Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Angiotensin AT1 receptor blockade abolishes the reflex sympatho-excitatory response to adenosine.
G A Rongen, … , B L Abramson, J S Floras
G A Rongen, … , B L Abramson, J S Floras
Published February 15, 1998
Citation Information: J Clin Invest. 1998;101(4):769-776. https://doi.org/10.1172/JCI480.
View: Text | PDF
Research Article

Angiotensin AT1 receptor blockade abolishes the reflex sympatho-excitatory response to adenosine.

  • Text
  • PDF
Abstract

We tested the hypothesis that endogenous angiotensin II participates in the direct and reflex effects of adenosine on the sympathetic nervous system. Nine healthy men were studied after 1 wk of the angiotensin II type I receptor antagonist losartan (100 mg daily) or placebo, according to a double-blind randomized crossover design. Bilateral forearm blood flows, NE appearance rates, and total body NE spillover were determined before and during graded brachial arterial infusion of adenosine (0.5, 1.5, 5, and 15 microg/100 ml forearm tissue) and nitroprusside. Adenosine increased total body NE spillover (P < 0.05) whereas nitroprusside did not. Losartan lowered BP (P < 0.05), had no effect on total body NE spillover at rest, or forearm vasodilation during either infusion, but reduced the systemic noradrenergic response to adenosine from 1.0+/-0.4 nmol/min on the placebo day to 0.2+/-0.3 nmol/min (P < 0.01), and forearm NE appearance rate in response to adenosine was lower in the infused, as compared with the contralateral arm (P = 0.04). The sympatho-excitatory reflex elicited by adenosine is mediated through pathways involving the angiotensin II type I receptor. Interactions between adenosine and angiotensin II may assume importance during ischemia or congestive heart failure and could contribute to the benefit of converting enzyme inhibition in these conditions.

Authors

G A Rongen, S C Brooks, S i Ando, B L Abramson, J S Floras

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts