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Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene
expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1)
is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation.
Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the
regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1
back to Ccnd17/- mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNA-
bound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aber-
rations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1-rescued cells by spectral
karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with
acute and continuous mammary gland-targeted cyclin D1 expression. These transgenic mice presented with
increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression
from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast
cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a tran-
scriptional program that governs chromosomal stability.

Introduction

Chromosomal instability (CIN) in tumors (1-3) is characterized
by an elevated rate of gain or loss of whole chromosomes (i.e.,
aneuploidy) and/or as structural chromosomal aberrations (i.e.,
translocations, deletions, and duplications). Aneuploidy is one of
the most striking differences between cancer and normal cells.
The molecular mechanisms inducing CIN as well as the timing
of CIN in tumor progression, invasion, and metastasis is poorly
understood (4, 5). Cell cycle-associated factors have been impli-
cated in CIN; including cyclin E (6). The relative enrichment of a
molecular genetic signature of CIN-related genes has been used to
quantitate a CIN score (7); this signature includes AURKB (a com-
ponent of the chromosomal passenger complex [CPC]), TOP2A,
CENPP, MLF1IP (a component of the CENPA-NAC kinetochore
complex protein), ZW10 (a kinetochore-associated mitotic check-
point protein), and CKAP2 (a mitotic spindle-associated protein)
(3) as well as the retinoblastoma (pRb) protein. Supernumerary
centrosomes increase the frequency of dual attachment of 1 sister
kinetochore to 2 spindle poles. Cyclin E activity promotes centro-
some duplication during S phase onset. Loss of pRb can also alter
centrosome number and formation of micronuclei, leading to
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mis-segregation of chromosomes and aneuploidy (8). CIN occurs
relatively early in tumor progression, whereas pRb loss occurs
relatively late in the process of tumorigenesis, which raises the
question of candidate mechanisms driving chromosomal aberra-
tions in the early phase of tumor onset.

Cyclin D1 (CCND1) encodes the regulatory subunit of the holo-
enzyme that phosphorylates and inactivates pRb and the NRF1
proteins to regulate nuclear DNA synthesis and mitochondrial
biogenesis (9-13). Quantitative single-cell analysis has shown that
cyclin D1 levels oscillate during the cell cycle, increasing in a broad
array of cell types during the G; phase (14). Cyclin D1 expression is
increased 3- to 8-fold in human breast, prostate, lung, and gastro-
intestinal malignancies (15-18). Furthermore, the cyclin D1 onco-
gene directly induces mammary gland tumors in mice (19). Cyclin
D1 is required for oncogene-dependent growth, as genetic ablation
of murine Ccendl impaired terminal alveolar breast bud develop-
ment (20) and resulted in resistance to Ras- or ErbB2-induced
mammary tumorigenesis and to APC-induced gastrointestinal
tumorigenesis (21, 22). Over the last 2 decades, a substantial body
of evidence has suggested cyclin D1 plays a direct role in transcrip-
tional regulation (16). Cyclin D1 physically associates with, and
regulates the transcriptional activity of, ERa (23) and more than 30
other transcription factors (TFs) (16). The histone acetyltransfer-
ases p300, p300/CREB-binding protein-associated factor (P/CAF),
and AIB1 bind to cyclin D1 (24, 25). ChIP demonstrated cyclin D1
association within the local chromatin of target gene promoters
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that correlated with deacetylation of histone (H3), in particular at
H3 lysine 9 (H3lys9). Deacetylation of H3lys9 was restored upon
reintroduction of cyclin D1, which recruited HDAC1/HDAC3 (17,
22). Thus, cyclin D1 is recruited in the context of local chromatin
to specific target genes (26, 27). Cyclin D1 recruitment to local
chromatin was also associated with recruitment of p300 to regu-
late genes governing DNA damage repair signaling (26). Cyclin D1
was shown to regulate the activity of p300 independently of cyclin-
dependent kinase (CDK) binding function. As p300 is regarded as
a transcriptional cointegrator, cyclin D1 was proposed as a regula-
tor of gene transcription through co-occupancy with p300 at tar-
get DNA-binding sites (26).

Recent studies demonstrated the occupancy of cyclin D1 in the
context of local chromatin using ChIP-ChIP analysis on a -5.5 kb
to +2.5 kb ChIP-ChIP microarray containing approximately 17,000
genes (28). In addition, cyclin D1 associated with the p300-related
CREB-binding protein (CBP) in a proteomics screen and recruited
CBP to the NotchI gene to regulate its transcription. Here, we aimed
to expand the interrogation of cyclin D1 TF binding sites to the
entire genome and to include potential cyclin D1 interactions
both within and outside the proximal 8 kb of a gene’s start site. We
therefore performed ChIP of cyclin D1 followed by ChIP sequenc-
ing (ChIP-Seq) to map at high resolution the entire genomic region
bound by cyclin D1. Functional pathway analysis of the gene regula-
tory elements bound by cyclin D1 uncovered enrichment for genes
that govern chromosomal stability. Our data suggest that cyclin
D1 contributes to CIN and tumorigenesis by directly regulating a
transcriptional program that governs chromosomal stability.

Results
Defining genome-wide cyclin D1 binding sites. In view of our prior
findings that cyclin D1 occupies promoter regulatory regions in
the context of local chromatin associated with the recruitment of
p300 (17, 26, 29), we conducted genome-wide analysis of cyclin
D1 genomic occupancy using ChIP-Seq analysis. In order to char-
acterize genome-wide cyclin D1 binding sites, Ccnd17~ mouse
embryonic fibroblasts (MEFs) were transduced with a FLAG
epitope-tagged expression vector encoding cyclin D1 (30). The
exogenous levels of cyclin D1 in rescued cells were approximately
3-fold higher than basal levels (Supplemental Figure 1A; supple-
mental material available online with this article; doi:10.1172/
JCI60256DS1), consistent with the 3- to 8-fold increase in cyclin
D1 levels observed in breast and other tumor types (18, 31). In
order to characterize genome-wide cyclin D1 DNA binding sites
in vivo, ChIP-Seq was conducted using Genpathway’s FactorPath
discovery technology. We found 2,840 NCBI genes with intervals
within 10 kb of the start site. A summary of the active regions
and their proximity to NCBI-designated genes is given in Supple-
mental Table 1. Figure 1A shows the genome-wide distribution
of 2,840 binding sites in relation to the transcriptional start site.
Interestingly, peak values of active regions within the promoter
were comparable to those 10 kb and beyond (Figure 1B), which
suggests that cyclin D1 localizes to both promoter-proximal ele-
ments and very distant elements. Analysis of the tag density dis-
tribution at the promoter-proximal region identified the enrich-
ment of cyclin D1 occupancy within approximately 500 bp of the
transcriptional start site (Supplemental Figure 1, B and C).

