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Mechanisms of thyroid hormone action
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Our understanding of thyroid hormone action has been substantially altered by recent clinical
observations of thyroid signaling defects in syndromes of hormone resistance and in a broad range
of conditions, including profound mental retardation, obesity, metabolic disorders, and a number
of cancers. The mechanism of thyroid hormone action has been informed by these clinical obser-
vations as well as by animal models and has influenced the way we view the role of local ligand
availability; tissue and cell-specific thyroid hormone transporters, corepressors, and coactivators;

thyroid hormone receptor (TR) isoform-specific action; and cross-talk in metabolic regulation
and neural development. In some cases, our new understanding has already been translated into therapeutic strate-
gies, especially for treating hyperlipidemia and obesity, and other drugs are in development to treat cardiac disease

and cancer and to improve cognitive function.

Introduction

Thyroid hormone regulates a wide range of genes after its acti-
vation from the prohormone, thyroxine (T4), to the active form,
triiodothyronine (T3) (1). The signaling pathway is complex and
highly regulated due to the expression of cell and tissue-specific
thyroid hormone transporters, multiple thyroid hormone recep-
tor (TR) isoforms, and interactions with corepressors and coacti-
vators (2, 3). Furthermore, in many cases, thyroid signals are
involved in cross-talk with a range of other signaling pathways
(4,5). Here, we review how clinical observations and animal mod-
els have shaped our understanding of this pathway, and how this
insight might be translated to therapeutic approaches for a range
of conditions (Table 1).

Overview of thyroid hormone action

Thyroid hormone is produced by the thyroid gland, which con-
sists of follicles in which thyroid hormone is synthesized through
iodination of tyrosine residues in the glycoprotein thyroglobulin
(6, 7). Thyroid stimulating hormone (TSH), secreted by the ante-
rior pituitary in response to feedback from circulating thyroid
hormone, acts directly on the TSH receptor (TSH-R) expressed on
the thyroid follicular cell basolateral membrane (8). TSH regulates
iodide uptake mediated by the sodium/iodide symporter, followed
by a series of steps necessary for normal thyroid hormone synthesis
and secretion (9). Thyroid hormone is essential for normal devel-
opment, growth, neural differentiation, and metabolic regulation
in mammals (2, 3, 10) and is required for amphibian metamorpho-
sis (11). These actions are most apparent in conditions of thyroid
hormone deficiency during development, such as maternal iodine
deficiency or untreated congenital hypothyroidism, manifesting
as profound neurologic deficits and growth retardation (6). More
subtle and reversible defects are present when ligand deficiency
occurs in the adult (12).

There are two TR genes, TRo. and TR, with different patterns of
expression in development and in adult tissues (2, 13). TRa. has one
T3-binding splice product, TRol, predominantly expressed in brain,
heart, and skeletal muscle, and two non-T3-binding splice products,
TRo2 and TRa3, with several additional truncated forms. TR has
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three major T3-binding splice products: TRB1 is expressed widely;
TRP2 is expressed primarily in the brain, retina, and inner ear; and
TRP3 is expressed in kidney, liver, and lung (2). Human genetics,
animal models, and the use of selective pharmacologic agonists have
been informative about the role and specificity of the two major
isoforms (2, 14, 15). The selective actions of thyroid hormone recep-
tors are influenced by local ligand availability (1, 16); by transport
of thyroid hormone into the cell by monocarboxylate transporter 8
(MCTS8) or other related transporters (17); by the relative expression
and distribution of the TR isoforms (13) and nuclear receptor core-
pressors and coactivators (18); and, finally, by the sequence and loca-
tion of the thyroid hormone response element (TRE; refs. 19, 20)
(Figure 1). In addition, nongenomic actions of thyroid hormone,
those actions not involving direct regulation of transcription by TR,
have been increasingly recognized (21). Membrane receptors, con-
sisting of specific integrin aw/[33 receptors, have been identified (22)
and found to mediate actions at multiple sites, including blood ves-
sels and the heart (23). Several studies have identified direct actions
of TR on signal transduction systems (2, 24), which may be especial-
ly significant in relation to actions in cell proliferation and cancer.

The broad range of genes whose expression is modified by thy-
roid hormone status makes studying the effect of thyroid hor-
mone action a daunting challenge (25). Many of the actions of
thyroid hormone are the result of potentiation or augmentation
of other signal transduction pathways (Table 2 and ref. 5). In meta-
bolic regulation, this includes potentiation of adrenergic signaling
(26-29) as well as direct interaction with metabolic-sensing nucle-
ar receptors (30-32). Similar direct receptor-to-receptor interac-
tions and competition for overlapping DNA response elements are
seen in neural differentiation, as TR interacts with chicken oval-
bumin upstream transcription factor 1 (COUP-TF1) and retinoic
acid receptor (RAR) (3, 33).

