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Supplemental Data
Methods

Description of case cohorts

Summary data on the case cohorts studied are given in Supplementary Table 1. The UPenn
cases were part of a cross-sectional study of Alzheimer disease (AD) pathology, whereas
the ROS cases were part of a longitudinal epidemiological and clinico-pathological study of
aging, including mild cognitive impairment (MCI) and AD. ROS cases are elderly Catholic
clergy (nuns, priests, and brothers) non-demented at study entry who agree to annual
clinical and neuropsychological evaluations with brain donation upon death. The follow-up
rate for neuropsychological testing is above 95%, and the autopsy rate exceeds 90% (1,2).
The subjects encompass a broad range of cognitive abilities and pathology, making the
ROS cohort particularly useful for clinicopathological correlation analyses. Our cohort was
selected randomly from the 350 deceased ROS subjects at the start this study. They did not
differ significantly from the full set of ROS cases in age, sex ratios, PMIs, or last Mini-Mental
State Examination (MMSE) scores within their diagnostic categories. There was no clear
evidence of vascular damage in the cerebellar cortex or the hippocampal formation (HF) of

any case studied.

Diagnoses

All cases of AD dementia studied met clinical criteria for that disorder specified by NINCDS-
ADRA (3) as determined in consensus conferences after review of medical records, direct
clinical assessments, and interviews of care providers. Clinical diagnosis requires that an
individual showed clear cognitive decline from his or her previous levels as verified in tests
of memory and in least one other cognitive domain (e.g., perceptual speed). The diagnoses
were confirmed by postmortem examination of neuritic plaque densities in midfrontal gyrus
(dorsolateral prefrontal cortex), superior + inferior temporal gyrus, inferior parietal gyrus,
hippocampus, and substantia nigra as specified by the Consortium to Establish a Registry
for AD (4). The final diagnoses were consistent with Braak scores for neurofibrillary tangle
(NFT) pathology as recommended by the NIA-Reagan Institute consensus on diagnosis of
AD (5).
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Diagnosis of MCI (6,7) was purely clinical and indicates that an individual was rated at the
last examination as cognitively impaired according to neuropsychological tests but not
demented according to the examining physician (1). A diagnosis of amnestic MCI (aMClI)
indicates that the individual displayed prominent deficits in episodic memory at the final
evaluation. As this implies, a diagnosis of non-amnestic MCI (naMCI) indicates that the
individual displayed predominant cognitive deficits other than memory (i.e., perceptual

speed and/or visuospatial ability) at the last evaluation.

Cognitive Testing

Yearly evaluations of the ROS subjects include neuropsychological testing, as well as
completion of a medical history, neurological examination, and ratings on psychiatric scales.
The average time between the last neuropsychological evaluation and death is 6-7 months.
As previously described (8,9), such evaluation included the MMSE and 7 tests of episodic
memory, 4 of semantic memory, 4 of working memory, 2 of perceptual speed, and 2 of
visuospatial ability. A subject’s test results from the annual exam closest to death were
used. For data reduction in each subject, raw scores on individual tests were converted to z
scores relative to the baseline mean and standard deviation for the entire ROS cohort.
These were averaged to yield composite scores on the cognitive domains noted above
(e.g., episodic memory), which were in turn averaged to yield a composite global cognition

Score.

Tissue Collection

Autopsy consent was obtained from the brain donors, next-of-kin, or legal guardians in all
cases. Postmortem cases were stored at 2-4°C until autopsy. After sagittal bisection of the
forebrain, the brain was cut into coronal slabs. One hemisphere was sampled for tissues to
be examined microscopically, including the cerebellar cortex, HF, and other brain areas
used for diagnostic neuropathological assessments indicated above. Samples were fixed in
neutral-buffered formalin for 24-48 h, and embedded in paraffin. Undissected tissue was
frozen overnight at -80°C and sealed in plastic bags for long-term storage at the same
temperature. Cerebellar cortex and HF tissue were later dissected from the frozen
hemispheres of 8 matched pairs of normal and AD cases for the ex vivo stimulation with
insulin as described below. Surfaces were shaved before thawing to remove oxidized

surfaces.
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Anatomical origin and laminar content of samples

Cerebellar cortex samples derived from the midline of the posterior cerebellar lobe. Human
HF samples derived from mid-coronal levels of that structure. Rat HF samples included the
full rostrocaudal extent of that structure. Tissue samples included all layers and cell types of
the structure studied (molecular, Purkinje, and granule cell layers of the cerebellar cortex;
molecular, granule cell, and polymorph layer of the dentate gyrus; lacunosum-molecular,
radiate, pyramidal, and oriens layers of the hippocampus; and molecular and pyramidal cell

layers of the subiculum).