In order to determine the TF binding sites enriched in the cyclin
D1 peak interval sequences, we used the JASPAR Match server (32),
employing a permutation test. Only those intervals within 2 kb of
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the transcription start site were processed. Figure 1C shows DNA
recognition sequences and statistical significance for the top hit
TFs Ctcf (a zinc finger protein; also known as CCCTC-binding fac-
tor), Zfx (a member of the krueppel C2H2-type zinc finger protein
family), Sp1 (a TF belonging to the Sp/KLF family), Mizf (a zinc
finger protein that has a key role in histone gene expression; also
known as Hinfp), estrogen receptor R1 (Esr1; also known as ERal),
E2f1 (a member of the E2F family that transcriptionally activates
numerous genes involved in cell cycle regulation), Creb1 (a cAMP
element-binding protein activated by cAMP usually through hor-
monal stimulation), and Hifla,/Arnt (which regulates key genes
involved in hypoxic stress). A full list of TFs and their statistical
significance is provided in Supplemental Table 2. The prevalence
of TF motifs in the interval sequence was plotted for the top 20
TFs (Supplemental Figure 1D). We next asked whether a consen-
sus sequence was present in the peak interval regions. We used
the complete 3,222-peak interval data set and split the data into
4 groups based on proximity to nearest neighbor transcriptional
start sites. In 3 of the groups, the motif was an exact copy of the
CTCF invariant core sequence (Supplemental Figure 1E). We used
luciferase reporter constructs containing multimeric copies of the
consensus sequence alone to verify that cyclin D1 regulated the
transcriptional activity of several members of the TF list (i.e., Myc,
E2F, and Hiflo; Supplemental Figure 2). These data are consis-
tent with a model in which cyclin D1 is recruited in the context of
local chromatin to regulate gene transcription and occupies DNA
elements that associate with TFs.

Cyclin D1 binds genes that regulate chromosomal stability. An unbiased
determination of the functional pathways using the annotation
clustering feature of NIH Database for Annotation, Visualization,
and Integrated Discovery (DAVID) demonstrated that cyclin D1
bound the regulatory region of the genes involved in RNA process-
ing, mitochondrial function, and DNA organization and segrega-
tion (Figure 2A). Previous work by Bienvenu et al., using a ChIP
promoter array that examined approximately 1% of the genome,
demonstrated that cyclin D1 associates with approximately 900
genes in close proximity to the transcriptional startsite (P < 1 x 104
ref. 26). Extension through ChIP-Seq to interrogate the additional
components of the entire genome revealed considerable functional
overlap, with additional functions identified through the global
genomic analysis (Supplemental Figure 3).

Based on the functional annotation analysis, there were a large
number of gene sets associated with cell division. We analyzed these
sets further to extract the associated genes; a list of the genes asso-
ciated with the Gene Ontology (GO) term cell division is provided
in Supplemental Table 3. Most of the genes were involved in G/M
phase and cellular mitosis. Given the high number of genes that
regulate mitosis, we determined whether the genomic regions that
associate with cyclin D1 correlate with a CIN function. When genes
were ranked based on CIN score (7), those regulatory regions occu-
pied by cyclin D1 were significantly enriched (P < 0.0001; Figure 2B).

Most of the mitotic genes are involved in chromatin reorga-
nization and chromosomal segregation during M phase. Repre-
sentative tag density profiles for several members of the list are
depicted in Figure 2C. The relative abundance of transcripts
coding for proteins that regulate chromosomal segregation were
increased around 1.5- to 2-fold by cyclin D1 expression, including
Aurkb, Ckap2, Miflip, and Zw10 (Figure 2D). We also performed
quantitative RT-PCR on 2 other GO terms: protein catabolic process
and RNA processing. The expression of the genes representative of
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Figure 1

Identification of cyclin D1—bound sequences. (A) Distribution of the 2,840

intervals with respect to neighboring genes. Intervals were categorized

as being upstream of transcriptional start site (TSS), in gene and downstream of TSS, or downstream of the gene. Because some intervals had
more than 1 associated gene, some were associated with more than 1 term. Upstream of TSS was defined as —10,000 to 0 bp. (B) Peak values
in the anti-FLAG/CCND1 ChIP-Seq compared with IgG control. The peak values within promoter regions were similar to those 10 kb from the
transcriptional start site. ActRegs, active regions. Bounds of the boxes denote SD; lines within boxes denote mean; whiskers denote interquartile
range; symbols denote outliers. (C) Select example of conserved TF motifs enriched within the interval regions associated with cyclin D1. See

Supplemental Table 2 for the full list of TFs.

those terms was also regulated by cyclin D1 (Supplemental Figure
4A). In addition, we verified by Western blot analysis that Aurkb,
a key regulator of the mitotic checkpoint control, was increased
in abundance by cyclin D1 (Supplemental Figure 4B). Cyclin D1
increased phosphorylation of H3S10, a target of Aurkb (33, 34).
AURKB is overexpressed in human malignancies like prostate,
colorectal, kidney, lung, and breast cancers (35), and its overex-
pression results in multinucleation and polyploidy in human
cells. ChIP analysis using relevant and negative control primer sets
(Figure 2E and Supplemental Figure 4C) confirmed the ChIP-Seq
data, indicative of occupancy by cyclin D1 at the promoter regions
of genes involved in regulation of chromosome segregation (i.e.,
Aurkb, Top2a, Cenpp, Mlflip, Zw10, and Ckap2). These results sug-
gest that cyclin D1 contributes to CIN by transcriptional regula-
tion of genes involved in mitosis.