TR isoforms differ in length at both amino and carboxy termini
and are differentially expressed developmentally and spatially (Fig-
ure 1). The structure of TRo. and TRp are similar in the DNA and
ligand domains and differ most in the amino terminus, and it is
thought that the increased potency of TRa is related to its amino
terminus (34). Fundamental differences in the ligand-binding
pocket have permitted the design of ligands that specifically inter-
act with TRo or TR (35), and these have been important tools in
the dissection of isoform-specific actions.
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Figure 1

Nuclear action of thyroid hormone. Shown are the key components
required for thyroid hormone action, as demonstrated by a range of
clinical observations. (A) The TR gene has 2 major isoforms, TR and
TRa; the structures of TRa7 and TRa2 (non—T3-binding) and TRB7 and
TRp2 are shown. (B) The major thyroid hormone forms, T4, T3, and rT3.
(C) Circulating T4 is converted locally in some tissues by membrane-
bound D2 to the active form, T3. D3 converts T3 to the inactive rT3. (D)
In specific tissues, such as brain, transporters such as MCT8 transport
T4 and T3 into the cell. Unliganded TR heterodimerizes with RXR and
binds to a TRE and then to a corepressor, such as NCoR or SMRT,
repressing gene expression. T3 binding to the ligand-binding domain
results in movement of the carboxyterminal helix 12, disruption of core-
pressor binding, and promotion of coactivator binding, which then leads
to recruitment of polymerase Ill and initiation of gene transcription.

TR isoform selectivity for TRE sequences in genes that mediate
thyroid hormone response have been seen in some studies, but not
all. TRE sequences influence TR isoform interaction with ligand
(36) and may influence coactivator recruitment (37). TR inter-
action with TREs is not static; as has been reported with other
nuclear receptors, there is variation in the pattern of binding that
may be influenced by the TRE (37). In vitro studies have shown
some TR isoform preferences for specific TREs (38), although the
ability to translate these findings to in vivo observations are likely
limited. Liver gene profiling in TRoand TR gene knockouts dem-
onstrates little in the way of specific genes linked to a TR isoform
(25). A recent study, however, suggests that the relative potency
of activation may be controlled more by the relative expression of
TRo. or TRP in a tissue, rather than by TR isoform specificity for a
specific TRE (39).

Cell membrane thyroid hormone transport and

local ligand availability

Local activation of T3 from the prohormone T4 at the tissue
level is increasingly recognized as an important mechanism of
regulation of thyroid hormone action (40). The activity of type 2
5'-deiodinase (D2) is regulated by a ubiquitinase/deubiquitinase
mechanism. T4 deiodination by D2 results in exposed lysine resi-
dues in D2: ubiquitination of these residues reduces D2 activity,
and deubiquitination increases D2 activity (41, 42). Rodents derive
circulating T3 primarily by the action of type 1 5'-deiodinase (D1),
but humans rely primarily on D2 (1). The inactivation of T4 to
form reverse T3 (rT3), mediated by type 3 5-deiodinase (D3), is also
important in regulating tissues levels of T3, especially in thyroid
axis regulation and sensory development (43, 44). Some — but not
all — human genetic linkage studies of polymorphisms in D2 have
shown an association with obesity and diabetes (45, 46).

The relationship between the level of serum T4 and serum
TSH, termed the set point, is stable for an individual when repeat-
edly measured prospectively, but varies significantly between
individuals (47). This variability in set point in the population
suggests that there is a genetic influence involving one or more
genes in the thyroid hormone pathway (48). D2 polymorphisms
have been associated with an altered pituitary set point of TSH
(49) and with a blunted increase in serum T4 after thyrotropin-
releasing hormone-stimulated (TRH-stimulated) acute increase
in serum TSH (50). Specific D2 polymorphisms were linked to an
improved response in hypothyroid patients to replacement with
combined therapy of T4 and T3, rather than T4 alone (51). These
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Table 2

Thyroid signaling cross-talk with other pathways from in vitro and in vivo models and TR isoform preference