Histological preparations

Formalin-fixed, paraffin-embedded blocks of dissected brain areas were sectioned at 6 uym,
mounted on APES-coated slides (10), and air dried. The sections sampled intermediate
rostrocaudal levels of the HF. After dewaxing and rehydration, the tissue was either stained
for Nissl substance or prepared for immunohistochemistry. To delineate cytoarchitectural
limits of HF cell fields and estimate cell loss in AD cases, adjacent sections were stained in
0.1% cresyl violet acetate (Acros Organics 229630050, Fisher Scientific) at (pH 4.3),
differentiated in 95% ethanol, dehydrated in 100% ethanol, cleared in xylenes, and
coverslipped under Cytoseal 60 (Fisher Scientific). Since it was necessary to determine the
maximum size of cell nuclei to selectively identify cells with extranuclear immunoreactivity, a
third set of HF sections was stained with the nuclear marker hematoxylin. Sections were first
stained with Gill 3 hematoxylin (Polysciences 24244) for 2 min, rinsed in running tap water
for 1 min, then soaked in Scott’s bluing reagent (StatLab SL99) for 2 min, rinsed again in
running tap water for 1 min, dehydrated in ascending concentrations of ethanol, cleared in

xylenes, and coverslipped under Cytoseal 60.

Neuropathological examination

All cases were fully examined by trained neuropathologists for gross and microscopic
abnormalities diagnostic of diverse neurodegenerative dementias. Gross examination was
performed at autopsy, after which microscopic inspection was performed on fixed 6 pm
sections in multiple brain areas specified above (see Diagnoses). Hematoxylin and eosin
staining was used to reveal cell loss and infarcts not seen on gross examination. Neuritic
plaques were visualized with NAB228 (1:5000), a mouse monoclonal raised against Ap-11

synthetic peptide (Santa Cruz Biotechnology 32277). Neurofibrillary tangles (NFTs) were
3
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visualized using AT8 (1:800), a mouse monoclonal to hyperphosphorylated tau for
neurofibrillary tangles (Thermo Fisher). AR plaque load and NFT density were quantified
with the image analysis using procedures described below for other immunohistochemical

tests.

Quantitative immunohistochemistry

Tissue sections were first dewaxed in xylenes, rehydrated in descending alcohols, and
quenched of endogenous peroxidase activity in 5% H,O, dissolved in methanol for 30 min.
They were then were rinsed in distilled water and treated with an epitope retrieval method.
The retrieval treatment (formic acid denaturation, boiling, or trypsin digestion) depended on
the antigen studied. For AR and phosphorylated tau, sections were immersed for 10 min in
concentrated formic acid (Fisher Scientific BP1215-500) similar to the method of Kitamoto et
al. (11). For IR/IGF-1B pY and IRB Y*®, sections were incubated on-the-slide for 20 min at
37°C in dissolved trypsin tablets with buffer salts (Sigma-Aldrich T-7168). For all other
antigens, sections were boiled for 10 min in 10 nM citrate (pH 6.0) or, much more
commonly, 1 mM EDTA (pH 8.0) as advocated by Pileri et al. (12).

After antigen retrieval treatment, the tissue was rinsed in water, transferred to 0.1 M Tris
buffer with 0.01% Triton X-100 (TTB), blocked in 10% normal horse serum, and incubated in
primary antibody overnight at 4°C. Primary antibodies and their concentrations are given in
Supplementary Table 7. After rinsing in TTB and again between steps, sections were
incubated in species-appropriate biotinylated secondary antibody for 1 h at room
temperature, transferred to an avidin-biotin-peroxidase complex for 1 h, and finally reacted
with a 0.05% diaminobenzidine (DAB) — 0.03% hydrogen peroxide solution for 10 min. For
most antigens, signal amplification was achieved by adding NiSO4 (0.25% final dilution) to
the DAB solution (13). For PIP3, the DAB reaction product was darkened by light silver-gold
intensification following Teclemariam-Mesbah et al. (14). For Akt, Akt1 pS*”, Akt2 pS*™,
and PTEN, the IHC protocol was modified according to the protocol of Soetanto et al. (15) to
permit tyramide signal amplification (TSA) of streptavidin-peroxidase mediated DAB reaction
product using the TSA Biotin System (NEL700) of Perkin Elmer. Sections were then rinsed
in water, dehydrated in ascending concentrations of alcohols, cleared in xylenes, and
coverslipped under Cytoseal 60. All antigens were studied in at least two independent sets

of normal and AD cases.
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Measurement of cytoplasmic antigen levels

