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We first supply more details with regards to the goodness of fit of the

mathematical model (1) of Methods to the experimental data. We then

complete the information needed for simulating eq. (2) of Methods to pro-

duce Fig 4 (presenting the functional form of IN,G(t) and the complete set

of parameter values used in the first two equations). We end with providing

full details regarding the sign test.

Model

We first compare in detail the goodness of fit and the prediction error distri-

butions of the three variants to model (1) of Methods (the relevant formula

are presented here again for the readers convenience):

dB(t)

dt
= ρB(t) −

αNB(t)

1 + γB(t) + ηN
. (1)

Estimation Methodology

The proposed models are all deterministic: given a set of parameters μ and

the initial data of an experiment X = (B(0), N), a deterministic model pre-

dicts that the bacterial concentration after 60 minutes is B̂(X,μ) whereas

the experimental results produce some given concentration B(X). It is as-

sumed that the source of errors in the model’s prediction is associated with

the measurement process. Due to the nature of the modeled process (bacte-

rial multiplication) and the nature of the measurements (based on dilutions)
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the measurement errors are expected to be multiplicative in nature:

B(X) = B̂(X,μ) × (1 + z),

where z, the prediction error or residual, is distributed according to some

unknown distribution. Indeed, we observe that the variability in the mea-

surements is proportional to values of the measurements: typical duplicates

yield measurements such as b1 = 106 and b2 = 2 × 106 cfu, and, for low

concentrations b1 = 104 and b2 = 2 × 104 cfu (an increased variance for an

increased initial concentration of bacteria).

Given (B(X), X, μ), the prediction error may be extracted:

z = 1 −
B(X)

B̂(X,μ)
.

Hereafter, we use the following notation: z is reserved for the general discus-

sion. When the prediction B̂(X,μ) is formed by the linear model (setting

γ = η = 0 in (1) and fitting α) we denote the prediction error by zL, whereas

zNL2 and zNL denote, respectively, the prediction errors for the nonlinear

model with no neutrophil interference (setting η = 0 in (1) and fitting α, γ)

and the fully non-linear model (1).

To examine the process reliability, three appropriate goodness-of-fit (GF)

measures are defined:
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LS =
1

n

n∑

i=1

z2
i - Least-Squares

LSa =
1

n

n∑

i=1

|zi| - Double Exponential

LSb =
1

n

n∑

i=1

ln(1 +
1

2
z2

i ) - Lorentzian

Note that we do not assume that the data is indeed normally, double expo-

nential or Lorentzian distributed (in such a case the estimator will be the

maximum likelihood estimator). We use these as a goodness-of-fit measure

to generate a robust estimation [1].

The parameter fitting amounts now to a minimization problem of the GF

measure that is solved numerically using the Matlab function ‘fminsearch’,

which implements the multidimensional downhill simplex method (see e.g.,

[1, 2]). In all cases we find that the three GF measures lead, to the first

significant digit, to the same minimizing parameter values. For the data

adopted from [3] we utilize their estimate for the bacterial growth at the

exponential phase and then use the same procedure as above to fit the kill

term parameters.

Growth Curve Parameter Estimation

The parameters associated with the bacteria natural dynamics are fitted to

the data of growth calibration experiments for different time points and to
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the control experiments at N = 0 for the time point t = 60 min. Interestingly,

the three-parameter fit to the growth curve (fitting (r, d, β)) did not produce

better results than the one parameter linear fit, indicating that the bacteria

are still in the exponential phase in these experiments; thus we set β = 0.

Kill-Term Parameter Estimation

The bacterial dynamics are assumed to be fixed in all experiments; thus, here

we fit only the parameters relevant to the kill term. All three measures lead

to the same conclusion - the best fit is found when the saturated non-linear

model is considered, and the parameters that provide the best fit (using the

LSb measure) to the data are listed in Table 2 of the manuscript. All the

measures reveal consistency in the improvements from one to two and to

three parameters.

Lilliefors’ and Jarque-Bera tests for normally distributed data cast doubt

on the normality of z (in particular, the normality hypothesis is rejected

with significance 0.05). Thus, in Table 2 we present only the parameters

fitted using the LSb measure. This choice has no qualitative impact on the

conclusions.