Cyclin D1 promotes CIN. The cyclin D1-dependent enrichment of
genes involved in chromosomal segregation and stability led us to
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determine the functional consequence using a cyclin D1 expres-
sion profile, fluorescence-activated cell sorting (FACS) analysis,
and spectral karyotyping (SKY). We first used a previously pub-
lished cyclin D1 expression profile to determine enrichment for
the CIN profile. Induction of cyclin D1 expression in MEFs using
acyclin D1 retrovirus induced expression of CIN-associated genes
(P < 0.0001; Figure 3A). We next assessed the effect of cyclin D1
on ploidy by reintroducing cyclin D1 into Cend17~ cells (a process
referred to herein as cyclin D1 rescue). The proportion of polyploid
cells increased within 3 cellular divisions, increasing the relative
proportion of 4N and 8N cells by 45% and 15%, respectively (Fig-
ure 3, B and C). Using SKY, we analyzed 20 metaphase spreads of
cyclin D1-rescued versus control Cend1~~ cells (Figure 3, D and E,
and Supplemental Figure 5, A and B). Graphical representation
of the karyotype analysis of all 20 metaphases is shown in Figure
3F. Since mouse fibroblasts are prone to genomic instability when
successively passaged in culture, a deviation of +2 chromosomes
Volume 122 March 2012
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Cyclin D1 associates with genes involved in mitosis. (A) Functional annotation clustering by DAVID of cyclin D1—associated genes, based on
percent enrichment score of the top hits. (B) Cyclin D1—bound promoter regions (0 to —500 bp) were enriched in genes demonstrating an associa-
tion with CIN (P < 0.0001). (C) Representative tag density profiles of cyclin D1-bound regions and their proximity to the transcriptional start site
(arrow). Peak values for the intervals are denoted by asterisks. (D) Quantitative PCR on target mRNAs selected based on cyclin D1-associated
genes. Shown are normalized expression ratios of Ccnd1-- cells with MSCV-FLAG/CCND1 compared with MSCV-control (n = 4 separate cell
lines; data are mean + SEM). (E) ChIP analysis of Ccnd1-- 3T3 cells transduced with MSCV-FLAG/CCND1 using anti-FLAG antibody. Primers

were designed against the peak interval sequence.

at 2N and 4N is considered normal. By this criterion, 75% of the
Cend17~ MEF metaphases had a normal karyotype compared with
30% of the cyclin D1-rescued Cend17~ MEFs (P < 0.001). Just as
pronounced as the aneuploidy was the number of chromosom-
al aberrations observed in the cyclin D1-rescued Cendl~~ line.
Defects identified by SKY are assigned as deletions, duplications,
and translocations. There were significantly more translocations
in the cyclin D1-rescued compared with control Ccnd1~~ MEFs
(Figure 3G), although no significant differences in deletions and
duplications were identified (Supplemental Figure 6, A and B).
Most prevalent were the nonreciprocal translocations (NRTs) and
reciprocal translocations, the latter of which was presentin 7 of 20
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metaphases analyzed. NRTs predominate in human carcinomas,
as characterized by karyotype analysis, and contribute to carci-
nogenesis by carrying oncogenes at their breakpoints and also by
distorting normal gene dosage (36). The number of NRTs in the
cyclin D1-rescued line was 13 events, compared with 3 in the con-
trol. A full list of rearrangements is given in Supplemental Table 4.
We also conducted SKY analysis of 3T3 control and cyclin D1-res-
cued Cendl”~ cells at passage 23 (P23) to determine whether the
abnormal karyotype was present in late-passage cells (Figure 3, H
and I, and Supplemental Figure 5, C and D). Although control
Cend17/~ cells exhibited significantly higher polyploidy than did
low-passage Cend17/~ MEFs, the rates were higher in cyclin D1-res-
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Figure 3

Cyclin D1 rescue of Ccnd1-- MEFs induces polyploidy and aneuploidy. (A) The expression profile for cyclin D1—induced genes (63) was
enriched for high CIN score (P < 0.0001). (B) PI staining demonstrated increased polyploidy in cyclin D1-rescued versus control Ccnd1-- MEFs.
(C) Quantitation of PI staining based on 3 separate cell lines (mean + SEM). *P < 0.005. (D, E, H, and I) Representative metaphases from SKY
of control and cyclin D1-rescued Ccnd1-- MEFs at P6 (D and E) and 3T3 cells at P23 (H and ). Shown for each is an inverted DAPI image of
the metaphase (top right), a raw spectral image of the metaphase (top left), and classification of the same metaphase (bottom). (F and J) Chro-
mosomal number across metaphase spreads from control and cyclin D1-rescued Ccnd1-- MEFs at P6 (F) and 3T3 cells at P23 (J), showing
the total number of chromosomes for 20 mitotic spreads. Gray shading represents expected deviation from normal at 2N and 4N (+ 2 chromo-
somes). P < 0.001, rescue vs. control, %2 test of association. (G and K) Reciprocal translocations and NRTs in metaphase spreads from control
and cyclin D1-rescued Ccnd1-~ MEFs at P6 (G) and 3T3 cells at P23 (K), shown as number of events per cell analyzed. The mean distribution

is represented as a red curve.

cued CendI~~ cells (P = 0.05; Figure 3J). In addition, there were sub-
stantially more reciprocal translocations and NRTs (Figure 3K),
with little difference in deletions and duplication events between
the 2 lines (Supplemental Figure 6, C and D). Taken together,
these data suggest that acute rescue of Cend17/~ MEFs induces CIN
with a high NRT rate.

Multipolar spindles and centrosome amplification predominate in
cyclin D1—rescued Cend1~/~ cells. In order to screen for potential
abnormalities in mitosis that could contribute to CIN, we per-
formed immunofluorescence followed by high-resolution confo-
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cal imaging on 3T3 control and cyclin D1-rescued Cendl~~ cells
using markers of mitotic spindles and centrosomes (a- and
y-tubulin, respectively). The number of cells with multipolar
spindles increased 27% in cyclin D1-rescued relative to control
Cendl17/~ cells (P = 0.0289; Figure 4, A and B). Because multipo-
lar spindles arise from abnormalities in centrosome number and
distribution, we stained cells for y-tubulin in conjunction with
a-tubulin to quantitate the number of centrosomes. The percent-
age of prometaphase/metaphase cells with more than 2 centro-
somes increased 19% in cyclin D1-rescued compared with control
Volume 122 March 2012 837
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Figure 4