Quantifying differences between AD and normal cases in cytoplasmic levels of antigens of
interest was complicated by the fact that in the controls some of the antigens were only
reliably detected, if at all, in cell nuclei even after antigen retrieval and signal amplification
(Figure 6 G, M and Supplemental Figures 5 G, J, M and 6 D, G, J). We consequently used
two measures of cytoplasmic antigen levels. When an antigen in normal cases was
commonly detected in cytoplasm, but not in nuclei (AS160 pT®*?, GLUT4 pS*®, GSK-3B,
GSK-3a/B pS?'®, IRB, IRB pY®?, IR/IGF-1RB pY, total IRS-1, PP2A, PP2B, PTEN, and
PTP1B), we used mean cell body immunoreactivity (optical density) as the measure of
cytoplasmic levels. But when an antigen in normal cases was often undetectable in
cytoplasm or cell nuclei (Akt1, Akt2, and nitrotyrosine) or was heavily concentrated in (or
restricted to) cell nuclei (PIP3 and phosphorylated Akt, JNK, IKK, IRS-1, PKC{/A, and
mTOR), we used the density of cell bodies with detectable cytoplasmic antigen
(immunoreactive cells per unit area, normalized to total neuron density) as an index of
cytoplasmic antigen levels. Use of this index in CA1 gave results qualitatively similar to,
but larger than, total antigen levels in Western blotting of the HF as a whole, which
includes areas (i.e., CA3 and dentate gyrus) displaying much less pathology and insulin

signaling abnormalities in AD.

(Supplemental figures on the following pages)
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Supplemental Figures
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Supplemental Figure 1: Schematic of the insulin signaling pathway whose disruption

causes insulin resistance in T2D (16-20). The insulin receptor (IR) has two extracellular a

chains and two transmembrane B chains. Only the IR with abbreviated a chains (IR-A)

exists in the brain (21-24). Insulin binding of the IR a chains activates autophosphorylation
of the B chains, resulting first in tyrosine phosphorylation (pY) of amino acids 1146, 1150,
and 1151 in the catalytic (kinase regulatory) domain (= Y1158, 1162, and 1163 in full-length
IR called IR-B) and later in tyrosine phosphorylation of amino acid 960 (= Y972 in IR-B). The
latter event promotes IR binding of insulin receptor substrates (IRSs) (25,26). IRS-1, but not

IRS-2, is shown since only the former is recruited to brain IRs by near physiological doses of
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insulin according to the present study. IRS-1 pY binds the p85 regulatory subunit of
phosphatidylinositol 3-kinase (PI3K), which catalyzes the conversion of PIP2 to PIP3. The
latter phospholipid promotes translocation of protein kinase B (Akt) and protein kinase C,
including PKC isoforms zeta [(] and lamba [A], to the cell membrane, where they are
activated via the kinases PDK1 and/or Rictor (27,28). Via interactions with Grb2 (not
shown), IRS-1 can also activate ERK (25,26,29). Akt1 activation exerts feedback inhibition
on IR directly (30) and on IRS-1 indirectly via the mammalian target of rapamycin (mTOR)
(31,32). Direct feedback inhibition of IRS-1 is exerted not only by mTOR, but also by other
serine kinases, including ERK2, GSK-3, and PKC{/A phosphorylating IRS-1 at S312, S323,
S337/341, S616, and S636 numbered according to the human amino acid sequence: cf.
refs. (17,31,33-36). Those sites in rodents are respectively S307, S318, S332/336, S612,
and S632 (31). Via ERK2, JNK 1+2, and IKKB, many extracellular factors specified in the
diagram can also inhibit IRS-1 (18,31,37,38). Apart from the serine phosphorylated forms of

IRS-1 and GSK, all the phosphospecific molecules shown are their activated forms.
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Supplemental Figure 2: Postmortem intervals up to 16 h between death and brain removal
do not affect the magnitude of signaling responses to ex vivo insulin stimulation in the rat
HF. As confirmed by quantitative analyses, these representative immunoblots show that 10
nM, but not 1 nM, insulin consistently increases IGF-1R activation and recruitment of IRS-1.

