Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model

Wei-Zhong Ying,1 Christopher E. Allen,1,2 Lisa M. Curtis,1,2 Kristal J. Aaron,1 and Paul W. Sanders1,2

A common renal complication of multiple myeloma is “myeloma kidney,” a condition also known as cast nephropathy. The renal lesions (casts) are directly related to the production of monoclonal immunoglobulin free light chains (FLCs), which coprecipitate with Tamm-Horsfall glycoprotein (THP) in the lumen of the distal nephron, obliterating tubular fluid flow. Here, we report that analysis of the binding interaction between FLCs and THP demonstrates that the secondary structure and key amino acid residues on the complementarity-determining region 3 (CDR3) of FLCs are critically important determinants of the molecular interaction with THP. The findings permitted development of a cyclized competitor peptide that demonstrated strong inhibitory capability in the binding of FLCs to THP in vitro. When used in a rodent model of cast nephropathy, this cyclized peptide construct served as an effective inhibitor of intraluminal cast formation and prevented the functional manifestations of acute kidney injury in vivo. These experiments provide proof of concept that intraluminal cast formation is integrally involved in the pathogenesis of acute kidney injury from cast nephropathy. Further, the data support a clinically relevant approach to the management of renal failure in the setting of multiple myeloma.

Introduction
One of the functions of the kidney is to filter and metabolize low molecular weight proteins that include immunoglobulin free light chains (FLCs). Polyclonal FLCs are secreted normally in the circulation and appear in the glomerular ultrafiltrate. FLCs are reabsorbed into the proximal tubular epithelium and then hydrolyzed. In the setting of overproduction of monoclonal FLCs, a wide variety of renal pathologies can develop, including glomerular diseases, such as Amyloid Light-chain (AL-type) amyloidosis and monoclonal light chain deposition disease, or tubular damage, known as proximal tubulopathy (1-5). In addition, FLCs that escape tubular reabsorption are presented to the distal nephron and, in the proper conditions, form intraluminal casts that obstruct tubular fluid flow (3, 6-8). Clinical manifestations of this phenomenon, known as cast nephropathy, include acute kidney injury (AKI) and progressive renal failure. Because this complication occurs in multiple myeloma, which constitutes 12%-13% of hematologic malignancies in the US (9), the term “myeloma kidney” has also been used. Cast nephropathy is a seminally important and common complication in myeloma, since reduced renal function contributes to morbidity and mortality and limits therapeutic options (10-12). At the time of presentation, nearly half of these patients have renal dysfunction, as defined by a serum creatinine concentration greater than or equal to 1.3 mg/dl (10). When kidney tissue was examined histologically, cast nephropathy was the major cause of renal failure (13).

Prior studies determined an important role for Tamm-Horsfall glycoprotein (THP) in cast nephropathy (7). THP possesses a single FLC-binding domain, termed LCBD (14, 15), and the complementarity-determining region 3 (CDR3) of most FLCs tested specifically interacted with this site (16). The following experiments were designed to analyze the binding interaction between FLCs and THP and to test the hypothesis that a competitive inhibitor of the interaction between THP and monoclonal FLCs prevents AKI induced in cast nephropathy.

Results
The CDR3 of FLCs demonstrated varying binding affinities to THP. Previous publications demonstrated that FLCs bind to a specific domain on human THP, but possess variable affinities for THP (14, 15). Initial experiments expanded the original studies by using the variable light chain (Vλ) domain of 20 unique human FLCs from the AI, AIII, AIV, AV, VI, k1, kII, and kIV families. The yeast 2-hybrid system originally designed by Fields and Song (17) was employed to determine the site on the light chain that interacted with THP (16). The binding interactions of these k and λ FLCs with recombinant 26-residue and 263-residue fragments of THP, which contained the previously described LCBD, were quantified. The findings were similar when either the smaller or larger THP fragment was used, so the data presented in this paper are from experiments that used the larger fragment (Table 1). All tested families of FLCs bound to THP, with members of the λV family demonstrating the lowest binding affinity. The relative strength of the interactions differed among the 20 different FLCs (Table 1). The variable domain of the λV FLCs, LKPBLLS3, showed the lowest affinity interaction: yeast transformed with this construct did not grow in leucine-deficient medium and possessed low β-gal activity. The intact Vλ of the AIIIa FLCs, ITPBLL86, demonstrated the highest binding affinity among the FLCs tested. A series of truncation mutations performed on the FLCs again confirmed that the CDR3 of both κ and λ FLCs specifically interacted with the
reactivity

