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The current epidemic of chronic obstructive pulmonary disease (COPD) has produced a worldwide health care
burden, approaching that imposed by transmittable infectious diseases. COPD is a multidimensional disease, with
varied intermediate and clinical phenotypes. This Review discusses the pathogenesis of COPD, with particular
focus on emphysema, based on the concept that pulmonary injury involves stages of initiation (by exposure to ciga-
rette smoke, pollutants, and infectious agents), progression, and consolidation. Tissue damage entails complex
interactions among oxidative stress, inflammation, extracellular matrix proteolysis, and apoptotic and autophagic
cell death. Lung damage by cigarette smoke ultimately leads to self-propagating processes, resulting in macromo-
lecular and structural alterations — features similar to those seen in aging.

Tobacco-related diseases, including chronic obstructive pulmo-
nary disease (COPD), account for 3.7% of the world burden of
disability-adjusted life-years (DALYs), a measure of lost years
of healthy life (1). Tobacco use, excessive alcohol consumption,
and unhealthy diets and physical inactivity contribute to most
preventable non-communicable diseases. These diseases are pro-
jected to impose a worldwide burden of $47 trillion health dol-
lars by 2030. In contrast, it costs only $0.40 per individual per
year to implement a program aimed at averting tobacco-related
diseases that has the potential to save 25-30 million DALYs (1).
Notwithstanding its preventable nature, the increasing preva-
lence, impact as the third leading cause death in the United
States since 2008, and socioeconomic costs (1) call for vigorous
research efforts to improve the understanding and, ultimately,
management of COPD.

Under the umbrella definition of “decreased airflow that is not
fully reversible” classically measured by the forced expiratory
volume in one second (FEV;), COPD has a spectrum of clinical
presentations, which affects accurate diagnostic phenotyping of
patients as well as the design and validation of effective therapies
(2). The typical clinical manifestations of the COPD syndrome
include chronic bronchitis, a condition of large-airway inflam-
mation and remodeling, and emphysema, a disease of the distal
airways and lung parenchyma that manifests as loss of surface
area for gas exchange. COPD decreases patients’ quality of life
due to shortness of breath and chronic productive cough, which
can progress over years to chronic hypoxemic and/or hypercar-
bic respiratory failure. Furthermore, systemic manifestations of
COPD such as systemic inflammation, alterations of metabo-
lism, cardiovascular events, and cancer contribute to the untime-
ly death of these patients.

This Review emphasizes recent pathogenetic insights and
emerging investigations into the complex and chronic nature
of COPD (Table 1). These efforts have the added benefit of pro-
viding a window into lung biology, with a broader impact in the
understanding of other non-tobacco-related pulmonary diseases.
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Initiation
Tobacco smoke remains the key cause of COPD worldwide. Given
that cigarette smoke contains thousands of injurious agents (3),
its pathogenicity cannot be stringently studied one compound
at a time. Aside from nicotine, heavy metals, and carcinogens,
tobacco smoke leads to a significant exposure to oxidants. These
include alkyl, alkoyl, and peroxyl organic free radicals (causing
lipid peroxidation), o,B-unsaturated aldehydes (such as acrolein
and crotonaldehyde, which cause protein carbonylation and loss
of sulfhydryls), and superoxide, N,O, and nitric oxide (which can
generate peroxynitrite, leading to formation of dityrosine and/or
3-nitrotyrosine) (4).

While most studies have addressed medium- to long-term
organismal responses to cigarette smoke, insights into immediate
host responses to the inhalation of the toxic and oxidant compo-
nents of smoke have been limited (Figure 1). Both in humans (5)
and in rodents (6), tobacco smoke causes airway inflammatory
responses within minutes or hours of exposure. One of the earli-
est manifestations is a breach in the vascular and airway barrier
function (7), with brisk recruitment of circulating inflamma-
tory cells to the lung (8). Indeed, oxidants present in the ciga-
rette smoke trigger NF-kB-dependent inflammatory responses
(9). The acute inflammatory response appears to be transient
in nature and mediated by NF-kB, likely counteracted by regu-
latory networks that dampen NF-kB-dependent responses (10).
Paradoxically, NF-kB may also participate in protection against
cigarette smoke, as loss of function of the NF-kB p50 subunit
augments cigarette smoke inflammatory responses (11).