Text Figure 1C and D graphs such data from all the rat brains studied.
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Insulin Effects on IGF-1 Signaling:
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Supplemental Figure 3: Near-physiological doses of insulin and IGF-1 (1 nM) selectively
activate their cognate receptors in normal (N) human and AD brains. The HF from the 8
matched pairs of normal and AD cases described in the text was stimulated ex vivo with
insulin (A-C) or IGF-1 (D-G). Sample immunoblots from a representative matched pair of

Y1135/1136 in the

cases are shown. The 1 nM insulin dose did not affect levels of IGF-1RB p
catalytic domain of that receptor or IGF-1RB binding of IRS-1 as seen in ratio
measurements (mean ratio + SEM) and the percentage increase above baseline levels
(mean ratio £ SEM) in these signaling responses. Conversely, 1 nM IGF-1 had no significant

Y1150/1151

effect on IRB p in the receptor’s catalytic domain), IRB pY®® in the receptor’s IRS-1

8
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binding domain, or IRB binding of IRS-1. In contrast, 10 nM doses of either ligand activated
the IR plus IGF-1R. The results are quantified in text Tables 2 and 4 and Supplemental
Tables 3A and 5. ns = not significant, © and ® = p < 0.05 and p < 0.01, respectively, for
differences from baseline levels in the same diagnostic group, and % and + = p < 0.01 and

p < 0.005, respectively, for differences between diagnostic groups.
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Supplemental Figure 4: HF insulin signaling responses in normal (N) and AD cases not
illustrated in the text. Tissue from the 8 matched pairs of normal and AD cases described in
the text was tested ex vivo. Sample immunoblots from a representative matched pair are
shown. Responses are expressed as percentages of baseline (0 nM) levels (mean ratio +
SEM) in the same diagnostic group, all of which are percent increases except for GSK-3f3
pY?'® expressed in percent decreases. The statistical significance of differences between N
O =p <0.05 % =p < 0.005. For

and AD cases is indicated: ns

not significant,

quantification of results, see text Table 2.
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Supplemental Figure 5 (Figure legend on next page)
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Supplemental Figure 5 (above): IRB (A-C), IRB pY?®® (D-F), IRS-1 pY®'? (G-I), IRS-1 pS>"?
(J-L), and GSK-3 a/B pS?"® (M-0) seen immunohistochemically in CA1 neurons of normal
(N), mild cognitive impairment (MCI), and AD cases in the ROS cohort. Text Table 5
summarizes the numeric data on these antigens. Unlike IR/IGF-1RB pY, IRB pY*® was not
reduced in MCI, but both these IRB pY species were reduced in AD. Activated forms of IRS-
1 (IRS-1 pY®'? and IRS-1 pY®*"), like IRS-1 pS, were often confined to cell nuclei in normal
cases (e.g., arrows in G and J). An example of a rare exception is indicated by an arrow
head in panel J. Cytoplasmic IRS-1 pY®' and IRS-1 pS*'2, was seen more commonly in
MCI (e.g., arrowhead in H), but the increase in density of neurons with these antigen in
cytoplasm was significant only between N or MCI cases and AD cases, not between N and
MCI cases. (Human IRS-1 pY®'? and pY®*' = rodent IRS-1 pY®® and pY®*, respectively).
GSK-3a/B pS?"”° was cytoplasmic and its levels rose slightly (e.g., arrow head in N), but
insignificantly, in MCI cases and very significantly in AD (see text Table 5). The scale bar in

O is 70 ym and applies to all panels.