A cyclized, synthetic peptide inhibited binding between FLCs and THP in vitro. Using the data from Table 1, we synthesized 2 peptides (AHX-LSADSSGSYLVF and QSYDNTLSSGYVF) based upon CDR3 peptide sequences known to interact strongly with THP. These peptides were then used to determine whether they prevented binding between FLCs and THP in a competitive ELISA (16). Both peptides dose dependently inhibited FLCs binding to THP, with a mean IC50 of peptide 1 (AHX-LSADSSGSYLVF) of 38.3 ± 5.8 nM and mean IC50 of peptide 2 (QSYDNTLSGYVF) of 55.0 ± 16.1 nM (Figure 3). In an effort to improve the inhibitory capability, both synthetic peptides were cyclized. Cysteine residues were added to the termini of both peptides, then cyclized through intramolecular disulfide bonding between these cysteine residues. When comparing the IC50 to that of the linear peptides, cyclized peptide 1 (IC50 = 10.0 ± 2.6 nM) and cyclized peptide 2 (IC50 = 6.7 ± 2.3 nM) demonstrated a markedly increased (P < 0.05) inhibitory capability in the same assay. In additional studies, the inhibitory potential of synthetic cyclized peptide 1 (AHX-CLSADSSGSYLVCKK) was compared with that of the same peptide with 2 phenylalanine substitutions (AHX-CLSFPSGSLVCKK). These substitutions led to significantly reduced (P < 0.05) binding to THP (Figure 2). As opposed to the phenylalanine mutant form, the cyclized CDR3-mimetic peptide (AHX-CLSADSSGSYLVCKK) served as a highly effective inhibitor that prevented, in a dose-dependent fashion, the binding of 6 different human FLCs to human THP (Figure 4).

Overlay assays were performed using human THP purified from urine and a monoclonal FLC or Vκ domain that had been enzymatically cleaved from the same FLCs and purified (Figure 5A). THP bound to monomeric and dimeric forms of an intact human FLC and the Vκ domain. To generate the biological reagents used in experiments illustrated in the bottom panel, a cell-free system was employed to generate THP and the Vκ domain of ITPBL86. Cyclized peptide 1 (AHX-CLSADSSGSYLVCKK) dose dependently inhibited binding of the biotin-labeled Vκ domain of ITPBL86 to recombinant full-length THP (Figure 5B). This same cyclized peptide 1 promoted a dose-dependent inhibition of binding of biotinylated THP to κ2 FLC present on the membrane. In contrast, a synthetic cyclized control peptide (AHX-CLSAHSSGSLVCKK) was identical to cyclized peptide 1 except for a substitution of histidine for the aspartate at the fifth residue, did not inhibit binding of biotinylated THP to the FLCs at the concentrations tested (Figure 5C).

The cyclized competitor peptide 1 (AHX-CLSADSSGSYLVCKK) prevented AKI from cast nephropathy. The synthetic cyclized competitor peptide 1 (AHX-CLSADSSGSYLVCKK) was tested in vivo in a rodent model of AKI from cast nephropathy, which employed intraperitoneal administration of 20 mg of cast-forming human κ3 and λ2 FLCs. Either the competitor peptide (8 mg), or vehicle alone was injected intraperitoneally 2 hours prior to the initial injection of the FLCs and again 24 hours following the FLC injection. Mean baseline serum creatinine concentration was 0.3 ± 0.2 mg/dl in this series of experiments. While the λ2 FLC was from a patient with biopsy-proven cast nephropathy and produced AKI with associated cast formation, the κ3 FLC was particularly nephrotoxic and produced severe renal failure with very low urine output and weight loss over the 48 hours of follow-up (Table 2). When examined histologically, kidney tissue from vehicle-treated animals

Table 1

<table>
<thead>
<tr>
<th>Deduced Insert</th>
<th>Relative CDR3 amino acid sequence</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ1 subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBPBL2L2N</td>
<td>QSYDNTLSSGYVF</td>
<td>6.7 ± 1.0</td>
</tr>
<tr>
<td>λII subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITPBLL56 (λII)</td>
<td>QQWDSNNSGV</td>
<td>7.1 ± 1.3</td>
</tr>
<tr>
<td>ITPBLL2 (λII)</td>
<td>QWHSDDSHYV</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>LBPBL2L2 (λII)</td>
<td>QASDNGFWI</td>
<td>6.8 ± 0.8</td>
</tr>
<tr>
<td>ITPBLL79 (λII)</td>
<td>QASDSSGTYWV</td>
<td>6.0 ± 2.1</td>
</tr>
<tr>
<td>ITPBLL86 (λIIa)</td>
<td>LSADSSGSYLV</td>
<td>7.8 ± 0.9</td>
</tr>
<tr>
<td>LKPBLL68 (λIIi)</td>
<td>YSATDNMWV</td>
<td>6.3 ± 0.6</td>
</tr>
<tr>
<td>ITPBL11 (λIIb)</td>
<td>QSTDDSTYR</td>
<td>3.4 ± 0.3</td>
</tr>
<tr>
<td>ITPBL2L2 (λIIc)</td>
<td>QAWDSTRTV</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td>λIV subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBPBL2L2Q (λIV)</td>
<td>ETWDSDDTRV</td>
<td>6.5 ± 0.8</td>
</tr>
<tr>
<td>ITPBLL68 (λIV)</td>
<td>QTWDTGFNWV</td>
<td>5.6 ± 1.0</td>
</tr>
<tr>
<td>λV subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITPBLL69 (λV)</td>
<td>AMWYSDUYV</td>
<td>2.0 ± 0.4*</td>
</tr>
<tr>
<td>LKPBLL53 (λV)</td>
<td>MIRGI</td>
<td>1.6 ± 0.4*</td>
</tr>
<tr>
<td>LBPBL7L (λV)</td>
<td>LIWHRSAYV</td>
<td>2.9 ± 0.4</td>
</tr>
<tr>
<td>λVI subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITPBL75 (λVI)</td>
<td>VSLMMAGMIIS</td>
<td>4.8 ± 0.6</td>
</tr>
<tr>
<td>LBPBL2L2S (λVI)</td>
<td>QSDTNNOV</td>
<td>5.8 ± 0.8</td>
</tr>
<tr>
<td>κ subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITPBL5 (κI)</td>
<td>QQYSSAPPT</td>
<td>6.5 ± 0.8</td>
</tr>
<tr>
<td>κII subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSH23 (κII)</td>
<td>MQGHWWPLL</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td>ITPBL11 (κII)</td>
<td>QQYGGSPCT</td>
<td>3.4 ± 0.7</td>
</tr>
<tr>
<td>κIV subgroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCYSN9 (κIV)</td>
<td>QQILNSYFT</td>
<td>3.2 ± 0.4</td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td>12.7 ± 2.1</td>
</tr>
<tr>
<td>(pGEBK7-T3)</td>
<td>-</td>
<td>1.0 ± 0.2*</td>
</tr>
<tr>
<td>Negative control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pGEBK7-Lam/pGADT7-T)</td>
<td>-</td>
<td>0.9 ± 0.2*</td>
</tr>
</tbody>
</table>

*Did not interact under stringent conditions. n = 3–9 experiments in each group.

THP constructs. Reactivity with THP correlated weakly (R² = 0.23; P = 0.02) with the number of amino acid residues in the CDR3.

Key amino acid residues in the CDR3 of FLCs determined binding to THP. An artificial construct was designed using framework 2 and framework 3 of LKPBLL53, an FLC that did not interact significantly with THP (Table 1). Various CDR3 sequences were then inserted into this construct (Figure 1). The construct that did not contain an insert did not interact with THP in the yeast 2-hybrid assay. The construct that contained the CDR3 of ITPBL86 (LSADSSGSYLV) showed the greatest interaction, followed by the CDR3 of ITPBL86 (LVWDSTDSHYV) of ITPBL1. The CDR3 of LKPBLL53 interacted least well with THP (Figure 1B). The CDR3 of ITPBL2, which consisted of QWHSDDSHYV, differed from ITPBL1 by only 2 amino acid residues (underlined), but demonstrated markedly reduced binding affinity in this assay. The importance of these residues in binding was further determined by mutating residues in the ITPBL86 CDR3 peptide construct (Figure 2). Changing the aspartate to a hydrophobic amino acid residue greatly inhibited binding, which was somewhat reduced further by changing 2 of the serine residues to phenylalanine.
showed intraluminal cast formation (Figure 6). Coadministration of the competitor peptide, but not the vehicle alone, with either monoclonal FLCs completely prevented the functional manifestations of AKI. In these studies, there was a statistically significant difference between casts visualized in histological samples for animals injected with FLCs plus vehicle when compared with those injected with FLCs plus peptide. Experiments that used the κ3 FLC yielded a Kruskal-Wallis χ² test of 43.35 (P < 0.0001) and, for experiments that used the λ2 FLC, the Kruskal-Wallis χ² test was 5.16 (P = 0.02). In the group that received the κ3 FLC, the mean numbers of casts in the vehicle-treated rats were 33.6 ± 1.5 and 11.5 ± 1.0 in peptide-treated rats; the median cast count was 0.3 ± 0.09 for peptide-treated rats; the median cast count was 0.5 (interquartile range, 0–2) for vehicle and 0 (interquartile range, 0–1) for peptide.