Pathway/nuclear factor Process or tissue TR isoform
or target
RAR Neural development TRad
Retinoic acid Brain development TRad
COUP-TF1 Expressed early in TRal
brain development
PPARa Liver TRad
PPARy Liver TRB
LXRa Liver TRB
LXR Brain TRal
p85a. subunit of PI3K Thyroid and liver TRpA
B-Catenin T3 stimulates expression TRal
in intestinal epithelium
Adrenergic signaling White fat TRad
Adrenergic signaling Brown fat TRa18
Adrenergic signaling Heart TRal
Adrenergic signaling Bone TRa1¢

AWild type and mutant. BTRp regulates UCP1. CRole also for TRf.

patients may have reduced conversion of T4 to T3 at the tissue
level and benefit from replacement with T3. Selenium is required
for the enzyme function of all three deiodinases. Individuals with
abnormal thyroid hormone metabolism have been described with
defects in the SECISBP2 gene, which is required for the synthesis
of selenoproteins (52), thus confirming the essential role of this
mineral in thyroid metabolism (Table 1).

Thyroid hormone is hydrophobic and was long thought to enter
into the cytoplasm by passive diffusion. Thyroid hormone trans-
porters, such as the monocarboxylate (MCT) family and organic
anion transporters (OATPs), were identified based on measurable
in vitro activity, but the physiologic significance of these trans-
porters was not established early on (17). MCT8 was identified
as a specific transporter of thyroid hormone and was reported to
be located on the X chromosome (53). Individuals with a severe
form of X-linked mental retardation, Allan-Herndon-Dudley syn-
drome, manifest with truncal hypotonia, poor head control, and
later spasticity and were found to have abnormal thyroid func-
tion (elevated serum T4 and rT3 and low T3). When MCTS8 was
sequenced in these patients, inactivating mutations were identi-
fied in some individuals (54, 55). More recently, a mouse model
with MCT8 inactivation demonstrated that MCTS8 is also impor-
tant for secretion of thyroid hormone (56). Oatplcl was shown in
a mouse model to be important for thyroid transport across the
choroid plexus and into the brain (57).

Thyroid transporters in the developing brain are expressed in
specific temporal and spatial patterns (17, 58). Individuals with
an MCT8 mutation have myelination delays, which are thought
to be caused by impaired thyroid hormone action on oligoden-
drocytes (59). MCTS8 is expressed in the hypothalamus, a major
site of integration of thyroid hormone feedback and gene regula-
tion (60). Exogenous T3, even in the presence of functional MCT8
transporters, does not act on fetal rat brain, due to the require-
ment for local production of T3 from T4 (61). Studies of MCT8
have shown that the thyroid hormone metabolite diiodothyropro-
pionic acid (DITPA) does not require MCT8 to enter into cells and
is a potential therapy for those affected by MCT8 mutations (62).
3038
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Nature of interaction Reference

Inhibits T3 action generally by direct inhibition of TR 96-98
Stimulates MCT8 expression and thyroid transport 103

Blocks TR binding to a TRE and inhibits T3 induction 99, 100
of gene expression

Fatty acid oxidation 26
Lipid homeostasis 110
Cholesterol metabolism 111
Cortical layering 113
Cell proliferation; tumorigenesis 24,130
Proliferation; tumorigenesis 133
Promotes lipolysis 30
Adaptive thermogenesis 27-29
Tachycardia 30
Increased bone turnover and bone loss 89, 135

It is likely, however, that DITPA therapy will require treatment at
an early stage of brain development to be effective. Thus, thyroid
hormone action in the brain is modulated by both regional activa-
tion and selective uptake into cells, identifying multiple selective
targets for therapeutic interventions.

Expanded spectrum of resistance to thyroid hormone:
TRa and TR} gene mutations

The major clinical condition associated with impaired nucle-
ar action of thyroid hormone, resistance to thyroid hormone
(RTH), was first described in 1967 (63). Clinical features include
goiter, elevated circulating thyroid hormone levels, nonsup-
pressed serum TSH level, clinical euthyroidism, and tachycar-
dia; some individuals also demonstrate attention deficit disor-
der and deficits of linear growth, hearing, and bone formation
(64). The RTH genetic defect was firmly established by a report
published more than twenty years ago of a TR} mutation in an
RTH kindred (65).