Supplemental Figure 6 (below): Other IRS-1 pS kinases (A-L) and nitrotyrosine (M-O)
seen immunohistochemically in CA1 neurons of normal (N), mild cognitive impairment
(MCI), and AD cases in the ROS cohort. Text Table 5 summarizes the numeric data on the
antigens shown. Nitrotyrosine was cytoplasmic with low levels in N cases that rose
significantly in MCI cases and again in AD cases. A different pattern of changes were noted
for the other antigens, all known to phosphorylate the IRS-1 pS sites studied here. In N
cases, activated IKKa/B (pS'7%'®%), INK (pT'®%/pY'8%), mTOR (pS?**?), and PKC/A (pT#1%/4%3)
were frequently confined to cell nuclei (e.g., arrows in A, D, G, and J). In MCI and again in
AD, the density of cells with detectable levels of activated, cytoplasmic IKK, JNK, mTOR,
and PKCCZ/A (e.g., arrow heads in B, E, H, K, and N) increased, though the increase was
significant only in AD cases (see text Table 5). The density of neurons with cytoplasmic IRS-
1 pS was highly correlated with the density of neurons expressing activated, cytoplasmic
MTOR, IKK, and PKCUC/A (see text Table 6). The scale bar in O is 70 ym and applies to all

panels.
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Supplemental Figure 7: Insulin by itself does not affect levels of the glucose uptake
markers AS160 pT®*? and glucose transporter 4 (GLUT4) pS*®® in the HF of normal or AD
cases. Ex vivo tests were run on the 8 pairs of normal (N) and AD cases studied for insulin
resistance. AS160 pT®*? (A and B) and GLUT pS*® (C and D) were measured in
immunoprecipitated AS160 and GLUT4, respectively. Total AS160 and GLUT4 in N and AD
cases did not differ significantly, as indicated at 0 nM insulin (p = 0.1877 and 0.7141,
respectively). Nor were there significant differences in basal AS160 pT®*? and GLUT pS*®®
between N and AD cases (p = 0.1649 and 0.9140, respectively). As apparent in C and D,
insulin at 1 or 10 nM had no effect on levels of AS160 pT®*? or GLUT pS*® in N cases (p >
0.29) or AD cases (p > 0.10). There were thus no differences between N and AD cases in
insulin-induced levels of glucose uptake markers (p = 0.1649 for AS160 pT®*? and p =
0.9140 for GLUT4 pS*®).
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Figure 8: Representative Western blots verifying completeness of

immunoprecipitation for the HF proteins studied: IRB (A), IGF-138 (B), IRS-1 (C), Akt1 (D),
GSK-3B (E), mTOR (F), and ERK2 (G). Three normal HF with the highest antigen levels

among 8 fresh frozen samples were chosen for testing. Results are shown for one of three

samples. The lanes in each blot show relative amount of antigen in the tissue lysate (Lys),

the immunoprecipitate (Ip) of that lysate, and the remaining supernatant (Sup). As the

supernatants show, at least 90% of each antigen was immunoprecipitated. The approximate

molecular weight of the bands shown are given in the lower right corner of each blot.

(Supplemental tables on following pages)
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Supplemental Table 1
Characterization of cohorts studiedA

UPenn ROS
Variable N AD N Mci AD
Number of cases 24 24 30 29 31
Age (y, m £ SD) 72.58 £ 13.2 73.92 £ 111 84.38£6.0 87.70 £ 5.7 88.04£5.5
Age range (y) 47-93 51-89 71-96 76-101 76-100
Sex ratio (males/females) 11m/13f 11m/13f 15m/15f 11m/18f 15m/16f
Caucasian/non-Caucasian B 18/6 18/6 30/0 15/2 31/0
Cases with history of T2D 0 0 6 1 7
Education (y, m + SD) NAC NA 19.43+ 2.6 18.38 £ 3.3 1732+ 3.4
MMSE score (m + SD) NA NA 28.33 + 1.1 26.86+ 25" 16.68 +0.7°
Global cognition Index” (m + SD) NA NA 0006+03  —0527+03% —1763£09°
Episodic memory Index" (m + SD) NA NA 0319+04  _0467+05  -228+1.1°
Working memory Index” (m = SD) NA NA —-0.075+£0.5 —0.347 + 0_5-r -1.337+£1.0°
Postmortem interval (h, m £ SD) 11.98 £ 5.1 9.48+4.0 6.20+4.3 7.22+6.4 6.14+4.8
Braak stage (m + SD) 1.84+1.0 4,56 + 0.8A 287+1.2 3.55+ 1_0E 413 1.2A
CA1 NFT density (cells/mm? m + SD) 429+6.8 33.8+ 13.5° 1.86 + 3.8 109+38" 11.47 + 11.6°
F

CA1 total AB plaque load A A

with NAB228 (m + SD) 0.148 £ 0.3 2.68+1.6 0.128 £ 0.3 0.243+£0.5 0.450 £ 0.5
CA1 oligomeric AB plaque load with NU- 0.078 £ 0.1 194 + 0.8 0.239 £ 0.5 t 0.757 + 0.7°

4%m + sD) .078 £ 0. 24+0. 239 £0. 0.326 + 0.5 757 £0.