Goodness-of-fit via hypothesis testing

The goodness-of-fit measures suggest that the bistable models are better than

the linear (neutrophil-threshold) model. To examine the significance of these
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improvements we use nonparametric statistical tests. We employ the the

Kolmogorov-Smirnov test (KS) [4] and the Mann-Whitney-Wilcoxon test [5]

to compare the distribution of the prediction errors obtained using the linear

and the non-linear models. Figure 1(a) presents the estimated1 probability

distribution of the prediction error for the three models (zL-linear in red

(fitted α), zNL2 - non-linear with no interference (fitted α, γ) in green, and

zNL fully non-linear (fitted α, γ, η) in blue).

Notably, the mean of the absolute value of the predicted error in the linear

model |zL| is three times larger than that of the non-linear one |zNL|. Fig

1(c) shows the empirical distributions of w1 = |zL|−|zNL|, w2 = |zL|−|zNL2|

and w3 = |zNL2| − |zNL|. We see that the signed error difference w1 has a

mean of about 0.35 (positive) . Thus, we conclude that the prediction errors

of the linear model are indeed bigger than those of the nonlinear models.

Hypothesis testing: To further substantiate the claim that the fully

nonlinear model is superior, we propose the following three one-sided tests:

H0: |zL| and |zNL| are drawn from the same distribution (FL(|z|) = FNL(|z|)).

H1: alternatively FL(|z|) < F NL(|z|).

G0: |zL| and |zNL2| are drawn from the same distribution (FL(|z|) = FNL2(|z|)).

G1: alternatively FL(|z|) < F NL2(|z|).

1The pdf estimate is obtained using Gaussian kernel estimation, as implemented in
Matlab, and its sole use is visualization.
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I0: |zNL2| and |zNL| are drawn from the same distribution (FNL2(|z|) =

FNL(|z|)).

I1: alternatively FNL2(|z|) < F NL(|z|).

where FL, FNL2 and FNL are the cumulative distribution functions cor-

responding to the relevant models. The null hypothesis H0 is rejected with

significance = 0.001 using the nonparametric one-sided Kolmogorov-Smirnov

(KS) test [1, 4]. The null hypotheses G0 and I0 are rejected with significance

= 0.05. In all the cases the alternative hypothesis is accepted. The same

conclusion holds when applying the Mann-Whitney-Wilcoxon test [5] with

the same significance. The implication of the alternative hypothesis is that

the probability of {|z| < z0} is significantly larger under the assumption, e.g.,

prediction obtained using the non-linear model versus the linear one (H-test).

Put differently, there is more probability-mass on the small prediction errors

in the non-linear case than in the linear case (see Figures 1(b)-1(c)).

The above statements generate an order among the non-linear-3 model

(fitting (α, γ, η)), the non-linear-2 model (fitting (α, γ)) and the linear model

(fitting α). Using η > 0 gives much better significance (p < 0.001) than

using η = 0 (p < 0.05). Moreover, the saturated model is significantly better

than the model with η = 0, with significance level 0.05. This establishes that

the kill term should have saturation in both the bacterial and the neutrophil

concentrations.

Technical remark 1: The statistical tests require the independence of the
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data sets, zL and zNL, whereas here these data sets are produced from the

same experimental data. To overcome this problem we use the standard

trick of randomly dividing the data into two parts and use different data

parts to produce the prediction error of each model. This process of random

partition was repeated 10,000 times. In the H case, the non-linear model

(with η > 0) was always better, with significance level of 0.001 (actual p-

values are 10−6 or less). Also this model was always better than the second

non-linear model (with η = 0), i.e., the I test, with a significance level of

0.05 (actual values rarely exceed 0.01 – it holds with significance level of 0.01

for 98% of the simulations). The above holds whether part one is used to

generate prediction errors for the one model (e.g., linear) or the other model

(e.g., non-linear). The G test, namely the second non-linear model (with

η = 0), is better than the linear model with significance level of 0.05, though

only in one of the two parts, while it holds for both parts of the data, as in

the H and I tests, in 87% of the simulations (the null hypothesis was never

accepted in both parts).

