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The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here
we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We
base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production,
catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form
of poorly controlled diabetes; (c) the glucagon suppressors leptin and somatostatin suppress all
catabolic manifestations of diabetes during total insulin deficiency; (d) total (3 cell destruction

in glucagon receptor-null mice does not cause diabetes; and (e) perfusion of normal pancreas
with anti-insulin serum causes marked hyperglucagonemia. From this and other evidence, we conclude that glu-
cose-responsive 3 cells normally regulate juxtaposed o cells and that without intraislet insulin, unregulated o cells
hypersecrete glucagon, which directly causes the symptoms of diabetes. This indicates that glucagon suppression
or inactivation may provide therapeutic advantages over insulin monotherapy.

Introduction

The opposing hormonal actions of insulin and glucagon first
became evident as long ago as 1921, when Banting and Best
administered a crude extract of canine pancreas to a diabetic
dog (1). The subsequent destinies of the two components of the
extract, however, could not have been more different. The dis-
covery of insulin was acclaimed as the greatest achievement in
medical history and won a Nobel Prize within one year of its first
injection into a human. Since then, insulin has been considered
the single most important metabolic regulator, and the cata-
bolic derangements of type 1 diabetes (T1DM) have been directly
attributed to insulin lack; this insulinocentric view of diabetes has
persisted for 90 years (Sidebar 1).

In contrast, the hyperglycemic factor was consigned to the cat-
egory of unwelcome distraction. In 1971, Charles Best wrote to
Pierro Foa that he had “a very clear recollection of the immediate
rise in blood sugar lasting about one-half hour. We thought that
this might have been due to epinephrine and for this reason we
failed to investigate it thoroughly” (personal communication).

In 1923, the hyperglycemic factor was separated from insulin by
Kimball and Murlin and named glucagon (2). However, the con-
taminant stigma persisted among rank-and-file physicians long
after it became patently untenable. Glucagon did, however, attract
the interest of biochemists and physiologists (3-7), who identified
its glycogenolytic, gluconeogenic, and ketogenic activities. It was
purified and sequenced at Eli Lilly Co. (8), and shortly thereafter
was made commercially available for the treatment of severe hypo-
glycemic reactions to insulin.

Five decades later, glucagon finally gained recognition as a hor-
mone (9). In 1959, the development of a RIA for glucagon (10, 11)
made possible specific confirmation of glucagon responses to
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changes in fuel needs and abundance (12). The evidence suggest-
ing that elevated glucagon is the glucoregulatory partner of insulin
was reviewed in the 1975 Banting Lecture of the American Diabe-
tes Association (9). However, the importance of glucagon in nor-
mal glucose homeostasis and in the diabetic phenotype remained
controversial. Clearly, the vast majority of clinicians and scientists
continued to believe that insulin did it all and that glucagon had,
at most, a relatively minor modulatory role. Even today, few scien-
tists or clinicians accept the glucagonocentric premise that a cell
dysfunction is the sine qua non of the diabetic phenotype and that
its correction — independent of insulin treatment — would provide
important therapeutic benefit (Sidebar 1).

Here, we review evidence that the insulinocentric view of meta-
bolic homeostasis is incomplete and that glucagon is indeed a key
regulator of normal fuel metabolism, albeit under insulin’s para-
crine guidance and control. Most importantly, we emphasize that,
whenever paracrine control by insulin is lacking, as in T1DM, the
resulting unbridled hyperglucagonemia is the proximal cause of
the deadly consequences of uncontrolled diabetes and the glyce-
mic volatility of even “well-controlled” patients.

The practical goal of this review is to highlight the targeting a
cells as part of the therapeutic strategy of T1IDM to eliminate the
glycemic volatility that characterizes current insulin monotherapy.
It should be noted that inhibition of glucagon receptor action has
been associated with o cell hyperplasia (13) as well as abnormal
lipid metabolism (14, 15), making inhibition of o cell hypersecre-
tion the more appealing strategy for diabetes treatment.