Recent studies have implicated the host’s responses in the aug-
mentation of lung injury by cigarette smoke. For example, ciga-
rette smoke activates inducible nitric oxide synthase, leading to
generation of oxidants, such as peroxynitrite (ONOO-), which has
been linked to alveolar injury due to cigarette smoke (12). Another
endogenous mediator of cell injury and inflammation co-opted
in the early lung responses to cigarette smoke is the collagen deg-
radation product proline-glycine-proline peptide (PGP), which
engages CXCR2 receptors of neutrophils, therefore amplifying ini-
tial cigarette smoke-induced inflammation (13). In addition, the
LPS in cigarettes may activate TLR4-expressing cells in the lung,
leading to the activation of NF-kB responses (14). However, the
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Table 1
Levels of COPD complexity

Initiation  Progression Consolidation
Level 1: Environment
Infectious agents + + +
Pollutants + + ¥
Tobacco + + +
Level 2: Genes
CHRNA3/5 + + +
FAM13A + + +
HHIP ¥ ¥ +
SERPIN2 + + +
XRCC5 + + +
Level 3: Clinical phenotypes
Cancer + +
Chronic bronchitis + +
CVD + +
Depression + +
Emphysema + +
Exacerbations + +
Metabolic syndrome + +
Osteoporosis + +
Weight loss + +
Level 4: Biomarkers
CRP n n
Endothelial cell microparticles + +
Exhaled condensate + +
Level 5: Treatment
Bronchodilators + +
Inhaled corticosteroids + +
PDE4 inhibitors + +

Environmental etiologic factors, genetic basis, clinical phenotypes, bio-
markers, and available treatments are listed. The pathogenetic stages of
initiation, progression, and consolidation integrate these multiple levels,
allowing for a comprehensive approach to the understanding of COPD.
CRP, C-reactive protein. Data are from the American Journal of Respira-
tory and Clinical Care Medicine (103).

role of TLR4 is complex and potentially paradoxical; its absence
led to spontaneous emphysema in knockout mice, which showed
increased oxidant generation in pulmonary capillary endothelial
cells via activation of NADPH oxidase 3 (15).

Recent investigations revealed that organismal sensors of stress
might control how early lung responses control subsequent injury
to cigarette smoke. RTP801 (encoded by the DNA damage-induc-
ible transcript 4 [Ddit4] gene) is a stress-induced molecule (16) that
mediates apoptosis and increases oxidative stress (17) while inhib-
iting cell growth and proliferation by blocking mTOR signaling
(18). Cigarette smoke increased lung RTP801 expression, largely in
type II epithelial cells, where it was both necessary and sufficient
for NF-xB activation (6). Mice lacking RTP801 were completely
protected against cigarette smoke-induced acute inflammation,
apoptosis, and most importantly, against emphysema develop-
ment following 6 months of exposure (6). These findings indicate
a key role of this early stress-response protein and especially its
inhibitory effect on the mTOR pathway, evoking a potential thera-
peutic role for modulation of mTOR signaling in modifying the
early response to cigarette smoke exposure (6).
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The master antioxidant transcription factor Nrf2 has been
recently implicated in a broad range of lung responses involved in
both the initiation and progression of lung injury due to cigarette
smoke. Nrf2 controls more than 100 genes involved in antioxidant
defenses, detoxification, and cellular physiology (19). Mice lacking
Nrf2 show increased susceptibility to lung inflammation by acute
cigarette smoke exposure, have upregulated RTP801 expression,
and with chronic exposure also show increased susceptibility to
alveolar cell apoptosis and development of emphysema (20).

Progression
The stage of progression of alveolar injury has attracted most of the
research efforts in the COPD field (Figure 1). For more than 30 years,
initiation and progression have been linked to extracellular matrix
proteolysis, notably degradation of elastin by elastases, largely of
inflammatory cell source. Key to this paradigm were the landmark
discoveries of emphysema in al-antitrypsin-deficient patients
(21) and the induction of emphysema by intratracheal instillation
of pancreatic elastase (22), as well as the finding that MMP-12-
deficient mice are resistant to cigarette smoke-induced mouse
emphysema (23). While extracellular matrix proteolysis is a cen-
tral event in emphysema, it is apparent that it cannot explain the
complexity of alveolar destruction in COPD.

A more complex picture of the mechanisms of alveolar destruc-
tion leading to emphysema has emerged in the past 12 years.
Underlying the discovery of alternative molecular determinants
and destructive processes was the important yet straightforward
concept that the lung requires ongoing maintenance of its struc-
tures, notably during injury (24, 25). Variability in an individual’s
ability to maintain lung structure and promote repair may explain
the 20%-25% risk that smokers have of developing COPD as well as
the reason that patients differ greatly in their clinical phenotypes
and disease severity and progression. This concept has been veri-
fied in multiple models of emphysema (26) and, albeit at a descrip-
tive level, supported by studies in lung samples from humans with
COPD that demonstrate altered expression of multiple trophic/
maintenance factors, including VEGF (27), Wnt signaling compo-
nents (28), and adiponectin (29). This concept may also apply to
the underlying mechanisms leading to the recently described dis-
appearance of terminal airways in COPD (30).

We believe that mechanisms involved in the progression stage of
COPD may be distinctly engaged in generating variable intermedi-
ate and clinically relevant disease phenotypes, such as emphysema,
chronic airway disease (including chronic bronchitis and bronchi-
olitis), and systemic disease.

Emphysema. In addition to enhanced lung elastolysis, the failure
of the lung maintenance program in the parenchyma distal to the
terminal bronchiole leads to a loss of alveolar cells by apoptosis
in emphysema. The role of apoptosis was directly tested in mouse
models of emphysema induced by a loss of VEGF function; in
these models, caspase inhibitors preserved the integrity of alveolar
septae (27, 31). Fueled by the identification of increased apoptotic
cells in the parenchyma of human emphysema lungs (32), multiple
mechanistic studies of the drivers and downstream consequences
of this form of regulated cell death have emerged. Although it
remains disputed which structural cell of the alveolus directs the
process of alveolar destruction, it has been established that (a)
apoptosis of both epithelial and endothelial cells occurs in models
of emphysema (20, 27, 33), (b) direct instillation or overexpression
in the lung of apoptotic effector molecules induces transient
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Pathogenetic factors organized based on their role in the initiation, progression, and consolidation of emphysema. (A) Initiation: Environmental
agents trigger host cell responses, largely dominated by inflammation and oxidative stress. RTP801 is activated by cigarette smoke, largely due
to oxidants, mediating inflammatory responses, oxidative stress, and alveolar cell death. DAMPs and PAMPs present in tobacco or generated
endogenously may further enhance pathologic responses. Nrf2, by activating a host of antioxidant mediators, protects the lung and may promote
lung repair processes. (B) Progression: Cigarette smoke disrupts alveolar maintenance, triggering apoptosis and autophagy; moreover, oxidants
in tobacco and activated inflammatory and alveolar cells lead to extracellular matrix proteolysis, which further enhances inflammation and promote
a feedback loop with apoptosis. Several of these interactions are facilitated by decreased expression of trophic/maintenance factors and endog-
enous mediators of alveolar destruction, including ceramide and EMAPII. (C) Consolidation: Over decades of exposure to cigarette smoke and
endogenous amplifiers of destructive processes, there is progressive lung aging, with autoinflammatory stimuli generated through self-antigens
or microbial/viral agents. TH17-positive cells, which are increased in COPD patients, may mediate the autoimmunity process. Macromolecular
damage may lead to progressive telomere erosion and activation of p21CIP1/WAF1/SDIT g5 part of the cell senescence response, which together may

lead to a terminally injured lung.

airspace enlargement (33-36), and (c) specific induction of lung
microvascular endothelial cell apoptosis is sufficient to cause a
phenotype reminiscent of cigarette smoke-induced emphysema,
including influx of inflammatory cells (37).

The induction of cell death in structural cells of the lung paren-
chyma (epithelial, endothelial, and possibly septal fibroblast
cells) in response to cigarette smoke may be related to a loss of
growth factors, oxidative stress injury, or intracellular response
to stress imposed by noxious exposures (e.g., ER stress, ref. 38; or
DNA damage, ref. 39). The ultimate outcome of these processes
may differ depending on cell type; in contrast to small airway or
alveolar epithelial or endothelial cells, alveolar macrophages are
significantly more resistant to the apoptotic effect of direct ciga-
rette smoke exposure or pro-apoptotic ceramides (40, 41), largely
attributed to increased Akt signaling and increased ceramidase
activity (42). Moreover, lung cells may respond to injury by activat-
ing pro-survival mechanisms such as autophagy, a response typi-
cally triggered by starvation. Lung epithelial cells (43), endothelial
cells (44), fibroblasts (45), and alveolar macrophages (40, 45) all
respond to cigarette smoke exposure by initiating autophagy sig-
naling. Current evidence suggests that the abnormal persistence of
such signaling or the inability to complete a physiological autoph-
agic program may increase cellular stress such as ER stress, leading
to caspase activation and apoptosis in diseased lungs (40, 44, 46).