Technical remark 2: The Mann-Whitney-Wilcoxon test provides similar

conclusions. In particular, in the worst case of the G test with significance

level of 0.05, it holds for the two parts in 97% of the simulations.
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Parameters of the mathematical model for the

severe chemotherapy induced neutropenia sce-

nario.

Fig 4 of the manuscript is produced by simulating Eq. (2) of Methods:






dN
dt

=

influx of N from the bone marrow
︷ ︸︸ ︷

IN(t)
kG + kNEF G

kG + G
−

N clearance
︷ ︸︸ ︷
DN ∙ N .

dG
dt

=

Influx of G by injections
︷ ︸︸ ︷
IG(t) +

physiological G-CSF dynamics
︷ ︸︸ ︷

Bmax
G

1 + N/kN

− Dr
G ∙ G −

Dn
G ∙ N

kN + N
∙ G

dB
dt

= ρB + s − αNB
1+γbB+ηN

(2)

Here we complete the details needed to perform these simulations. The

functional form of IN,G(t) that appear in Eq. (2) are:

IN (t) = Bnadir + (BN − Bnadir)×
(

1 −
tanh(β1(t − Tstart)) − tanh(β2(t − Tstop))

2

)

IG(t) =
10∑

j=1

λ
doseG

vd

e−λ max{0,(t−Tgstart−jTf )}, t ≥ Tgstart
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The first form reflects the rapid destruction and recovery of the bone-marrow

ability to supply neutrophils to the blood due to a chemotherapy treatment.

The second form corresponds to the common pharmacokinetics associated

with standard 10 daily G-CSF injections. These functional forms fit well

published clinical data sets [6]. The parameters used in these terms and

in the other terms that appear in the first two equations that govern the

neutrophils and G-CSF dynamics are presented in Table 1. The parameters

for the third equation, governing the bacterial dynamics, are exerted from

the fitted parameters to the in-vitro experiments as presented in Table 2 of

the manuscript. The constant bacterial influx is as indicated. See [7] for

more details regarding this combined model.

Details regarding the Sign test

Here we provide more details regarding the implementation of the sign test

to the bacteria-neutrophil in-vitro experimental data.

Due to the finite number of points in our experiments, the set of possible

slanted straight lines that provide different classifications is finite. We test the

null hypothesis on a large portion of the relevant lines in the X = (N,B(0))

plane by taking a grid over the lines’ slopes and their N-intercepts. Un-

der the fair coin hypothesis, the binomial distribution describes the suc-

cess of the classification and provides the power of the test. We find that

the null hypothesis is rejected for all the lines with slopes in the range

(tan 55.8o, tan 88.4o) and with an N-intercept point located in the range
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(0, 7.5× 105) with significance of less than 0.01, where the highest p-value is

less than pmax = 0.001016. In fact, the best lines have p-value of the order

of 10−7. These best lines have successfully classified more than 85% of the

data points (the lines that have larger p−values that are close to pmax have

success rate of at least 75%). The above statistics are found for the combined

data set of the 4 subjects. When each subject is considered separately, the

results are usually even better: the success in classification of the best lines

are 93%, 95%, 95%, and 91% with p-values 8.54×10−4, 1.9×10−5, 5.24×10−6,

and 6.03 × 10−5 for patients P1-P4 respectively. The nonlinear BNCs that

emerge from the fitted mathematical model have about 80-90% success in

the classification, more details appear in the parameter fitting section.

On the other hand, when we repeat the above analysis for nearly ver-

tical lines, in particular for lines with slopes in the range (tan 89o,∞) ∪

(−∞, tan 120o), we find that the null hypothesis cannot be rejected with

any significance. This result means that the same distribution of increas-

ing/decreasing data points with respect to vertical lines could be possibly

achieved by a fair coin toss. The same conclusion (with smaller p-values)

applies to lines with strictly negative slopes.