Cyclin D1 induces centrosome amplification and mitotic spindle disorganization. (A and C) Representative confocal maximum Z projections of
mitotic cells (A; immunostained for a-tubulin [violet] and DAPI [blue]) and prophase, prometaphase, and metaphases (C; immunostained for
a-tubulin [violet], y-tubulin [yellow], and DAPI [blue and insets]) from control and cyclin D1-rescued Ccnd1-- cells. Original magnification, x60
NAT1.4 oil objective, enlarged x5 by digital zoom. Scale bars: 5 um. (B and D) Frequency of mitotic cells with multiple polar spindles (B) and of
prometaphase/metaphase cells with multiple centrosomes (y-tubulin) and spindle disorganization (o-tubulin) (D). *P = 0.0289, «? analysis. Black
bar, abnormal centrosome count (i.e., >2); gray bar, normal count (i.e., 2). (E and F) Spindle measurements on maximum Z projections of meta-
phase control and cyclin D1-rescued Ccnd1-- cells. Data are mean + SEM. Insets demonstrate metaphase plate (i.e., chromatin; Ch) width and
length (measured using DAPI stain) and spindle (Sp) width and length (measured using tubulin stain). *P = 0.0486; **P = 0.0087.
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Cend17/- cells (P=0.0289; Figure 4, C and D). Spindle architecture
was clearly abnormal in cyclin D1-rescued Cend17/~ cells, result-
ing in multipolar spindles that perpetuated from prophase to
prometaphase and failed to coalesce at metaphase (Figure 4D).
The alteration of spindle architecture was associated with the
disruption of metaphase plate morphology, detected with DAPI
staining (Figure 4E). Width and length of metaphase plates and
spindles were measured in the same samples; consistent with the
increase in spindle and centrosome abnormalities, plate width
and spindle length were significantly increased in cyclin D1-res-
cued Cend17~ cells (P =0.0087 and P = 0.0486, respectively; Figure
4, E and F). Lagging chromosomes, anaphase bridges, and micro-
nuclei were also observed in cyclin D1-rescued compared with
control Cend17~ cells (Supplemental Figure 7). These results dem-
onstrated increased prevalence of centrosome amplification that
contributed to mitotic spindle abnormalities.

Cyclin D1 promotes CIN expression profiles in vivo. In order to directly
assess the role of cyclin D1 in promoting CIN, we developed trans-
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Figure 5

Heat maps displaying genes differentially regulated by cyclin D1 in
transgenic mouse models. (A) Genes differentially regulated between
rtTA/CCND1 tumors (n = 3) and normal mouse mammary glands from
rtTA control mice (n = 2), visualized by hierarchical clustering. (B) The
most highly differentially regulated genes (Fold>2, B>3) were enriched
for CIN in the tTA/CCND1 profile (P < 0.0001). (C) Genes differentially
regulated between MMTV-CCND7-induced tumors (n = 3) and normal
mouse mammary glands (n = 2), visualized by hierarchical clustering.
(D) The most highly differentially regulated genes (Fold>2, B>4) were
enriched for CIN in the MMTV-CCND1 profile (P < 0.0001).

genic mouse mammary models to either acutely express cyclin D1
in the mammary gland using the tetracycline-inducible system
or an MMTV-cyclin D1 system. For the tet-inducible transgenic
mice (reverse tetracycline-controlled transactivator cross-mated
with CCNDI transgenic [rtTA/CCNDI]; Supplemental Figure 8A),
RT-PCR analysis and Western blotting demonstrated that cyclin
D1 expression levels were induced via tetracycline (Supplemental
Figure 8, B and C). To examine the expression profiles induced by
cyclin D1 in the mammary gland, we treated mice with tetracy-
cline for 7 days, then performed microarray analysis to compare
the cyclin D1 transgenic mice with rtTA-positive control mice that
had undergone the same tetracycline regimen (Figure SA). We then
compared the genes that were most differentially regulated in the
2 sets (i.e., Fold>4 and log odds ratio of differential gene expres-
sion greater than 3 [B>3]) with the CIN signature gene set and
found that the rtTA/CCDNI gene profile was enriched for CIN
(P < 0.001; Figure 5B). The MMTV-cyclin D1 transgenics (Sup-
plemental Figure 8D) were confirmed by Northern blotting and
Western blotting for FLAG-tagged cyclin D1 (Supplemental Figure
8E). Female MMTV-CCNDI and WT mice were monitored twice
weekly for the development of palpable tumors. Those developing
palpable tumors were sacrificed within a week of tumor detection.
Kaplan-Meier survival and tumor-onset plots, and analyses with
a log-rank test for curve comparisons, were performed between
MMTV-CCNDI and WT lines (Supplemental Figure 8F). The first
instances of tumor onset occurred at around 400 days in MMTV-
CCND1 mice, whereas WT mice were tumor free at this age. At 760
days, the tumor-free fraction in the MMTV-CCNDI group was 42%
compared with 85% in the WT group (P = 0.0018). The relative
abundance of cyclin D1 was also assessed in normal mammary epi-
thelial cells and found to be concordant with the increased level of
cyclin D1 present in human breast cancer samples (Supplemental
Figure 8G and ref. 31).

To determine the genes that are regulated by MMTV-CCND1,
microarray analysis was performed on tumors obtained from age-
matched mice and compared with mammary glands of WT (FVB)
mice (Figure SC). We then compared the genes that were most dif-
ferentially regulated in the 2 sets (i.e., Fold>4 and B>3) with the
CIN signature gene set and found the MMTV-CCNDI gene profile
to be enriched for CIN (P < 0.0001; Figure 5SD). Taken together,
these data suggest that cyclin D1 induces enrichment of CIN score
upon acute induction or with constitutive long-term expression in
the mammary epithelium of mice.

High cyclin D1 expression correlates with CIN in luminal B breast can-
cer subtype. To analyze the association between CIN and cyclin
D1 expression in the context of breast cancer, we aligned the
expression of a 70-gene set with the highest CIN score against a
collection of 2,254 breast cancer samples compiled from public
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Subtype classification of breast cancer microarray samples. (A) Heatmap depicting samples from combined breast cancer microarray datasets
that were assigned to the 5 breast cancer gene expression subtypes. The predicted ESR1, epidermal growth factor receptor (ERBB2), and
progesterone receptor (PGR) statuses are shown together with CIN signature score and CCND1 expression level across the 5 subtypes. The
luminal B subtype receptor status, CIN signature score, and cyclin D1 expression level is outlined. (B) CCND1 transcript level plotted versus
average CIN signature expression level revealed that the relationship between high CIN score and high cyclin D1 expression was luminal B
subtype specific (red circle). (C) Kaplan-Meier plot showing differences in metastasis-free status in this dataset (P = 6.4462 x 1078).
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microarray databases (37). We stratified the samples based on pre-
viously described breast cancer subtypes (38) and aligned them
with the cyclin D1 expression profile across the dataset. A signifi-
cant correlation among cyclin D1, CIN, and the luminal B subtype
was identified (P < 1 x 1071%; Figure 6A). Scatter plots depicting
CCNDI transcript level versus average CIN signature expression
level revealed that the relationship between these expression levels
was breast tumor subtype specific (Figure 6B). Kaplan-Meier plots
showed differences in metastasis-free survival in this dataset (Fig-
ure 6C). We conclude that individuals with luminal B type breast
cancer have elevated CIN expression profiles that correlate with
high cyclin D1 expression.