Metabolic credentials

It soon became obvious that the effects of insulin and glucagon on
the liver were in diametric opposition (3), which suggested that the
two hormones share responsibility for regulating hepatic glucose
metabolism. The ability of glucagon to stimulate glucose produc-
tion in vivo was demonstrated in studies in which somatostatin
was used to disable the endocrine pancreas, so that plasma insu-
lin could be clamped at basal levels while plasma glucagon was
varied. In the dog, it was possible to replace insulin intraportally,
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Sidebar 1
Changing concepts of diabetes

1922: Insulinocentric

science in medicine

Lack of insulin directly causes all diabetes abnormalities (decreased glucose utilization, increased lipolysis, increased proteolysis,
increased hepatic glycogenolysis, increased ketogenesis, and decreased glycogen synthesis).

1975: Bihormonal

Different diabetes abnormalities are caused by lack of insulin (decreased glucose utilization, increased lipolysis, and increased
proteolysis) or by excess glucagon (increased hepatic glycogenolysis, increased hepatic gluconeogenesis, increased ketogenesis,

and decreased glycogen synthesis).
2011: Glucagonocentric

Lack of insulin directly causes some diabetes abnormalities (increased lipolysis and increased proteolysis); insulin lack also leads to
glucagon excess, which in turn causes other symptoms (decreased hepatic glucose uptake, increased hepatic glycogenolysis,
increased hepatic gluconeogenesis, increased ketogenesis, and decreased glycogen synthesis).

thus maintaining basal insulin levels in both liver and nonhepatic
tissues. Under such conditions, a selective decrease in glucagon
resulted in a rapid fall in glucose production (16), whereas a selec-
tive increase in the hormone caused a rapid rise in hepatic glucose
output (17, 18). In fact, after an overnight fast, the basal gluca-
gon level accounted for up to 70% of glucose production (16). In
addition, a rise in plasma glucagon of only 100 pg/ml in the liver
sinusoids tripled glucose production (19, 20). Thus, the control
strength of glucagon is profound, with a dynamic range of approx-
imately 5 mg/kg/min over the physiologic range of plasma gluca-
gon concentrations (Figure 1 and refs. 21-26). Not only is the liver
very sensitive to changes in plasma glucagon, it also responds rap-
idly, with a half-maximal activation time of only 8 minutes (27).
Human studies, although less well controlled, confirmed that the
observations made in the dog extend to man (22-25, 28-30). Thus,
it is evident that after an overnight fast, basal levels of glucagon
drive resting glucose production, thereby allowing insulin to link
hepatic glucose output to the body’s need for glucose.

Whenever there is an increased demand for glucose (i.e., starva-
tion, hypoglycemia, and exercise), insulin secretion falls, stimulat-
ing glucagon secretion. This removes insulin’s inhibitory action on
the liver while augmenting glucagon’s stimulatory effect on fuel
production. As a result, glucose production is increased to meet
the needs of the organism. When glucose is abundant, as with an
oral glucose load, the reverse occurs.

Glucagon also modulates hepatic glucose uptake (HGU) (28, 31,
32) and hepatic glycogen synthesis (33). A decrease in plasma glu-
cagon has little effect on HGU in the presence of elevated insulin
(31), but the effect can be quite marked when insulin is deficient
(32), which has obvious implications for diabetes. Insulin is a key
determinant of hepatic glucokinase (GK) expression, which is
required for HGU. It is unclear whether, in the presence of com-
plete insulin deficiency, glucagon suppression would increase liver
glucose uptake, a possibility that still needs to be directly exam-
ined. On the other hand, it is clear that an increase in glucagon
can interfere with the ability of a rise in plasma insulin to enhance
glucose uptake by the liver (31). This suggests that glucagon and
insulin jointly control hepatic production (in times of deficit) and
storage (in times of plenty) of glucose. When glucose is scarce, as
in starvation, lipolysis increases, as does the delivery of nonesteri-
fied fatty acids to the liver. It is also now clear that insulin and
glucagon interact to govern hepatic fatty acid synthesis (34) and
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hepatic ketogenesis (4). Likewise, the two hormones oppose each
other with regard to liver protein metabolism (35).

Endocrine and paracrine credentials

The demonstration that glucagon has powerful glycogenolytic
activity exerted via the second messenger cAMP (7) provided strong
biochemical evidence for it being a true hormone. In vivo evidence
of its physiologic activity was provided by Foa’s elegant pancreat-
ic-femoral cross-circulation studies in dogs, which demonstrated
that the pancreas was indeed the source of the hyperglycemic fac-
tor (36). Histochemical evidence reinforced the conclusion that
glucagon came from pancreatic o cells (37).