Thus, the statistical tests reject the neutrophil-threshold model that cor-

responds to a vertical classifier and the monostable behavior that corresponds

to a classifier with a negative slope. The statistical test does support the ex-

istence of a slanted critical line with a positive slope as in the bistable and the

ratio-dependent behaviors. Even though we did not consider here nonlinear
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classifiers, it is clear from the data that any classifier that corresponds to a

monotonically decreasing BNC is a worse classifier than a vertical one, and

vertical lines were rejected.

Finally, Figure 2 B presents the sign diagram of the S. epidermidis data

extracted from [3], where neutrophils and S. epidermidis were added to a

fibrin gel which simulates human tissue. The bacterial concentration was

then recovered from the gel after 90 minutes. We see several neutrophil

concentrations at which low bacterial concentrations have the O sign and

high bacterial concentrations have the + sign, hence bistability appears in a

different experimental setting and with a different bacterial strain. However,

here, the number of data points near the unstable branch is insufficient for

obtaining definite conclusions from the sign-test analysis.

Technical Remark: We also test whether the position of the initial data

points and the division between increasing and decreasing points in our data

may skew the statistical analysis. To this aim we took, 2000 times, a random

permutation over the symbols ’+1/-1’ at the experimental initial collective

data points N and B(0). For less than 1% of the permutations we found a

line for which the null hypothesis could be rejected with significance of 0.05.

This numerical experiment supports the claim that it is highly improbable

that the observed behavior can appear at random.
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Figure 1: Visualising the statistics. (a) The estimated probability distri-
bution of the prediction errors (approximated using Gaussian kernels) pro-
vides a visualization of the error distributions when the three different de-
terministic models are used to fit the data. Red: linear model, Blue: the full
non-linear model (NL), Green: the non-linear model with bacterial saturation
(γ > 0) and without neutrophil saturation (η = 0). Only the full non-linear
model provides an error distribution that is nearly symmetric around zero.
(b) The empirical CDF of |z| for the linear (green) and non linear (blue)
models provides a visualization of the H test. (c) The distribution of the dif-
ference (directional) between the linear prediction error and the non-linear
prediction error demonstrates that the error in fitting the non-linear model
is usually smaller than the error achieved by the linear fit.
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Parameter Meaning μ G-CSF Units

G(0) G initial value 50 pg/ml
N(0) N initial value 3 ∙ 106 #cells/ml
Bmax

G G max production rate 4.861 pg/ml/minute
kN N dissociation constant 0.5 ∙ 106 cells/ml
kG G MM constant 5 ∙ 103 pg/ml
Dn

G G elimination (by N) 0.0048 1/minute
Dr

G G elimination (renal) 0.0042 1/day
BN Basic normal flux of N 15 ∙ 106 #cells/ml/day

kNEF Enhancement of N flux by G 10 −
DN N clearance rate 0.0021 1/minute

Tstart Start of CT effect 2880 (day 2) minute
Tstop Stop of CT effect 23040 (day 16) minute
β1 Marrow depletion rate 5.2 × 10−4 1/minute
β2 Marrow recovery rate 5.2 × 10−4 1/minute

AMC Acute Marrow capacity 0.15 −
Bnadir Marrow N flux 156.25 #cells/ml/minute

at nadir=AMC∙N∗DN

kNEF

λ G absorption rate 0.0028 1/minute
vd volume of G distribution 2300 ml
w Weight 70 Kg

doseG G-CSF dose in a single shot 5 × 106 pg/Kg
Tgstart G-CSF injections start time Tstart + 2880 minute

Tf G-CSF injections period 1440(daily) minute

Table 1: The chosen Neutrophils-G-CSF model parameters are as in table 1 of [7], with

the exception of the AMC value that is slightly smaller (there AMC=0.2) and here only

daily injections are considered. The duration of the chemotherapy, the AMC value and

the starting day of the G-CSF therapy are slightly altered from the [6] values, all the

other parameters are as in [6] (notice that we divide the daily rates of table 2 of the

supplement of [6] by 1440 to obtain rates per minute). N∗ = 5 ∙ 106cells/ml is a fixed

scaling parameter.
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