. Kokel et al. used a stereotypical motor behavior 
called the photomotor response to screen 14,000 compounds in an 
automated fashion. Using phenotypic comparisons and compu-
tational techniques, the authors were able to identify new acetyl-
cholinesterase and monoamine oxidase inhibitors (79). Rihel et al. 
screened nearly 4,000 compounds using an automated rest/wake 
behavioral assay. In this study, small molecules were clustered 
according to the behavioral phenotype observed. Many modula-
tors of neurotransmitter systems, including the noradrenaline, 
serotonin, dopamine, GABA, glutamate, histamine, adenosine, and 
melatonin systems, induced sleep/wake phenotypes in zebrafish  
similar to those observed in mammals (80). This study suggests 
that factors including the potassium channel ERG are involved 
in controlling rest and locomotor activity and that modulation of 
these pathways could represent novel therapeutic strategies in the 
treatment of sleep disorders.

Ocular disorders
The zebrafish eye is similar in morphology, physiology, gene expres-
sion, and function to the human eye. Several zebrafish mutants 
displaying eye defects and visual impairment have been identified, 
revealing that signaling pathways including sonic hedgehog (Shh), 
nodal, and retinoic acid are involved in eye development and dis-
ease (81). Pharmacological intervention in these mutants has shed 
light on the mechanisms of these diseases. For example, the blowout 
mutant, which harbors a mutation in patched1 (a negative regulator 
of Shh) revealed that pharmacologic inhibition of the Hedgehog 
pathway rescues the coloboma phenotype characterized by open 
choroid fissure (82). Rather surprisingly, lamb (laminin beta 1) and 
pax2 mutants displaying coloboma are rescued upon treatment 
with gentamicin and paromycin, two aminoglycoside drugs that 
most likely allow translational read-through of nonsense muta-
tions (83). This work suggests a possible treatment for coloboma.

Neuhauss et al. used for the first time optokinetic and optomo-
tor behavioral assays to analyze more than 400 mutants previously 
identified based on defects in organ formation, tissue patterning, 
and pigment formation. This study uncovered mutations that led 
to lens degeneration (bumper), melanin deficiency (sandy), lack of 
ganglion cells (lakritz), ipsilateral misrouting of axons (belladonna), 
and optic-nerve disorganization (grumpy and sleepy) (84). Several 
other ocular diseases, including glaucoma and retinal degenera-

tion, have also been modeled in fish (76). Retinal degeneration is 
observed in several ciliopathies such as Leber’s congenital amau-
rosis (LCA), BBS, Senior-Loken syndrome, Joubert syndrome, and 
MKS (85). The phenotype of the zebrafish mutants (oval, elipsa, 
fleer) closely resembles some of these human ciliopathies, includ-
ing defects in photoreceptor outer segment formation. Positional 
cloning of the oval locus identified a mutation in the intraflagel-
lar transport protein 88 (IFT88), which is a component of the IFT 
complex. This complex is involved in the generation and mainte-
nance of ciliated structures (86). The further characterization of 
these mutants should help to clarify the roles of individual IFT par-
ticle members in the formation and survival of photoreceptor cilia.

Future perspectives
Due to their versatile and unique features, we believe zebrafish will 
play an increasingly prominent role in the identification and study 
of disease genes and therapeutic discovery.

Interfacing with human genetics and genomics. Whole-genome 
sequencing and genome-association studies have identified candi-
date human disease genes. The zebrafish system is well poised for 
functionally characterizing such genes and can be used to exam-
ine coding and noncoding function in vivo. Several studies using 
genomic approaches have identified gene variants whose function 
in disease pathology has been successfully tested in zebrafish, 
including melanoma (87), cardiomyopathy (88), polyneuropathy 
(89), neurodegenerative disease (90, 91), and ciliopathies (92). 
Recently, Gieger et al. carried out a high-powered meta-analysis 
of genome-wide association studies (GWAS) in nearly 67,000 indi-
viduals to identify putative novel regulators of megakaryopoiesis 
and platelet formation (93). Out of the 68 genomic loci associ-
ated with platelet count and volume mapping, 11 novel regulators 
were identified using drosophila and zebrafish. This study vali-
dates zebrafish as a reliable platform for identifying the function 
of mutated genes in human disease.

Chemical screens and drug discovery. Zebrafish are amenable to large-
scale drug screens because the larvae can be exposed to drugs by 
simply placing them in a 96-well plate and adding chemicals to the 
water, though high-throughput chemical screens are less feasible 
in adult fish due to their larger size. To increase the scale of embryo 
collection, a specialized breeding tank was designed, allowing the 
collection of thousands of embryos that are developmentally syn-
chronized (94). Several large chemical screens have been performed 
in the past 5 years (95) that have identified important new com-
pounds that are currently being tested in clinical trials (96, 97). In 
a screen aimed at discovering novel regulators of hematopoietic 
stem cell formation, North et al. found that prostaglandin E2 is 
an important and conserved regulator of hematopoietic stem cell 
number (96) that interacts with the Wnt signaling pathway to regu-
late HSC regeneration (98). These results have been confirmed in 
vitro and in vivo in a murine model, and prostaglandins are cur-
rently being tested in a clinical trial to potentially enhance hema-
topoietic stem engraftment after bone marrow depletion (96, 99). 
From a large chemical screen for neural crest regulators, White et 
al. found that leflunomide, a drug that it is used to treat rheuma-
toid arthritis, affects transcriptional elongation of genes that are 
required for neural crest development and melanoma growth (97). 
Leflunomide is also currently being tested in melanoma patients in 
combination with a BRAF inhibitor. Both of these studies validate 
the feasibility of discovering relevant compounds using zebrafish 
combined with successful translation into the clinic.
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