The development of highly specific RIAs for insulin (38) and glu-
cagon (10, 11) demonstrated reciprocal behavior of the 2 hormones.
Insulin levels fell during glucopenia and rose during glucose admin-
istration (Figure 2A and ref. 38), and glucagon levels rose during
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Figure 1

Relationship between hepatic sinusoidal glucagon and glucose pro-
duction in vivo. A pancreatic clamp was used to keep plasma insulin
basal and constant. The glucose production rate reflects the maximal
effect of glucagon and was observed approximately 15 minutes after
the change in the hormone level. In this way, the accompanying hyper-
glycemia was limited such that its inhibitory effect on glucose produc-
tion was minimal. When glucagon was made deficient (i.e., 0 pg/ml),
euglycemia was maintained by glucose infusion. The region shaded
blue denotes the physiologic range of plasma glucagon. Figure adapt-
ed with permission from Handbook of Physiology (96).
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Figure 2

Relationship between insulin and glucagon secretion. (A) Responses
of insulin and glucagon to minor changes in glucose perfused into iso-
lated pancreata of normal dogs. The perfusate glucose concentration
varied from 60 to 90 mg/dl. Modest changes in the perfusing glucose
concentration led to major reciprocal responses of both insulin and
glucagon. Figure adapted with permission from Diabetologia (38). (B)
Demonstration that a rise in glucose “paradoxically” stimulates glu-
cagon secretion when it is not accompanied by the rise in insulin that
normally accompanies elevations in glucose concentration. Figure
adapted from Journal of Clinical Investigation (43). (C) Topographic
scheme of a normal human islet showing the extensive juxtaposition
of f cells (red) to a cells (green) that facilitates instantaneous insulin
control of glucagon secretion via the interstitial space separating the
two cells. Scale bar: 50 um. Figure reproduced with permission from
Diabetes (48). (D) Direct physiologic evidence of the paracrine role of
insulin on « cell function in rodents. The isolated pancreata of normal
rats are perfused with either nonimmune serum, as control, or a potent
anti-insulin serum. The sudden rise in glucagon upon infusion of the
anti-insulin serum indicates an ongoing paracrine inhibition of gluca-
gon secretion by the insulin in the islets. Figure adapted from Journal
of Clinical Investigation (53).

glucopenia and fell during glucose administration, fully consistent
with its glycogenolytic and gluconeogenic actions (5-7). Glucagon
was localized immunocytochemically to a cells of the pancreas (39),
confirming the histochemical findings of Ferner (37). Nevertheless,
the importance of its role continued to be debated, despite meta-
bolic, physiologic, and anatomical clues suggesting a bihormonal
homeostatic relationship between insulin and glucagon (12, 40, 41).
Another clue to the critical nature of this bihormonal relation-
ship was the demonstration that when insulin rises after glucose
feeding, the accompanying suppression of glucagon secretion is
caused not by hyperglycemia, but by increased insulin levels (42),
Indeed, if a rise in blood glucose is unaccompanied by insulin
release, hyperglycemia stimulates glucagon secretion (Figure 2B
and refs. 43, 44). This established insulin as a glucagon-suppress-
ing hormone and, as detailed below, made it increasingly clear that
the glucagon-suppressing action of insulin was largely a paracrine
function (45), providing further support for the concept of bihor-
monal control of glucose homeostasis (Sidebar 1 and refs. 5, 6).
The reciprocal changes in insulin and glucagon secretion that
occur in response to relatively minor perturbations in plasma glucose
(Figure 2A and ref. 38) give further credence to the concept of bihor-
monal control at the level of the islets, as well as of the liver (46).