., H 2

CAr:] ’Zeé’gj” density " (cells/mm’, 6770+ 181 4436+ 16.2° 107.90 £33.3  1135+349'  73.55+ 36.5°
CA1 neuron SizeH(umZ, m £ SD) 577.0 £ 104.3 529.0+61.4 507.8 £ 181.4 426.8 + 116.1 399.8 £ '144.3A

AAD = Alzheimer’s disease, MCI = mild cognitive impairment, N = normal, not cognitively impaired, MMSE = mini-mental state exam, m
+ SD = mean % standard deviation. The MCI group included 12 amnestic and 17 non-amnestic cases

The non-Caucasians in the UPenn cohort were 2 male and 4 female African-American NCI cases. The non-Caucasians in the ROS
cohort were non-amnestic MCI cases: an African-American female and a Viethamese male.

Data on years of education and quantified cognitive status proximal to death are not routinely available (NA) on the UPenn cases.
Composite score based on multiple cognitive tests (4).

Compared to normal cases, Braak scores were significantly elevated in amnestic MCI (m + SD, 4.0 £ 0.8), but not in non-amnestic MCI
m £ SD, 3.23 + 1.0) cases.

AB plaque load is defined as the percent of CA1 cross sectional area covered by AB plaques.
Similar results were obtained with two oligomeric AB antibodies (NU-1 and NAB61).
HBased on Nissl data.

Superscript symbols indicate significant differences (p <0.05) from NCI (A), from AD (1), from N and MCI (@), and from N and AD
(8).Within the UPenn samples and within the ROS samples, groups did not differ significantly in age or PMI.
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Supplemental Table 6 (contd on next page)

Antibodies and reaction conditions used for immunohistochemistry

Antigen

AB (amyloid beta), total (NAB228)
AB oligomers (1)
AB oligomers (2)
AB oligomers (3)

Akt (= PKB, Protein Kinase B)

Akt1 ps*’?

Akt2 pS

AS160 (Akt Substrate, 160 kDa) pT
Glucose transporter 4 (GLUT4) pS**®

GSK-3pB (Glycogen synthase kinase-33)
GSK-3a/p ps?'"®

IKK (Inhibitor of kB Kinase) a/p pS

IRB (Insulin Receptor, Beta Chain)
960

474

642

176/180

IRB pY

IRB pY1150/1151/|GF_1RB pY1135/1136

IRS-1 (Insulin Receptor Substrate-1)

IRS-1 ps>'?

IRS-1 ps®™®

IRS-1 p8636/639

IRS-1 pY®'?

IRS-1 pY¥!

JNK (c-Jun N-terminal Kinase) 1+2
pT183/pY185

mTOR (mammalian Target of Rapamycin
= FRAP1) ps2#48

Nitrotyrosine
PIP3 (Phosphatidyl inositol [3,4,5] P3)
PKC (Protein Kinase C) /A p-|-410/403

Antibody (Ab)

Santa Cruz 32277
NAB61

NU-1°

NU-4°

Rockland 100-401
Cell Signaling 4051
Abcam 38513
Invitrogen 44-1071G
Santa Cruz 17558
Cell Signaling 9315
Cell Signaling 9331
Cell Signaling 2697
Santa Cruz 711
Invitrogen 44-800G
Invitrogen 44-804
Santa Cruz 7200
Invitrogen 44-814G
Invitrogen 44-550G
Cell Signaling 2388
Invitrogen 44-816G
Invitrogen 44-820G
Invitrogen 44-682G

Cell Signaling 2976

Millipore MAB 5404
Echelon Z-P345b

Cell Signaling 9378

Ab
TvpeA

Ms mAb
Ms mAb
Ms mAb
Ms mAb
Rb pAb
Ms mAb
Rb pAb
Rb pAb
Rb pAb
Rb mAb
Rb pAb
Rb mAb
Rb pAb