The potential phenotype of a TRo. mutant RTH syndrome was
considered based on the phenotype in animal models with TR
deletion or mutation (66). Recently, two families with different
inactivating point mutations in TRo. that resulted in receptors
with dominant-negative properties have been reported (67, 68).
The individual with an E403X TRa mutation had chronic con-
stipation, developmental delay, and short stature, with some
improvement after levothyroxine therapy (67). The index patient
and her father — who was found to have an insertion of thymine
at codon 397 of TRa, resulting in a frameshift and stop codon
at 406 — had short stature, delayed bone development, transient
delay in motor development, and mildly impaired cognitive
development; they also had some improvement with T4 treat-
ment (68). Levels of free T4 and rT3 in these patients were in the
low-normal range, and T3 in the high-normal range, with normal
TSH. These reports are a long-awaited complement to the well-
characterized TR} mutations and provide very strong support to
the results of genetic and pharmacologic studies indicating that
TR isoforms have distinct roles.
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It is of particular interest to compare the phenotype of TRo. and
TRP mutations in humans and determine the in vivo role of TR
isoform specificity. An important difference is that TR} mediates
thyroid hormone feedback to TRH/TSH, and a mutation blunts
this feedback, such that more thyroid hormone is produced (8).
In a limited study of RTH patients, the reduction in T3 affinity
of the TRP mutant correlated with the slope of the serum TSH to
serum T4 (69). The higher concentration of T4 and T3 in indi-
viduals with a TR mutation may compensate for the impaired
receptor signaling. In patients with TRo. mutations, thyroid hor-
mone feedback is not impaired to the same extent, so thyroid hor-
mone levels are not elevated. This may result in peripheral hypo-
thyroidism, and also points to a potential benefit of levothyroxine
therapy in these individuals.

Recently, a report of several patients that are homozygous for
TRP mutations demonstrated phenotypic features that represent-
ed a combination of those found in individuals heterozygous for
a mutation only in TRa. or in TRf (70). Patients homozygous for
TR mutations have a more severe phenotype of RTH — goiter,
hearing loss, and much greater elevations of serum T3, T3, and
TSH — than heterozygous individuals. Those homozygous for a
TR mutation also have intellectual deficits and growth retarda-
tion, more characteristic of deficient action of TRa. (67, 68). This
shows that the mutant TRp, expressed at sufficiently high levels,
antagonizes the actions of TRa.

Role of TR interaction with cofactors
The essential function of gene repression by transcription factor
corepressors in development and homeostasis is being increas-
ingly recognized (71, 72). Initial in vitro transfection studies with
TR expression vectors showed that the unliganded receptor had a
repressive effect on genes positively regulated by T3 and an activat-
ing effect on genes normally repressed by T3 (73). The significance
of this property has subsequently been demonstrated by several in
vivo models. The mouse model with complete absence of TRat and
TR has a milder phenotype than a hypothyroid mouse (74). In
the setting of TRa gene deletion, the structural effects of induced
neonatal hypothyroidism on the mouse brain were not seen (75).
The repressive actions of the unliganded receptor, therefore, have
a greater physiologic effect than having no receptor at all (18). The
interaction of TR with corepressors has been carefully mapped and
tested (76, 77). Astapova et al. recently described a mouse model
that expressed a version of nuclear receptor corepressor (NCoR)
with a mutation in the region that binds TR (78). The disruption
of this interaction resulted in a blunted TSH response to thyroid
hormone, but enhanced peripheral tissue sensitivity, as the animals
were euthyroid despite lower circulating thyroid hormone levels.
Interestingly, a mutant NCoR ubiquitously expressed in the back-
ground of a TRP RTH mutant reversed much of the resistance phe-
notype seen in that model (79). This indicates that constitutive TR
interaction with a corepressor is an important mechanism for RTH.
In a similar approach, mutation of the coactivator interacting
domain in TRf resulted in resistance to the action of thyroid hor-
mone (80). The interaction of NCoR with histone deacetylase 3
seems to be important for both T3-induced gene activation and
repression (81). Another approach to determine the importance of
TR coactivator interactions is to determine the impact of coactiva-
tor knockouts on thyroid hormone action (82, 83). Mice deficient
in the coactivator SRC1 showed increased resistance to the action
of thyroid hormone (84). These models may provide a mechanis-
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tic basis for the approximately 15% of individuals with an RTH
phenotype who lack mutations in TR, although no cofactor gene
mutations have yet been identified in these patients (85).

TR isoforms and neural development

Highly selective TR isoform requirements have been shown most
clearly in models of sensory development, with marked and selec-
tive defects of structure and function in the setting of TR isoform
inactivation (86). These include development of the inner ear and
the cone photoreceptors in the retina (87, 88). Another site with
specific TR isoform function is bone, both developmentally and
in the adult (89). The developmental importance of TR isoforms
is coupled with a requirement for specific transporter expression,
such as MCTS8 expression in the mouse cochlea (58), as well as a
requirement for D2 expression to provide local T3, and for D3 to
inactivate thyroid hormone and protect from excessive T3 action
during sensitive periods (86, 90).