Anatomical credentials

Finally, anatomical clues suggested that paracrine insulin reaches
the a cells before insulin reaches any other targets in the body in
concentrations far above the endocrine levels delivered to periph-
eral insulin targets. In rodents, the first clue (47) was the “portal”
microcirculation that carries insulin from the f cell core to the
a cell mantle of the islet (48). In addition, the demonstration of
gap junctions between o and f cells (49) raised the possibility
that their activities are also coordinated via intracellular signals.
In human islets, there is extensive juxtaposition of 3 cells and
a cells that should permit insulin to reach a cells across their
shared interstitium in a paracrine relationship. (Figure 2C and
refs. 48, 50, 51). Interestingly, although the topographic arrange-
ments of o and f cells differ in different species, they all appear
to enable insulin to control glucagon secretion via some type of
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Glucagon is essential in diabetic hyperglycemia. (A) Perfusion of a severely diabetic, insulin-deprived dog with somatostatin. The hyperglyce-
mia and hyperglucagonemia are promptly suppressed by the somastotatin infusion, and both reappear when it is stopped. Figure adapted with
permission from Science (58). (B) A similar experiment in type 1 diabetic humans receiving a suboptimal insulin dose administered by intrave-
nous infusion (60). Their hyperglucagonemia, hyperglycemia, and glycosuria are suppressed soon after beginning an infusion of somastotatin,
confirming earlier work by Gerich et al. (59). When hyperglucagonemia was restored by infusion of recombinant glucagon, hyperglycemia and
glycosuria reappeared. Figure adapted with permission from New England Journal of Medicine (60).

intraislet action. The tightly coupled reciprocal nature of changes
in the secretion of the two hormones (Figure 2A) was suggestive
of coordinated relationships analogous to the reciprocal innerva-
tions of skeletal muscle contraction described in the Second Law
of Sherrington, which states that whenever the biceps contracts,
the triceps relaxes (52).

Powerful evidence that insulin controls the secretion of glu-
cagon via a paracrine mechanism was obtained by perfusing the
isolated pancreas of normal rats with a potent neutralizing anti-
insulin serum. Whereas perfusion of nonimmune serum had no
effect, perfusion of the anti-insulin serum caused a prompt and
dramatic increase in glucagon secretion (Figure 2D and ref. 53).
This demonstrates that insulin acts inside the islets to inhibit
glucagon secretion.

Interestingly, recent reports suggest that insulin may also reg-
ulate glucagon secretion through an action in the ventromedial
hypothalamus, as well as by an effect on the o cell directly (54, 55),
a dual control system.

Glucagon, sine qua non of hyperglycemia in all forms of
insulin deficiency

The similarity between the glycogenolytic, gluconeogenic, and
ketogenic actions of glucagon (Sidebar 1) and the metabolic
abnormalities of insulin deficiency suggested that the o cell
hormone played a central pathogenic role in diabetes. Using the
glucagon RIA, it was demonstrated that hyperglucagonemia is
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present in untreated T1IDM in humans and animal models (40).
Absolute proof that endogenous glucagon plays an essential role
in the pathogenesis of diabetes requires that suppression of glu-
cagon secretion or action reduces the metabolic manifestations
of insulin deficiency. In 1974, Koerker et al. (56) reported that
somatostatin (57) could suppress glucagon. Several groups quick-
ly exploited this to test the effects of glucagon suppression on
the metabolic manifestations of insulin deficiency. When soma-
tostatin was infused into alloxan-diabetic dogs (Figure 3A and
ref. 58) or in insulin-deprived humans with T1DM, as first shown
by Gerich et al. (Figure 3B and refs. 59, 60), hyperglucagonemia
was suppressed and hyperglycemia was markedly decreased, even
though insulin had been reduced or discontinued. Notably, infu-
sion of exogenous glucagon restored the hyperglycemia. Physi-
ologic studies by Stevenson et al. (20), using the depancreatized
dog, demonstrated that when insulin was replaced intraportally
at a basal rate, the plasma glucagon level (3,500 MW glucagon
produced by a cells in the gut) fell markedly. It was the fall in
glucagon that was responsible for most of the insulin-driven
improvement in glycemia, since it ceased when glucagon was
replaced. These experiments provided the first concrete evidence
that glucagon might be playing an essential pathogenic role in the
hyperglycemia of insulin deficiency. They also called into ques-
tion for the first time the dogma of insulinocentrism, suggesting
that glucagon excess, rather than insulin deficiency, causes the
catabolism of insulin deficiency.
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Glucagon is the sine qua non of diabetes in mice. (A) Glucose levels in normal wild-type mice and in Gegr’- mice after destruction of § cells by
double-dose streptozotocin treatment. Gegr-- mice remain normoglycemic and exhibit no detectable metabolic consequence of total insulin defi-
ciency. (B) Insulin response to oral glucose in Gegr- mice before and after p cell destruction. (C) Oral glucose tolerance curve of Gegr’- mice
before and after f3 cell destruction. Remarkably, although streptozotocin-treated Gegr-- mice were incapable of secreting insulin in response to
an oral glucose tolerance test, their glucose tolerance curves did not differ significantly from Gegr-- mice with intact f§ cells and a robust insulin
response. In other words, in this model of congenital absence of glucagon activity, insulin has become irrelevant. (A—C) Figure adapted with

permission from Diabetes (71).