Rb pAb

Rb pAb
Rb pAb

Rb pAb
Rb pAb
Rb pAb
Rb pAb
Rb pAb
Rb pAb

Rb mAb

Ms mAb
Ms mAb

Rb pAb

Ab
Dilution

1:500
1:500
1:1000
1:1000
1:2000
1:300
1:300
1:100
1:100
1:50
1:300
1:100
1:100

1:100

1:100
1:100

1:100
1:500
1:100
1:100
1:800
1:100

1:50

1:100
1:10,000
1:50

Epitope

Retrieval

MethodB
FA

FA

FA

FA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
Trypsin

Trypsin
HIER/EDTA

HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA
HIER/EDTA

HIER/EDTA

HIER/EDTA
HIER/EDTA

HIER/EDTA

Signal

Amplification

MethodC
NiSO4
NiSO4
NiSO4
NiSO4
TSA
TSA
TSA
NiSO4
NiSO4
NiSO4
TSA
NiSO4
NiSO4
NiSO4

NiSO,4
NiSO,4

NiSO,4
NiSO,4
NiSO,4
NiSO,4
NiSO,4
NiSO,4

NiSO,4

NiSO4
Silver-Gold
NiSO4
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Supplemental Table 6 (contd)
Antibodies and reaction conditions used for immunohistochemistry

Antigen Antibody (Ab) Ab
A
Type
PP2A (Protein Phosphatase, type 2A), BD Biosci. 610555 Ms mAb
catalytic subunit
PP2B (Protein Phosphatase, type 2B = Sigma C1956 Ms mAb

Calcineurin), a-subunit
PTEN (Phosphatase and Tensin homolog) Cell Signaling 9559  Rb mAb

PTP1B (Prot. Tyrosine Phosphatase 1B) BD Biosci. 610139 Ms mAb
Tau ps2%%/pT2%° Thermo Sci. AT8 Ms mAb

Ab
Dilution

1:1500

1:2000

1:500
1:100
1:800

AmAb = monoclonal antibody, pAb = polyclonal antibody, Ms = mouse, Rb = rabbit

BFA = immersion in 88% formic acid for 5 min

Epitope
Retrieval
MethodB

HIER/EDTA
HIER/EDTA

HIER/EDTA
HIER/EDTA
FA

HIER = heat-induced epitope retrieval in 10 mM citrate, pH 6.0 or 1 mM EDTA, pH 8.0 for 10 min
Trypsin = exposure to dissolved trypsin tablets (Sigma T-7168) at 30°C for 20 min

CNiSO4 = nickel sulfate added to DAB solution

Silver-gold = intensification of DAB reaction product with silver nitrate and gold toning

TSA = tyramide signal amplification (PerkinElmer SAT700)
DGenerously supplied by William L. Klein (Northwestern University)

(Supplemental Tables 7-9 on the following pages)

Signal
Amplification
MethodC

NiSO,4
NiSO,4

TSA
NiSO,4
NiSO,4
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Supplemental Table 7
Correlations of activated IRS-1 kinases with AR plaque load and neurofibrillary tangle density in CA1A

IRS-1 Kinase® Total AB Plaque Load" Oligomeric AB Plaque Load" NFT Density"

r t (df) p value r t (df) p value r t (df) p value
IKKa/B ps176/180 0.3009  2.91(85) 0.00461 0.3148 2.98(81) 0.00380 0.2975 2.79(80) 0.00659
INK 1/2 pT 1835y 185 0.2594  2.48(85) 0.01511 0.4483  4.49(80) 0.00002 0.4695 4.73(79) 0.00001
mTOR p32448 0.1474  1.39(87) 0.16808 0.3069  2.94 (83) 0.00425 0.2861 2.70(82) 0.00842
PKC /A pT410/403 0.3367  3.24(82) 0.00173 0.4453  4.39(78) 0.00004 0.5396 5.62(77) <1x10°°
Comparison Variables
AKt1 ps473 0.2766  2.25(61) 0.02807 0.3482  2.85(59) 0.00601 0.3621 2.98(59) 0.00418
AKE2 ps474 -0.0094 -0.08 (65) 0.93648 -0.0302 -0.24 (61) 0.81114 0.1359 1.08 (62) 0.28432
GSK-3a/B ps21/9 0.3470  2.91(62) 0.00501 0.4483  3.92(61) 0.00023 0.4360 3.75(62) 0.00400
Nitrotyrosine 0.2082  1.81(72) 0.07447 0.2761  2.39(69) 0.01958 0.2744 2.34 (67) 0.02227

ABased on combined data from normal, MCI, and AD cases in the ROS cohort. Very similar results were obtained on combined
data from normal and AD cases in the UPenn cohort. Measures used to quantify levels of the antigens listed are specified in text
Table 5. Variability in number of cases studied for each antigen, evident in the degrees of freedom (df), reflect differences in tissue
availability, tissue integrity, and/or signal detection problems in some sections.