Investigation into the interactions between upstream and down-
stream events related to alveolar cell apoptosis during emphysema
onset and progression led to the key finding of self-amplifying
injury loops involving apoptosis, oxidative stress, and inflamma-
tion (3-5). This concept may explain the progression of disease
despite cessation of exposure to harmful initiators such as cigarette
smoking (47). Paradigmatic of this interaction is the upregulation
of pro-apoptotic sphingolipids in alveolar cells, including cerami-
des. Ceramides, which are induced directly by cigarette smoke or
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indirectly due to VEGF deprivation or oxidative stress, cause apop-
tosis of alveolar structural cells, self-amplify their own synthesis in
a paracrine manner, increase oxidative stress, cause inflammation
with activation of extracellular matrix proteases, and impair the
clearance of apoptotic cells by lung alveolar macrophages (33, 35,
41, 48). Executioner caspases such as caspase-3 and elastases can
in turn proteolytically activate endothelial monocyte-activating
protein IT (EMAPII), which has a dual action in the lung, causing
endothelial cell caspase-dependent apoptosis as well as inflam-
mation via CXCR3-dependent monocyte chemoattraction and
activation (36). Additional positive interactions exist between
extracellular matrix proteases, such as between cathepsin S and
alveolar cell apoptosis (49), and between alveolar cell apoptosis
and oxidative stress (50).

There is growing evidence that pulmonary and systemic inflam-
mation, key events in COPD, may change in nature as the disease
progresses. As mentioned above, inflammatory cell activation
and influx may be operated by different mechanisms in the later
phases of disease, when pathogen-associated molecular pattern-
driven (PAMP-driven) processes (see below), abnormal apoptotic
homeostasis (an apoptotic rate greater than the rate of clearance
of dead cells by efferocytosis; ref. 51), and autoimmune responses
become more prominently involved in inflammation (52, 53).
Epigenetic dysregulation may contribute to excessive activation
of proinflammatory cytokines and chemokines and steroid resis-
tance (54, 55). As the lung maintenance program is eroded during
chronic smoke exposure, inflammatory cells, including neutro-
phils, macrophages, and lymphocytes may change their pheno-
type. For instance, macrophages may switch toward an M2 phe-
notype, potentially limiting inflammation yet enhancing fibrosis
and weakening their antibacterial functions (56). The concept of
evolving inflammatory phenotype in the course of COPD is also
supported by studies of lymphocyte involvement in the disease.
Volume 122 Number 8
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Different populations of lymphocytes may aid in alveolar destruc-
tion; the presence of CD8 cells has been associated with disease
severity (57), and oligoclonal CD4 cells have been detected in
advanced COPD lungs (58), suggesting their participation in auto-
immune responses in the consolidation stage of COPD. NK cells,
which also accumulate in increased numbers in COPD lungs, may
drive alveolar cell apoptosis via crosstalk with corresponding lung
epithelial cell NKGD2 ligands (59).

In addition, bacterial and viral infections, common causes of
exacerbation in COPD patients and a major cause of pulmonary
deterioration and mortality, may profoundly affect the nature of
the immune response in the lung. Infectious agents, via PAMPs,
may engage specific receptors, initiating host responses that lead
to amplification of alveolar injury. Dysfunction of Nrf2 signal-
ing in COPD patients (60) may compromise bacteria clearance
(61). Influenza virus, a common cause of acute exacerbations,
may synergize with cigarette smoke-induced responses via acti-
vation of the retinoic acid inducible gene-1 (RIG-1) helicase sys-
tem. Indeed, double-stranded RNA viruses (e.g., influenza virus)
activate innate signaling, culminating in the activation of inter-
feron regulatory factor-3 and -7 (IRF-3 and -7) and the subse-
quent induction of antiviral genes, including NF-xB. This pro-
cess was elegantly described by studies using the double-stranded
RNA mimetic, polyinosinic-polycytidylic acid (poly[I:C]) (62).
Poly(I:C) cooperates with cigarette smoke to activate the RIG-1/
MAVS/PKR/IL-18 pathway, causing excessive alveolar cell death,
inflammation, and hastened and more extensive emphysema (62).
These pathways may interact with endogenous danger-associated
molecular patterns (DAMPs), such as high-mobility group box
1, to amplify early cigarette smoke-induced responses (63). Even
elastin dissolution into chemotactic peptides during alveolar
destruction further augments inflammatory responses indepen-
dently of ongoing tobacco exposure (64).