The main opposition to this idea was based on the fact that
total pancreatectomy causes diabetes. This argument was based
on the false assumption that a cells are located only in the pan-
creatic islets (61). However, in the 1970s, several groups reported
measurable glucagon levels in insulin-deprived, totally pancre-
atectomized humans and animals (62-65). The stomach was
found to be an important source of the nonpancreatic hyperglu-
cagonemia, and classical a cells were found in the gastric fundus
and duodenum of animals and humans (66, 67). Gastric a cells
were shown to oversecrete glucagon during insulin deficiency
and to be more sensitive than pancreatic a cells to small amounts
of insulin. Interestingly, immunoassayable glucagon was pres-
ent in a totally depancreatized, totally gastrectomized human
(68), which suggests that o cells are present in the digestive tract
below the pylorus. The recent demonstration by Thorel et al. that
ablation of 98% pancreatic a cells does not lower glucagon lev-
els sufficiently to suppress streptozotocin-induced diabetes (69)
may have a similar explanation.

These insights invalidated the only argument against an essen-
tial diabetogenic role for glucagon (67). Glucagonocentrism had
become plausible.

Glucagon and the glycemic volatility of TIDM?

Glycemic volatility, a hallmark of insulin-treated T1DM, is its
most challenging day-to-day clinical problem. TIDM patients
must constantly monitor glucose levels in order to respond to and
correct major glycemic deflections with supplemental insulin or
glucose (70), profoundly reducing quality of life. Given that TIDM
is the only condition in which such glucose volatility occurs and
that T1IDM is the only condition in which the islets are devoid of
cells, the possibility of a causal relationship between the volatility
and the loss of paracrine control of glucagon secretion by insulin
seems quite plausible.

For example, it is not widely appreciated that, when hyperglyce-
mia is unaccompanied by an increase in insulin, it stimulates rath-
er than suppresses glucagon secretion. This paradoxical increase
in glucagon could be an important factor in the exaggerated post-
prandial hyperglycemia of TIDM. If 3 cells are not juxtaposed to o
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cells to provide a glucose-stimulated paracrine “squirt” of insulin,
postprandial hyperglycemia will stimulate a paradoxical rise of
glucagon secretion, rather than trigger suppression of its release
(Figure 2B and refs. 43, 44). This adds an endogenous source of
glucose to the exogenous glucose from the meal.

Glucagon and the hypoglycemia of TIDM

Another burden of T1DM is that hypoglycemia (precipitable by
physical exertion or by delays in feeding) is unalleviated in the
absence of the normal glucagon response. In this case, the circulat-
ing insulin derived from the injection does not decline when blood
glucose levels fall, thus preventing the glucagon rise that would
otherwise defend against hypoglycemia. In addition, the observa-
tion that high levels of insulin in the brain can inhibit glucagon
secretion through a neural mechanism (54, 55) suggests that cen-
tral insulin action may also contribute to high hypoglycemia inci-
dence in patients with TIDM.

Glucagonocentrism: insulin actions are mediated
by glucagons
Studies in glucagon receptor-null (Gegr/-) mice indicate that
glucagon mediates the catabolic consequences of insulin lack
(71). In these Gcgr/~ mice, which exhibit no response to gluca-
gon at any concentration, total f cell destruction did not result
in any of the diabetic abnormalities thought to be caused by
insulin deficiency. Destruction of § cells in wild-type controls
resulted in the familiar catabolic consequences of insulin defi-
ciency, with death due to ketoacidosis within 6 weeks, whereas
in the Gegr7~ mice, none of the clinical or laboratory manifes-
tations of insulin deficiency was detected (Figure 4). The insu-
lin-deficient Gegr7~ mice did not become hyperglycemic or
hyperketonemic, and their livers exhibited no increase either in
phospho-cAMP response element-binding protein (p-CREB;
a mediator of glucagon action) (72) or in the gluconeogenic
enzyme phosphoenolpyruvate carboxykinase, both of which are
elevated in uncontrolled diabetes.