I:':’While GSK-3 is an IRS-1 serine kinase, it is listed as a comparison variable because it is not known to directly phosphorylate
IRS-1 at the sites studied (S312, S616, and S636/639) and because we lack qIHC data only on its activated form. By an unknown
mechanism, however, GSK-3 can promote phosphorylation of IRS-1 at S312 (= S307 in rodents) (39).

CAs determined with NAB228.
DAs determined with NU-4. Similar results for oAB were obtained with NU-1 and NAB61.
E _

NFT = neurofibrillary tangle

Supplemental Table 8
Antibodies used for immunoprecipitation

Antigen Antibody (Ab) Ab Type Ab/200 ug Lysate
Akt1 Santa Cruz 5298 Mouse mAb 1.2 ug
AS160 Cell Signaling 2447 Rabbit pAb 1.0 ug
ERK2 Santa Cruz 154 Rabbit pAb 1.0 ug
GLUT4 Santa Cruz 7938 Rabbit pAb 1.0 ug
GSK-3p3 Santa Cruz 8257 Goat pAb 1.0 ug
IRB Santa Cruz 20739 Rabbit pAb 1.0 ug
IGF-1Rp Santa Cruz 9038 Rabbit pAb 1.0 ug
IRS-1 Cell Signaling 2382 Rabbit pAb 1.0 ug
IRS-2 Santa Cruz 1555 Goat pAb 1.2 ug
mTOR Santa Cruz 1550-R Rabbit pAb 1.5 ug
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Supplemental Table 9

Antibodies used for immunoblotting

Antigen
Akt1-3

Akt1-3 pS*"®
AS160
AS160 pT®*
ERK2

ERK2 pT'®/pY'®
GLUT4
GLUT4 pS™*®
GSK-38
GSK-3B pS°®
GSK-3B pY*'®
IRB

IRB pY™®

|RB pY1150/1151/|GF_1 RB pY1135/1136
IRB pY""**NIGF-1RB pY'™"

IGF-1RB
IRS-1

IRS-1 pS°™
IRS-1 pS°©™®
IRS-1 pS®oee%®
IRS-1 pY®™
IRS-2

mTOR

mTOR pS***®
Phosphoserine
Phosphotyrosine
PI3K p85a

Antibody (Ab)
Santa Cruz 8312
Santa Cruz 7985-R
Cell Signaling 2447

Invitrogen 44-1071G

Santa Cruz 154
Santa Cruz 81492
Santa Cruz 53566
Santa Cruz 17558
Santa Cruz 53931
Cell Signaling 9322
Santa Cruz 135653
Santa Cruz 81465
Invitrogen 44-800G
Invitrogen 44-804G
Cell Signaling 3021
Santa Cruz 81167
Santa Cruz 8038
Invitrogen 44-814G
Invitrogen 44-550G
Cell Signaling 2388
Invitrogen 44-816G
Santa Cruz 8299
Santa Cruz 136269
Cell Signaling 2971
Santa Cruz 81516
Santa Cruz 508
Santa Cruz 71896

Supplemental References
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Rabbit pAb
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Rabbit mAb
Rabbit pAb
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Rabbit pAb
Mouse mAb
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Rabbit pAb
Rabbit mAb
Mouse mAb
Mouse mAb
Rabbit pAb
Rabbit pAb
Rabbit pAb
Rabbit pAb
Rabbit pAb
Mouse mAb
Rabbit pAb
Mouse mAb
Mouse mAb

Mouse mAb

Ab Dilution

1:500
1:500
1:1000
1:1000
1:500
1:500
1:750
1:750
1:500
1:500
1:750
1:500
1:1000
1:1000
1:750
1:750
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1:1000
1:1000
1:1000
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1:500
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1:1000
1:500
1:750
1:750
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