Discussion

Our present findings indicate that cyclin D1 induces CIN. Cyclin
D1 induced gene expression profiles characteristic of CIN in fibro-
blasts, in the mammary gland, and in cyclin D1-induced mam-
mary tumors. Transient expression of cyclin D1 over 7 days in the
mammary gland was sufficient to induce CIN gene expression.
SKY analysis confirmed the induction of aneuploidy and polyploi-
dy by cyclin D1 expression in Ccnd17~ MEFs. Immunofluorescence
demonstrated the occurrence of supernumerary centrosomes that
formed multipolar spindles. A careful analysis of the relative abun-
dance of the genes involved in CIN identified a cluster of genes
regulating the G,/M checkpoint and mitosis. The relative abun-
dance of these genes was increased by cyclin D1 expression, as con-
firmed by quantitative PCR. The finding that cyclin D1 induced
CIN is of importance, as CIN is an early feature of tumorigenesis
that may precede tumor suppressor loss (39, 40). Previous studies
showed that cyclin E, but not cyclin D1, is capable of inducing
CIN (6). However, cyclin D1 overexpression correlated with aneu-
ploidy, supernumerary centrosomes, and spindle defects in mouse
hepatocytes (41) and with aneuploidy and polyploidy in lymphoid
tumors (42). In addition, cyclin D1 amplification correlated with
centrosome amplification in bladder cancer (43). As cyclin D1
expression is increased in the early phases of tumorigenesis, cyclin
D1 may be an important inducer of CIN in tumors.

Analysis of clinical samples with molecular genetic subtyping
identified the correlation of the CIN signature with cyclin D1
overexpression and luminal subtype B breast cancer. The pres-
ence of CIN in this genetic subtype correlated with poor outcome.
Previous studies examining the role of cyclin D1 in outcome have
provided contradictory results, with some suggesting a positive
correlation between cyclin D1 expression and outcome and oth-
ers showing reduced survival (16, 44, 45). Cyclin D1 levels were
induced in luminal A and B subtypes, but correlated with CIN in
luminal subtype B. CIN is usually poorly tolerated by cells initiat-
ing cell death signaling. As luminal A and luminal B breast can-
cer subtypes have distinct molecular genetic profiles, there may
be additional genetic changes in the luminal B tumors that allow
the survival of cells with genomic instability. It may well be that
the genetic subclassification, as conducted in the current studies,
is important in determining the clinical significance of cyclin D1
overexpression. The recent identification of drugs targeting CIN
(46, 47) may provide a rational basis for therapeutic substratifica-
tion, supplementing with compounds targeting CIN in the lumi-
nal B subtype of breast cancer.

Here, we conducted a genome-wide analysis of cyclin D1 binding
in the context of local chromatin using ChIP-Seq analysis. Our
prior studies demonstrated the recruitment of cyclin D1 in the
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context of local chromatin to TF binding sites, which was associ-
ated with recruitment of SUV39H1 and HP1a and commensurate
reduced acetylation and increased trimethylation of H3lys9 (17,
26). Subsequent studies by ChIP-ChIP covering -5.5 to +2.5 kb of
a subset of promoters similarly identified cyclin D1 recruitment to
a subset of target genes involved primarily in notch signaling and
cellular proliferation (28).

How might cyclin D1 regulate gene expression in the context of
local chromatin? Although intrinsic DNA sequence-specific bind-
ing of cyclin D1 has not been identified, cyclin D1 has been identi-
fied at sites of damaged DNA in the context of local chromatin
(48, 49). Various TFs associate with cyclin D1 in IP-Western blot
analysis, and the abundance of cyclin D1 can regulate the recruit-
ment of TFs (22) and transcriptional coregulators (26, 29) in the
context of local chromatin in ChIP assays. Given these findings, we
had proposed that cyclin D1 is recruited either to DNA through
sequence-specific binding proteins to regulate gene expression
or to damaged DNA via Rad51 and the related repair complex,
which thereby recruits BRCA proteins (29, 48). Cyclin D1 abun-
dance determines the recruitment of cointegrator and chromatin
remodeling proteins in ChIP assays, including p300/CBP (26,
29), SUV39H1, HP1a, and HDAC1/3 (17), and dictates acetyla-
tion and dimethylation of local histones (e.g., H3 and H4). The
mechanisms permitting assembly of the cointegrator regulatory
complex that are associated with cyclin D1 at a given cis element
remain to be determined. Prior studies using cyclin D1 and p300
knockout mice showed that, in the case of genes governing the
fidelity of DNA replication (e.g., MCM3, MCM4, and RfCH), their
abundance was induced by cyclin D1 and reciprocally regulated
by p300, consistent with previous findings that cyclin D1 inhib-
its p300 autoacetylation (26). Although the regulation of TFs and
cointegrator activity was independent of the cdk-binding domain,
the role of the cyclin D1 cdk-binding domain in regulating the
CIN signature in vivo remains to be determined.

The current studies identified a distinct subset of cis elements
occupied by cyclin D1, due in part to the distinct interrogation of
the genome conducted herein. The current studies examined both
noncoding and coding DNA and sites distal to the transcription
start site and identified a proclivity for cyclin D1 to occupy the
CTCF binding factor site. CTCF functions in chromatin reorgani-
zation and as an enhancer insulator (50). It is of interest that the
cohesin complex — important in segregation of sister chromatids,
which were altered in a cyclin D1-dependent manner — interacts
with CTCF. The cohesin complexes are also found at a large frac-
tion of CTCEF sites in vivo (51, 52). Because CTCF is a chroma-
tin reorganizer and has the potential to play a bidirectional role
through the cohesin complex, it will be of interest to determine
the relative importance of cyclin D1 in regulating CTCF-depen-
dent global transcription.

Methods
Further information can be found in Supplemental Methods.