These findings agree with other work in which glucagon recep-
tors were blocked with antibodies (73, 74) or with glucagon recep-
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Why insulin monotherapy in T1IDM cannot restore normal glycemic stability. (A) Concentration disparity of secreted insulin normally delivered
to target organs. Normal o. cells receive 100 times more insulin than do peripheral tissues. (B) In T1DM, all targets receive the same concentra-
tion of injected insulin. Levels high enough to suppress a cells are too high for the liver and the peripheral tissues. (C) By lowering the insulin
dose and suppressing hyperglucagonemia with a noninsulin glucagon suppressor, glycemic stability is achieved. (D) Suppression of glycemic
volatility in TIDM. NOD mice were treated with optimal insulin dose (0.2 U twice daily); other mice were treated with a suboptimal insulin dose
(0.02 U twice daily) and a subcutaneous infusion of leptin. Mean glucose values were determined at 10 a.m. and 5 p.m. Leptin suppressed glu-
cose volatility in these mice by preventing hyperglucagonemia, and hypoglycemia was prevented by reducing the insulin. Figure adapted with
permission from Proceedings of the National Academy of Sciences of the United States of America (51).

tor antagonists (75). Such maneuvers also improved the metabolic
state in insulin deficiency (76-80). These results strongly suggest
that the catabolic actions heretofore considered the direct conse-
quences of insulin lack are actually mediated by a relative or abso-
lute excess of glucagon to insulin.

By far the most surprising observation in the Gegr/~ mice was the
fact that oral or intraperitoneal glucose tolerance tests remained
normal (Figure 4B), despite destruction of virtually all  cells and
lack of an insulin response to glucose (Figure 4C). Since a normal
glucose tolerance test excludes the diagnosis of diabetes, one must
conclude that the diabetic state cannot be manifest without glu-
cagon action — at least in the mouse. Therefore, the abnormalities
of glucose and ketone metabolism associated with TIDM in the
mouse are mediated by dysregulated glucagon secretion, rather
than by insulin lack per se (Sidebar 1 and refs. 51,71).
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Gegr”~ mice reportedly have very high plasma levels of the incre-
tin hormone glucagon-like peptide 1, but this is not thought to
account for their improved oral glucose tolerance, although the
plasticity of the incretin system in this model is striking (81).
If these rodent findings extend to humans, as suggested by the
somatostatin studies of Gerich et al. (59) and Raskin and Unger
(60), the excess of unsuppressed and unopposed glucagon, rath-
er than the lack of insulin by itself, would be the direct cause of
the catabolic cascade in insulin deficiency states (Sidebar 1). It
should be stressed that, at present, there is no basis for question-
ing a direct role for insulin lack alone in the enhanced lipoly-
sis seen in adipose tissue or in the increased proteolysis seen
in muscle in individuals with uncontrolled TIDM (Sidebar 1).
In fact, there are no known glucagon receptors in muscle (82).
Therefore, why insulin deficiency in G¢gr’/~ mice does not appear
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subcutaneously. Figure adapted with permission from Proceedings of the National Academy of Sciences of the United States of America (92).
(B) Plasma glucagon in streptozotocin-diabetic mice treated with of placebo or leptin infused intracerebroventricularly. Figure adapted with
permission from Proceedings of the National Academy of Sciences of the United States of America (91). (C) Proposed dual control model of o

cell secretion. LepR, leptin receptor.

to alter fat or muscle metabolism is unclear. It is worth noting
that glucose tolerance is not altered in muscle-specific insulin
receptor KO mice (83) or in whole-body Glut4-null mice (84).
In the normal dog and human, on the other hand, when insu-
lin and glucagon secretion were simultaneously made deficient
using somatostatin (30, 85), insulin lack resulted in a significant
decrease in glucose clearance and a consequent doubling of the
plasma glucose level. Thus, in large mammals, the effect of insu-
lin deficiency on muscle glucose uptake — at least acutely — is
apparent even in the face of glucagon lack.

Glucagon suppression as therapeutic strategy

If glucagon hypersecretion is in fact the direct cause of major
metabolic aberrations in human diabetes, including the glycemic
volatility of TIDM, glucagon suppression becomes an attractive
therapeutic strategy for managing the disease. The glycemic vol-
atility of TIDM observed with insulin monotherapy could easily
result from the sharp differences in the insulin concentrations
required by various targets of the hormone. By virtue of their
proximity to f cells, nondiabetic pancreatic o cells are exposed
to insulin in concentrations at least 100 times those reaching
skeletal muscle (Figure SA). In contrast, injected insulin pro-
vides a similar insulin concentration for all tissues (Figure 5B),
which results either in underinsulinization of a cells or in over-
insulinization of peripheral tissues. The obvious solution is to
use insulin in doses that meet the requirements of peripheral
tissues but are not high enough to suppress hyperglucagonemia
and to reassign the duty of a cell suppression to a noninsulin
agent, such as leptin (Figure 5B).