Thyroid hormone interfaces with other signaling pathways in
neural development (Table 2). There is a close developmental link
between retinoic acid action in early neurologic development and
thyroid hormone action (3). In most model systems studied, retinoic
acid acts first, followed by thyroid hormone action. Several studies
have shown thyroid hormone targets in early neurological devel-
opment and a requirement for TRa. expression (91, 92). There are
multiple genes whose expression is known to be regulated by both
TR and RAR at the TRE (93-95). TR and RAR interact in promot-
ing neural differentiation (96, 97), including a repressive action of
the unliganded RAR, as has been shown for unliganded TR (73, 98).

The orphan nuclear receptor COUP-TF1 is expressed early in neu-
rological development, when thyroid hormone is present, but before
the brain is responsive to it (33). Thyroid hormone responsiveness
of the brain is associated with reduced expression of COUP-TF1.
Numerous thyroid hormone gene targets have been identified with
overlapping TR and COUP-TF1 response elements (99, 100). The
expression of COUP-TF1 blocks TR from binding the TRE, consis-
tent with protection from early T3 stimulation. Calcium calmodu-
lin-dependent kinase IV (CamKIV), a major thyroid hormone tar-
get gene in the developing brain, contains a TRE and COUP-TF1
binding site (101). CamKIV is regulated directly by T3 in primary
cultured neurons from fetal cortex and promotes the maturation
and proliferation of GABAergic interneurons from their precursor
cells (102). The timing of the transport of thyroid hormone is tied
to RA based on the stimulation of MCT8 gene expression. Using
a neuronal cell model, RA was shown to stimulate MCT8 mRNA
expression and to confer thyroid hormone transport (103).

TRa protein is expressed in embryonic postmitotic neurons and
most adult neurons in the mouse brain, which suggests that thy-
roid hormone may also have a significant role in the adult brain
(104). Thyroid hormone acting through TRo regulates adult
hippocampal neurogenesis, which is important in learning, mem-
ory, and mood (105, 106). Expression of a mutant TRa. is associ-
ated with more depressive behavior traits in mice (107).

TR isoforms and metabolic regulation

Specific actions of TR isoforms have been demonstrated for meta-
bolic regulation, including in white fat and brown adipose tissue
(BAT). TRa potentiates adrenergic action in white fat, and when
TRo. is mutated, visceral fat accumulates (30). BAT expresses both
TR and TRP, which have selective roles in adaptive thermogen-
esis (28, 29). Adaptive thermogenesis requires adrenergic stimula-
Volume 122 3039
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tion, T3, D2, uncoupling protein 1 (UCP1), and both TRa and
TRP (27). The TRa isoform is required for adrenergic signaling
(30), and the TR isoform is required for stimulation of UCP1
(29). In addition to these examples of thyroid hormone potentia-
tion of peripheral adrenergic signaling, thyroid also influences
adrenergic signaling centrally (108).

RTH patients with dominant-negative TR mutations have some
growth retardation and skeletal defects, but do not consistently
present with metabolic abnormalities. However, in a recent study
of RTH patients, increased resting energy expenditure was reported
(109). These findings suggest that TR actions mediating adrener-
gic sensitivity and fatty acid oxidation may be activated by the high-
er thyroid hormone levels in RTH patients, as is seen in the heart (5).

TRs engage in cross-talk with a range of nuclear metabolic
receptors, including PPARa (26), PPARy (110), and liver X recep-
tor (LXR), in metabolic regulation (111, 112) and in brain cortical
layering (Table 2 and ref. 113). The role of thyroid hormone recep-
tor as an endocrine modulator of metabolic regulation, interacting
with other nuclear receptors, PPARY coactivator 1 (PGC-1), and
p160 coactivators and corepressors, has been well described (114).