Cell culture, cell lines, and transgenic mice. The MSCV-IRES-GFP retroviral
vector and cyclin D1 WT constructs were previously described (53). Cend1*
and CendI7/~ primary MEF cultures were prepared as described previously
(54). Cells were maintained in DMEM supplemented with 10% fetal bovine
serum and 100 ug/ml each of penicillin and streptomycin.

Retrovirus production and infection. Retroviral production and infection of
Cend17/~ MEFs were described in detail previously (53). FACS-sorted (FACStar
Plus; BD Biosciences) GFP* cells were used for subsequent analysis.
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ChIP-Seq analysis and TF enrichment. Genpathway’s FactorPath method
was carried out as previously described by Labhart et. al (55). Gene librar-
ies were sequenced using Genome Analyzer II and aligned to the mouse
genome using Eland (Illumina). TF enrichment in ChIP-Seq intervals was
conducted using the Jasper server.

Western blotting and luciferase assays. Whole cell lysates or homogenized
tissue lysates (50 ug) were subjected to Western blotting as previously
described (56). The following antibodies were used for Western blotting:
guanine nucleotide dissociation inhibitor (GDI; ref. 57), cyclin D1 (catalog
no. MS-210-P; NeoMarkers), FLAG-tagged M2 (catalog no. F1804; Sigma-
Aldrich), B-tubulin (catalog no. T4026; Sigma-Aldrich), Aurkb (alias AIM-1,
catalog no. 611082; BD Biosciences), phospho-H3S10 (catalog no. 06-570;
Millipore), and GAPDH (catalog no. FL-335; Santa Cruz Biotechnology
Inc.). Luciferase assays were conducted as described previously (58). A dose
dependency for cyclin D1 was obtained using 50, 100, or 150 ng of plasmid
DNA and 200 ng of reporter.

ChIP assay. ChIP material was prepared in accordance with the Magna ChIP
(Millipore) manufacturer’s guidelines. Briefly, 3-cm x 10-cm plates of actively
growing late-passage MEFs (Cend17/~ MSCV-IRESD1) were fixed for 10 min-
utes with 37% paraformaldehyde (final concentration, 1%). Unreacted form-
aldehyde was quenched with 1 ml of 10x glycine. The 3 plates were washed
twice with ice-cold PBS, and the pellets were harvested in 1 ml PBS with
protease inhibitor cocktail and pooled together in a 15-ml tube in order to
obtain 1.5 x 10° cells. DNA fragmentation of the pellets was achieved by soni-
cation, 35 cycles of 20 seconds each at maximum speed using OMNI-Ruptor
4000 (OMNI International Inc). IP was performed with 10 ug FLAG-tagged
M2 antibody (Sigma-Aldrich) and equivalent amount of mouse IgG as nega-
tive control. Washes and elution of the IP DNA were performed according to
the Magna ChIP protocol (Millipore). PCR primers were designed based on
the peak interval sequence associated with cyclin D1 (Supplemental Figure S),
and the PCR products were visualized by agarose gel electrophoresis.

PI staining. 1 x 10° randomly cycling cells were washed in PBS and fixed
overnight in 70% ethanol. RNase A (10 mg/ml) was treated for 30 minutes
at room temperature, washed, and stained with PI (20 ug/ml). PI staining
was measured using a FACSCalibur flow cytometer (BD Biosciences).

Real-time PCR. RNA quantitation was conducted in an Agilent 2100
bioanalyzer (Agilent Technologies), using Power SYBR Green (AB Biosci-
ences) according to the manufacturer’s guidelines. Equal quantities of
RNA were used for the reverse transcription reactions. Primers (Supple-
mental Figure 5) for all the genes were designed using GenScript’s bioin-
formatics tools (GenScript).

SKY. SKY was carried out as described previously (59). Briefly, fluores-
cence color images of chromosomes stained by rhodamine, Texas Red, CyS,
FITC, and CyS.5 were captured under a Nikon microscope equipped with
a spectral cube and Interferometer module. SKY View software (version
1.62) was used to analyze chromosomal number and structural alterations
of chromosomes, including simple balanced translocations, unbalanced
translocations (i.e., NRTs), deletions, and duplications. At least 20 meta-
phases were analyzed per sample.

Microarray analysis. Affymetrix Expression Console 1.1 or the R statis-
tic console with limma package was used to compute Robust Multichip

1. Malumbres M, Barbacid M. Cell cycle, CDKs and
cancer: a changing paradigm. Nat Rev Cancer. 2009;
9(3):153-166.

2. Lengauer C, Kinzler KW, Vogelstein B. Genetic
instabilities in human cancers. Nature. 1998;
396(6712):643-649.

3.Thompson SL, Bakhoum SF, Compton DA.
Mechanisms of chromosomal instability. Curr Biol.
2010;20(6):R285-295.

4. Gollin SM. Mechanisms leading to chromosomal

2004;14(2):120-125.

401(6750):297-300.

842 The Journal of Clinical Investigation

instability. Semin Cancer Biol. 2005;15(1):33-42.
5. Draviam VM, Xie S, Sorger PK. Chromosome segre-
gation and genomic stability. Curr Opin Genet Dev.

6.Spruck CH, Won KA, Reed SI. Deregulated cyclin
E induces chromosome instability. Nature. 1999;

7.Carter SL, Eklund AC, Kohane IS, Harris LN,

Szallasi Z. A signature of chromosomal instabil-
ity inferred from gene expression profiles predicts

http://www.jci.org

Average (RMA) expression values for the Mouse Gene 1.0 ST microarrays
and Mouse 430A 2.0 microarrays. Microarray data have been deposited in
GEO (accession no. GSE35076; http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE35076). The core set of probe set clusters was used with
annotation version na30, dated December 2009. The dataset was import-
ed into Matlab version R2010b (The Mathworks), and 1-way ANOVA was
used to evaluate the significance of differential expression between bio-
logical conditions. Genes with a differential expression P value of 0.01
or less and an absolute fold change of 1.25 or more were clustered and
visualized using a clustergram heatmap.

Analysis within public microarray datasets. A breast cancer microarray dataset
that was previously compiled from the public repositories Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/; ref. 60) and ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/; ref. 61) was used to evaluate CIN and
CCND1 transcript level expression in the context of clinical samples (37).

Immunofluorescence and confocal analysis. Inmunofluorescence was per-
formed as previously described by Silkworth et al. (62).