Noninsulin glucagon suppressors
In 1978, the first clinical trial of glucagon suppression in TIDM
was reported (60). Patients were treated with somatostatin infusion
after reduction of their insulin (Figure 3B and refs. 59, 60). When
hyperglucagonemia was suppressed, hyperglycemia and glycosuria
were markedly reduced. Unfortunately, side effects of somatosta-
tin precluded its long-term use in T1DM, and more than 20 years
passed before another glucagon suppressor was identified.
Amylin is a second glucoregulatory f cell hormone that is nor-
mally co-secreted with insulin in response to meals and is defi-
cient in patients with TIDM (86). Preclinical studies have shown
that amylin slows nutrient absorption, acts as a satiety factor,
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and decreases glucagon secretion (86). In clinical studies in which
pramlinitide (a commercially available amylin analog) was used as
an adjunct to insulin therapy in patients with TIDM, there were
decreases in plasma glucagon levels, glucose fluctuations, post-
prandial glucose levels, and plasma triglyceride concentrations
(86-89). As one might expect, the patients’ insulin dose had to
be decreased in order to prevent hypoglycemia. To the extent that
these effects relate to the reduction in plasma glucagon, the data
support the therapeutic concept described above.

In 2008, 14 years after its discovery (90), leptin was shown to
suppress glucagon hypersecretion in T1IDM rodents at least as
effectively as somatostatin and without undesirable side effects
(Figure 5C and refs. 91-93). Should similar results be demonstrat-
ed in humans, glucagon suppression with leptin could become a
new treatment strategy for TIDM.

In rodents, continuous glucagon suppression is required to
maintain glycemia within the normal range throughout the day
(92). This can be achieved by continuous subcutaneous infusion
of leptin to suppress the hyperglucagonemia caused by the 90%
reduction of the insulin dose to eliminate hypoglycemia; the glyce-
mic profile produced by low insulin plus leptin infusion is virtually
normal. (Figure 5C). The low insulin plus leptin regimen reduces
the expression of transcription factors and enzymes involved in
lipogenesis and cholesterologenesis (34), presumably by eliminat-
ing the iatrogenic hyperinsulinemia required in the absence of glu-
cagon suppression by paracrine insulin action. All in all, it would
seem that conventional monotherapy with insulin is incomplete
because it can provide paracrine suppression of glucagon secretion
only by seriously overdosing the extrapancreatic tissues.

The antidiabetic glucagon-suppressing effects of peripherally
induced hyperleptinemia (Figure 6A and ref. 92) have been dupli-
cated by leptin infusion into the intracerebral ventricle (Figure 6B
and ref. 91). This provides evidence for both a leptin-responsive
hypothalamic pathway for glucagon expression (94) and direct
leptin-mediated suppression of a cells. However, leptin could also
act directly on the a cell, in a model of dual control similar to that
proposed for insulin secretion (Figure 6C and ref. 55).

Summary
It is understandable, but nevertheless troubling, that the histor-
ic dimensions of the discovery of insulin in 1922 have distorted
scientific and clinical perspectives of hormonal dysregulation in
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diabetes for so long. Even though nine decades of insulin mono-
therapy have taught us that insulin replacement alone cannot
normalize glucose homeostasis in TIDM, while a cell research
has repeatedly suggested the diabetogenic role of glucagon, no
intensive effort to reduce or block glucagon actions in diabetes
has yet been undertaken. Failure to translate decades of favorable
preclinical evidence to the management of human diabetes must
reflect insulinocentric skepticism concerning the pathophysi-
ologic importance of diabetic hyperglucagonemia. Indeed, this is
suggested in the title of the outstanding review by Gromada et
al., “a-Cells of the endocrine pancreas: 35 years of research but
the enigma remains” (95). It is hoped that this review will catalyze
such efforts to determine whether this research can improve and
extend life for diabetic patients.
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