Our understanding of metabolic cross-talk has been applied
directly to therapy with the use of TR agonists for lipid lower-
ing and weight loss (15, 115). TR agonists have approximately
10-fold greater affinity for TR than TRo. Initial studies with TR
agonists showed a marked preference for action in the liver, effi-
cacy in lowering of cholesterol, and, for some compounds, weight
loss, all with little effect on heart or bone. A phase 2 trial of the
TRP agonist eprotirome in patients who had not reached LDL
target level with a statin demonstrated that the addition of epro-
tirome produced a dramatic improvement in LDL (116), although
cartilage damage in longer-term dog models has led to the with-
drawal of these compounds from clinical trials. Although these
actions speak strongly for TR isoform specificity, a significant part
of the specificity of action of these agents is much greater concen-
tration of the selective agonist compound in the liver compared
with the heart (117). A recent study found that the changes in gene
expression in the liver were the same after T3 stimulation or expo-
sure to the selective TRP agonist GC1 (118). MB07811 achieves
liver specificity by being activated after entering hepatocytes by the
action of cytochrome P450 to generate the TR agonist MB07344
(119). Interestingly, providing hypothyroid human subjects with
only T3 rather than T4, but keeping their TSH in the normal ref-
erence range, also results in reduced LDL cholesterol and slight
weight loss (120). This modest local hepatic excess of T3 may be
sufficient to lower cholesterol and produce weight loss, even when
systemic levels are in the normal range.

The thyroid hormone analog DIPTA was found to have some
specificity for action on the heart and was studied in a prospec-
tive randomized control study in patients with severe heart failure
(121). Although improvement in some cardiac parameters was
seen, the metabolic effects of weight loss were profound, and the
study stopped. The metabolic effects of DITPA — reduction in body
weight and LDL cholesterol — provide encouragement for benefi-
cial effects of this class of compound, although stimulation of bone
turnover and bone loss by DITPA will limit its therapeutic use (122).

The clinical utility of a TR antagonist has been considered pri-
marily to antagonize the cardiac effects of thyroid hormone, such
as ischemia and arrhythmias (123). The structure of the apo TR,
without ligand, has not been solved, but important features have
been identified from studies of the liganded receptor with agonists
3040
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and antagonists (35, 123). Helix 12 is the carboxyterminal helix of
TR, which folds in response to ligand and is essential for TR inter-
action with coactivators and corepressors (124). TR antagonists
have been designed by adding extension groups on TR agonists
that interfere with Helix 12 folding (123), although this approach
is not specific for TRa. or TRP.

Association of thyroid hormone receptor mutations

with cancer

The viral oncogenes v-erbA and v-erbB are the mediators of avian
erythroblastosis retrovirus (AEV) induction of erythroleukemias
and fibrosarcomas in chickens, first recognized in 1935 (125-127).
v-erbA was later recognized as a mutant version of TRa,, with fea-
tures that favor oncogenic activity, including deletion of the Helix
12 TR domain, which prevents T3 binding.

The link between the origins of TR and oncogenes is consistent
with the role of thyroid hormone signaling and mutant TRs in
several forms of cancer. The PV model, in which animals harbor a
specific truncation of TR, is associated with the development of
thyroid cancer (128). In related studies, TRB mutations have been
identified in a range of cancers, including hepatocellular carci-
noma, renal cell carcinoma, erythroleukemias, and thyroid cancer
(127, 129). TSH-secreting pituitary tumors have also been linked
to TRP mutations. TRP mutants are associated with direct interac-
tion with the regulatory p85a subunit of PI3K, which leads to acti-
vation of PI3K and increased phosphorylation of Akt and mTOR
and results in cellular proliferation and migration (24, 130). Muta-
tions in TRP promote metastatic spread of thyroid cancer (131).
TRP mutants have also been linked to pituitary tumors by acti-
vation of the cyclin D1/cyclin-dependent kinase/retinoblastoma/
E2F pathway (132). TRa directly stimulates transcription of the
[-catenin gene in intestinal epithelial cells and may play a role in
tumorigenesis in that tissue (133). Expression of D3, which inac-
tivates thyroid hormone, has been associated with proliferation of
malignant keratinocytes in basal cell skin carcinomas (134).

Summary

The elements required for thyroid hormone action are well recog-
nized, but the interaction among the various pathways has been
challenging to understand. Thyroid hormone interacts with a wide
variety of signaling pathways, and its action is modulated based on
nutritional and iodine status. A range of conditions with disordered
thyroid signaling has allowed us to identify key regulatory pathways
thatare potential therapeutic targets. The availability of TR isoform-
selective agonists and the recent reports of patients with RTH due to
TRa mutations, as well as those homozygous for TR mutations, are
strong evidence for TR isoform specificity. The role of the pituitary in
responding to a defect in a thyroid hormone action pathway is cen-
tral to the resulting phenotype. These pathways, as well as the role of
thyroid hormone in metabolism, cardiac function, and oncogenesis,

are likely to be the focus in applying these findings.
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