Statistics. To determine the number of ChIP-Seq peaks, a MACs algo-
rithm was used (4.35% false discovery rate). Analysis of TF enrichment
within the interval sequences produced by the ChIP-Seq data was com-
puted using a permutation test. Enrichment for high CIN scoring genes
between 2 sets was compared using Wilcoxon matched-pairs test. Kaplan-
Meier plots were compared by log-rank test. Correlation between cyclin D1
expression and CIN was evaluated using ? test. For comparison between
2 independent groups, 2-tailed Student’s ¢ test was used. A P value less
than 0.05 was considered significant.

Study approval. The Thomas Jefferson University Institutional Animal Care
and Use Committee approved the mouse study protocols described herein.

Acknowledgments

This work was supported in part by Susan Komen Breast Cancer
Foundation awards BCTR0504227 (to C. Wang) and PDF2000167
(to A. Arnold); by NIH grants ROICA70896, R0O1CA75503, and
RO1CA86072 (to R.G. Pestell), ROICA55909 (to A. Arnold), and
RO1CA12934 (to E.S. Knudsen); by the China Scholarship Coun-
cil; by a Pennsylvania Department of Health grant (to C. Wang
and R.G. Pestell); and by the Murray-Heilig Fund in Molecular
Medicine (to A. Arnold). Work conducted at the Kimmel Can-
cer Center was supported by NIH Cancer Center Core grant
P30CA56036 (to R.G. Pestell). The Pennsylvania Department of
Health specifically disclaims responsibility for any analyses, inter-
pretations, or conclusions.

Received for publication July 28, 2011, and accepted in revised
form December 21, 2011.

Address correspondence to: Richard G. Pestell, Departments of
Cancer Biology and Medical Oncology, Kimmel Cancer Center,
Thomas Jefferson University, 233 South 10th Street, Suite 1050,
Philadelphia, Pennsylvania 19107, USA. Phone: 215.503.5692; Fax:
215.503.9334; E-mail: Richard.pestell@jefferson.edu.

clinical outcome in multiple human cancers. Nat
Genet. 2006;38(9):1043-1048.

8. Mayhew CN, et al. RB loss abrogates cell cycle con-
trol and genome integrity to promote liver tumori-
genesis. Gastroenterology. 2007;133(3):976-984.

9. Weinberg RA. The retinoblastoma protein and cell
cycle control. Cell. 1995;81(3):323-330.

10. Kato J-Y, Matsushime H, Hiebert SW, Ewen ME,
Sherr CJ. Direct binding of cyclin D to the retino-
blastoma gene product (pRb) and pRb phosphory-

Volume 122 Number3  March 2012



lation by the cyclin D-dependent kinase CDK4.

Genes Dev. 1993;7(3):331-342.

. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato
J-Y, Livingston DM. Functional interactions of the
retinoblastoma protein with mammalian D-type
cyclins. Cell. 1993;73(3):487-497.

12. Sakamaki T, et al. Cyclin D1 determines mito-
chondrial function in vivo. Mol Cell Biol. 2006;
26(14):5449-5469.

13. Wang C, et al. Cyclin D1 repression of nuclear
respiratory factor 1 integrates nuclear DNA syn-
thesis and mitochondrial function. Proc Natl Acad
Sci US A.2006;103(31):11567-11572.

14. Stacey DW. Three observations that have changed
our understanding of cyclin D1 and p27 in cell
cycle control. Genes Cancer. 2010;1(12):1189-1199.

15. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee R,
Arnold A. The cyclins and cyclin-dependent kinase
inhibitors in hormonal regulation of proliferation
and differentiation. Endocr Rev. 1999;20(4):501-534.

16. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Mini-
review: Cyclin D1: normal and abnormal functions.
Endocrinology. 2004;145(12):5439-5447.

17. FuM, et al. Cyclin D1 inhibits peroxisome prolifera-
tor-activated receptor gamma-mediated adipogen-
esis through histone deacetylase recruitment. J Biol
Chem. 2005;280(17):16934-16941.

18.Keyomarsi K, et al. Cyclin E and survival in
patients with breast cancer. N Engl | Med. 2002;
347(20):1566-1575.

19. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold
A, Schmidt EV. Mammary hyperplasia and carci-
noma in MMTV-cyclin D1 transgenic mice. Nature.
1994;369(6482):669-671.

20. Sicinski P, et al. Cyclin D1 provides a link between
development and oncogenesis in the retina and
breast. Cell. 1995;82(4):621-630.

.Yu Q, Geng, Sicinski P. Specific protection against
breast cancers by cyclin D1 ablation. Nature. 2001;
411(6841):1017-1021.

22.Hulit J, et al. Cyclin D1 genetic heterozygos-
ity regulates colonic epithelial cell differentiation
and tumor number in ApcMin mice. Mol Cell Biol.
2004;24(17):7598-7611.

23. Zwijsen RM, Wientjens E, Klompmaker R, van der
Sman J, Bernards R, Michalides RJ. CDK-indepen-
dent activation of estrogen receptor by cyclin D1.
Cell. 1997;88(3):405-415.

24. Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ,
Bernards R. Ligand-independent recruitment of
steroid receptor coactivators to estrogen receptor
by cyclin D1. Genes Dev. 1998;12(22):3488-3498.

.Reutens AT, et al. Cyclin D1 binds the androgen
receptor and regulates hormone-dependent signal-
ing in a p300/CBP-associated factor (P/CAF)-depen-
dent manner. Mol Endocrinol. 2001;15(5):797-811.

26. FuM, etal. Cyclin D1 represses p300 transactivation
through a cyclin-dependent kinase-independent
mechanism. ] Biol Chem. 2005;280(33):29728-29742.

27. Bienvenu F, Barre B, Giraud S, Avril S, Coqueret O.
Transcriptional regulation by a DNA-associated form
of cyclin D1. Mol Biol Cell. 2005;16(4):1850-1858.

28. Bienvenu F, et al. Transcriptional role of cyclin D1

—_
—

2

—_

2

wn

The Journal of Clinical Investigation

in development revealed by a genetic-proteomic
screen. Nature. 2010;463(7279):374-378.

29.Wang C, et al. Cyclin D1 antagonizes BRCA1
repression of estrogen receptor alpha activity. Can-
cer Res. 2005;65(15):6557-6567.

30. ZhouJ, et al. Attenuation of Forkhead signaling by
the retinal determination factor DACH1. Proc Natl
Acad Sci US A. 2010;107(15):6864-6869.

.Yu Z, et al. A cyclin D1/microRNA 17/20 regula-
tory feedback loop in control of breast cancer cell
proliferation. J Cell Biol. 2008;182(3):509-517.