Airway disease. Large and small (<2 mm diameter) airways are
central sites of disease in COPD. While large airways undergo
chronic inflammation with excessive mucus production, smaller
airways are surrounded by inflammatory cells and wall fibrosis
and exhibit intraluminal mucus accumulation (65). The dis-
covery that cigarette smoke directly inhibits the CFTR function
(66) provides a mechanistic link between smoking and abnormal
mucous secretion by airway epithelial cells and suggests shared
pathogenetic pathways between COPD and the chronic airway
disease cystic fibrosis. Similar to another common chronic air-
way disease, asthma, COPD airways exhibit increased VEGF and
IL-13 levels, which contribute to mucous gland hyperplasia and
bronchial smooth muscle hyperreactivity (67). It is interesting to
note that the chronic bronchitis phenotype of COPD in humans
is characterized by increased VEGF in the large airways, while in
emphysema there is a paucity of VEGF in the lung parenchyma
(6-8). Moreover, the small airways in COPD appear to exhibit
unique remodeling mechanisms. Indeed, inhibition of EMAPII
attenuates small airway but not large airway remodeling in mice
chronically exposed to cigarette smoke (36). Furthermore, both
TGF-f and IL-1f were proposed as important mediators of airway
remodeling in COPD explants (68). Recent studies revealed that
small airways may disappear even earlier than surrounding alveoli
(30), providing a common phenotype with that resulting from
destructive processes occurring in emphysema. The mechanistic
role of TGF-p initially suggested in ex vivo models (68) has been
recently supported by the beneficial effects of anti-TGF-f} anti-
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bodies or TGF-f inhibition with the angiotensin receptor inhibi-
tor losartan on both airway remodeling and airspace enlarge-
ment due to cigarette smoke (69). Similarly, both molecular and
pharmacological inhibition of IL-1f signaling attenuated airway
remodeling and extracellular hyaluronan levels during cigarette
smoke exposure (70).

Lung cancer. There is evidence of both active cell proliferation and
apoptosis in COPD lungs, and the balance of cell proliferation to
death may be a measure of (inadequate) repair in emphysema (71).
However, a proliferative response in airway epithelial cells exposed
to cigarette smoke (72) may be unwanted. When combined with
the cancer-initiation properties of tobacco, these events may
underlie the cancer-promoting effects of cigarette smoke-induced
inflammation (73). Accumulation of macromolecular damage in
the course of COPD might also explain the increasingly recog-
nized association between lung cancer and emphysema (74).

Systemic manifestations. The lung-specific pathogenetic pro-
cesses outlined above may apply to systemic organ dysfunction,
as the lung allows passage of oxidants into the bloodstream
(75). Right ventricular dysfunction due to pulmonary hyper-
tension may occur due to oxidative and nitrosative stress, with
reduced expression of vasodilators in COPD (12, 76-78). Pro-
longed exposures to cigarette smoke have an inhibitory effect
on the bone marrow hematopoietic progenitor cell number and
cycling function (79, 80), adversely impacting lung repair mech-
anisms in COPD. Finally, skeletal muscle wasting and decreased
physical activity, which are major comorbidities in COPD, have
been linked to both increased apoptosis and decreased vascular
regeneration (81, 82).

Consolidation
COPD may progress in patients despite smoking cessation, which
challenges the concept of a direct link between ongoing exposure
to cigarette smoke and the disease. This progression parallels per-
sisting inflammatory responses (83), suggesting that additional
mechanisms must account for the consolidation of the disease in
genetically susceptible hosts, often after decades of active smok-
ing (Figure 1). This change in the nature of inflammation in the
course of disease is highlighted by the temporary nature of NF-kB
activation in rodent lungs exposed to cigarette smoke (84). Two
paradigms have emerged that might explain some of these obser-
vations: autoimmunity (52) and lung aging (85). These findings
may derive from the profound lung alveolar damage (39) and
airway remodeling imposed by chronic cigarette smoke exposure
and bombardment by endogenous mediators of inflammation
and cell injury. Understanding the mechanism of this persistence
might have a far-reaching impact on the design and implementa-
tion of regenerative therapies.