.Sandelin A, Alkema W, Engstrom P, Wasserman
WW, Lenhard B. JASPAR: an open-access database
for eukaryotic transcription factor binding profiles.
Nucleic Acids Res. 2004;32(database issue):D91-D94.

33. Hsu JY, et al. Mitotic phosphorylation of histone
H3 is governed by Ipl1/aurora kinase and Glc7/PP1
phosphatase in budding yeast and nematodes. Cell.
2000;102(3):279-291.

34. Giet R, Glover DM. Drosophila aurora B kinase is
required for histone H3 phosphorylation and con-
densin recruitment during chromosome conden-
sation and to organize the central spindle during
cytokinesis. J Cell Biol. 2001;152(4):669-682.

35. Tatsuka M, et al. Multinuclearity and increased ploidy
caused by overexpression of the aurora- and Ipl1-like
midbody-associated protein mitotic kinase in human
cancer cells. Cancer Res. 1998;58(21):4811-4816.

36. Artandi SE, et al. Telomere dysfunction promotes
non-reciprocal translocations and epithelial can-
cers in mice. Nature. 2000;406(6796):641-645.

37.Ertel A, et al. RB-pathway disruption in breast
cancer: differential association with disease sub-
types, disease-specific prognosis and therapeutic
response. Cell Cycle. 2010;9(20):4153-4163.

38.Hu Z, et al. The molecular portraits of breast
tumors are conserved across microarray platforms.
BMC Genomics. 2006;7:96.

. Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler
KW, Vogelstein B. Evidence that genetic instability
occurs at an early stage of colorectal tumorigenesis.
Cancer research. 2001;61(3):818-822.

40. Kops GJ, Weaver BA, Cleveland DW. On the road to
cancer: aneuploidy and the mitotic checkpoint. Nat
Rev Cancer. 2005;5(10):773-78S5.

. Nelsen CJ, et al. Short term cyclin D1 overexpres-
sion induces centrosome amplification, mitotic
spindle abnormalities, and aneuploidy. ] Biol Chem.
2005;280(1):768-776.

42. Aggarwal P, et al. Nuclear accumulation of cyclin
D1 during S phase inhibits Cul4-dependent Cdt1
proteolysis and triggers p53-dependent DNA rerep-
lication. Genes Dev. 2007;21(22):2908-2922.

43. Del Rey J, et al. Centrosome clustering and cyclin
D1 gene amplification in double minutes are com-
mon events in chromosomal unstable bladder
tumors. BMC Cancer. 2010;10:280.

44. Jirstrom K, et al. Adverse effect of adjuvant tamoxifen
in premenopausal breast cancer with cyclin D1 gene
amplification. Cancer Res. 2005;65(17):8009-8016.

45. Millar EK, et al. Cyclin D1b protein expression in
breast cancer is independent of cyclin Dla and
associated with poor disease outcome. Oncogene.

3

—_

3

N

3

o

4

_

hetp://www.jci.org  Volume 122

Number 3

research article

2009;28(15):1812-1820.

46. Manchado E, Malumbres M. Targeting aneuploidy
for cancer therapy. Cell. 2011;144(4):465-466.

47.Tang YC, Williams BR, Siegel JJ, Amon A. Identi-
fication of aneuploidy-selective antiproliferation
compounds. Cell. 2011;144(4):499-512.

48.Li Z, et al. Alternative cyclin d1 splice forms differ-
entially regulate the DNA damage response. Cancer
Res. 2010;70(21):8802-8811.

49. Jirawatnotai S, et al. A function for cyclin D1 in DNA
repair uncovered by protein interactome analyses in
human cancers. Nature. 2011;474(7350):230-234.

50. Bell AC, West AG, Felsenfeld G. The protein CTCF
is required for the enhancer blocking activity of
vertebrate insulators. Cell. 1999;98(3):387-396.

. Wendt KS, et al. Cohesin mediates transcriptional
insulation by CCCTC-binding factor. Nature.
2008;451(7180):796-801.

52.Rubio ED, et al. CTCF physically links cohe-
sin to chromatin. Proc Natl Acad Sci U S A. 2008;
105(24):8309-8314.

53.Li Z, et al. Cyclin D1 regulates cellular migra-
tion through the inhibition of thrombospon-
din 1 and ROCK signaling. Mol Cell Biol. 2006;
26(11):4240-4256.

54.Wang C, et al. Cyclin D1 repression of peroxi-
some proliferator-activated receptor gamma
expression and transactivation. Mol Cell Biol. 2003;
23(17):6159-6173.

55. Labhart P, et al. Identification of target genes in
breast cancer cells directly regulated by the SRC-3/
AIB1 coactivator. Proc Natl Acad Sci U S A. 2005;
102(5):1339-1344.

56.Bromberg JF, et al. Stat3 as an oncogene. Cell.
1999;98(3):295-303.

57.Lee RJ, et al. pp60(v-src) induction of cyclin D1
requires collaborative interactions between the
extracellular signal-regulated kinase, p38, and Jun
kinase pathways. A role for cAMP response ele-
ment-binding protein and activating transcription
factor-2 in pp60(v-src) signaling in breast cancer
cells. J Biol Chem. 1999;274(11):7341-7350.

58. Wu K, et al. Cell fate determination factor Dachs-
hund reprograms breast cancer stem cell function.
J Biol Chem. 2011;286(3):2132-2142.

59.Macville M, et al. Spectral karyotyping, a 24-
colour FISH technique for the identification of
chromosomal rearrangements. Histochem Cell Biol.
1997;108(4-5):299-305.

60. Barrett T, et al. NCBI GEO: mining tens of millions
of expression profiles--database and tools update.
Nucl Acids Res. 2007;35(database issue):D760-D765.

61. Brazma A, et al. ArrayExpress--a public repository
for microarray gene expression data at the EBIL
Nucleic Acids Res. 2003;31(1):68-71.

62. Silkworth WT, Nardi IK, Scholl LM, Cimini D. Mul-
tipolar spindle pole coalescence is a major source
of kinetochore mis-attachment and chromosome
mis-segregation in cancer cells. PLoS One. 2009;
4(8):e6564.

63.Li Z, et al. Alternate Cyclin D1 mRNA Splicing
Modulates p27KIP1 Binding and Cell Migration.
J Biol Chem. 2008;283(11):7007-7015.

N

—_

March 2012 843