It is conceivable that COPD becomes over time an autoinflam-
matory disease, possibly involving the inflammasome and related
cytokines. Cigarette smoke activates the inflammasome in mouse
lungs, involving ATP and its receptor P2X7 purinergic receptor
(86). NLPR-3 activation of caspase-1 (87) would lead to increased
IL-1B (70) and IL-18 (62), both of which have been shown to partic-
ipate in experimental models of cigarette smoke-induced inflam-
mation and alveolar injury. Although DAMPs, including purines,
can act early, in the initiation stage of COPD, the pathogenic roles
of IL-18/IL-18 receptor signaling suggest that this inflammatory
signaling occurs downstream of apoptosis, positioning it in the
consolidation stage of alveolar injury (62).
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There is growing evidence for a role of autoreactive T cells or
auto-antibodies in the activation of specific immunity in COPD.
Mice exposed to cigarette smoke exhibit lung infiltration by CD8
T cell oligoclones (88), a finding that correlates with observations
of oligoclones of CD4 cells in lungs of patients with COPD (58).
Auto-antibodies have been detected in lung tissues of patients
with advanced disease (89), including antibodies targeted to
immunogenic carbonylated proteins (90). The latter findings
were duplicated in mice exposed to cigarette smoke (91). Fur-
thermore, rats immunized with endothelial cells developed auto-
reactive antibodies and T cells, which mediated alveolar enlarge-
ment (92). Finally, elastin-reactive T cells have been detected in
the peripheral blood of patients with established COPD (93).
Although the precise nature of the auto-reactive antigens will
require further study, there is evidence of profound alterations
in the structure of the lung during the course of exposure to cig-
arette smoke, ultimately leading to replacement of the alveolar
elastin framework by collagen (94). A shared theme with other
autoimmune processes is the emergence of TH17 lymphocytes,
which are found in increased numbers in COPD lungs (95). Their
potential role in alveolar destruction was recently uncovered by
the protection against inflammation and emphysema observed
in IL-17RA-knockout mice (96).

The relentless lung injury due to oxidant exposure, along with
the potential exhaustion of lung protective responses, ultimately
leads to lung aging, with increased expression of markers of cellu-
lar senescence (97). Again, a common denominator for aging and
cellular senescence is oxidative stress, resulting in macromolecular
damage, including the increased expression of markers of DNA
damage (39, 98) and adduct-modified proteins (99). The ultimate
“biological clock” of cell turnover is controlled by telomerase,
which preserves the shortening of ends of chromosomes during
every round of mitosis. Lungs of patients with advanced emphy-
sema have decreased telomere lengths in alveolar cells (97), which
are paralleled by decreased telomere lengths in peripheral blood
mononuclear cells (100, 101). The contribution of shortened telo-
meres was recently unraveled in investigations with the telomerase
reverse transcriptase-knockout mice, which showed increased sen-
sitivity to alveolar injury and airspace enlargement due to cigarette
smoke, notably in late intercrosses compared with early intercross-
es and wild-type mice (102).
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The future

Key questions remain in our understanding of COPD, and these
concern clinical phenotypes, systemic manifestations of COPD,
and the impact of exacerbations triggered by infections. These
central clinical manifestations of COPD probably result from the
interaction of disease-related genes with fundamental processes
involving inflammation, thrombosis and hemorrhage, fibrosis, the
immune response, proliferation, and apoptosis/necrosis, which
underlie the so-called intermediate phenotypes (103). Develop-
ment of model systems that can address mechanistically these
interactions will remain vital for progress in COPD, validated by
studies of the human disease. Some therapeutic strategies, such
as restoring al-antitrypsin activity or the use of Nrf2-dependent
antioxidants, may directly antagonize destructive processes such
as the activation of pro-apoptotic mediators and extracellular
matrix proteolysis (36, 104); a significant challenge lies in restoring
lung survival mechanisms without fueling oncogenesis. Recently
described shortcomings in attempts to regenerate the lung in a
murine model of COPD (105) remind us that approaches aimed at
lung organ restoration (79) will require consideration of the extent
of macromolecular damage imposed by decades of lung destruc-
tion (39, 98). The aggregate of these insights into the pathogenesis
of COPD provide landmarks that should direct future investiga-
tions in COPD and targets for potential novel therapies.
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