In a rescue experiment, rats were initially injected intraperitoneally with a monoclonal FLC (κ2), 0.25 mg/g BW. Four hours later, rats received an intraperitoneal injection of vehicle alone (n = 6 rats), experimental peptide 1 (AHX-CLSADSSGSYLYVCKK) (n = 5 rats), or control peptide (AHX-CLSAHSSGSYLYVCKK) (n = 5 rats), which did not inhibit binding between the κ2 FLC and THP (Figure 5C). The dose of peptide was 0.1 mg/g BW. On the second day of the study, the animals received a second intraperitoneal injection of the experimental or control peptide, 0.1 mg/g BW, or vehicle alone. At the initiation of the study, BWs among the 3 groups did not differ (data not shown). By the end of the study, however, mean BW (102 ± 3 g) of the group that received experimental peptide 1 (AHX-CLSADSSGSYLYVCKK) exceeded (P < 0.05) mean BW of the vehicle-treated (81 ± 12 g) and control peptide–treated (AHX-CLSAHSSGSYLYVCKK) (84 ± 3 g) rats. One animal in the vehicle-treated group died on the afternoon of the day after the injection of the FLCs. Compared with the group treated with experimental peptide 1, mean serum creatinine levels increased (P < 0.05) in the vehicle-treated and control peptide–treated rats. When compared with mean baseline serum creatinine levels, the slight increase in serum creatinine of the experimental peptide 1–treated rats did not reach statistical significance (Figure 7). Quantitative analysis of casts visualized in histological samples in this series of studies demonstrated a statistically significant difference between the treatment groups (Kus-
The Journal of Clinical Investigation

research article

kal-Wallis χ^2 test of 81.0; $P < 0.0001$). Among the 3 treatment types, the mean number of casts was 6.2 ± 0.64 for vehicle, 2.8 ± 0.46 for the control peptide, and 0.38 ± 0.16 for the experimental peptide; the median cast count by injection type was 5 (interquartile range, 4–7) for vehicle, 2 (interquartile range, 0–4) for control peptide, and 0 (interquartile range, 0–0) for the experimental peptide.

Discussion

In the present studies, multiple strategies were used to demonstrate that (a) the secondary structure and key amino acid residues on the CDR3 of FLCs were important determinants of the molecular interaction with THP; and (b) a cyclized peptide construct that binds strongly to THP served as an effective inhibitor of cast nephropathy in vivo. The present biochemical and in vivo experiments therefore offered a proof of concept that intraluminal cast formation was integrally involved in the pathogenesis of AKI from cast nephropathy. Further, the data suggested a clinically important and, we believe, novel approach to the management of AKI in this setting.

THP consists of 5 known domains that include an EGF-like domain and 2 calcium-binding EGF-like domains at the N terminus, 2 zona pellucida domains (ZP-N and ZP-C) at the C terminus, and a central region, recently termed D8C, that is also present in the pancreatic glycoprotein GP2 and liver-specific ZP domain–containing protein (Figure 8 and refs. 18–22). In addition, 4 potential isoforms of THP arise from alternative splicing (23, 24). These include the canonical or full-length protein (isoform no. 1); isoform no. 2, which lacks both calcium-binding EGF-like domains and the first 50 residues of the central region; and isoform no. 3, which has a 30-residue deletion shortly thereafter. This 30-residue stretch is replaced with a single proline, most likely leading to a sharp bend, and maintaining the overall conformation of the molecule. A fourth isoform that contains a 22-residue deletion within the second calcium-binding EGF-like domain has also been suggested. Prior studies identified a single FLC-binding domain (LCBD) on THP where FLCs bind (14, 15). The LCBD of THP was within the D8C region just downstream of the last residue absent from isoform no. 3 (Figure 8). The alternative splicing data further inform the intramolecular disulfide bonding state and connectivity patterns, which were predicted using 2 peer-reviewed online neural networks (DISULFIND and DiANNA) (25, 26). A total of 19 cysteines were found in the unknown central region. Taking advantage of the alternative splicing patterns, the cysteines were reduced to 3 groups. Eighteen cysteines were found in the deleted region of isoform no. 2. Twelve of them were located within the 2 calcium-binding EGF-like domains with known cysteine-binding patterns. The remaining 6 cysteines deleted in isoform no. 2 were considered to form 1 group, as were the 2 cysteines deleted

Figure 3

Graphs of the effect of competitor peptides and cyclized competitor peptides on binding of THP to FLCs. While both CDR3 mimetic peptides inhibited binding of FLCs to THP, cyclization, which was accomplished through intramolecular disulfide bonding between cysteine residues added onto the amino and carboxyl termini, shifted the inhibition curves to the left. $n = 5$ experiments at each concentration in each group. Data are shown as mean ± SEM.

Figure 4

The cyclized peptide (AHX-CLSADSSGSYLVCKK) (circles) was a highly effective inhibitor that completely prevented the binding of THP to 6 different human monoclonal FLCs. The control peptide (AHX-CLSAFSFGSYLVCKK) (white squares) did not effectively inhibit binding of THP to any of the 6 FLCs. $n = 4$ experiments in each group. Data are shown as mean ± SEM.
in isoform no. 3. This grouping left 11 of the original 19 cysteines remaining within the unknown central region. Interestingly, the first 2 cysteines of this group were considered paired by all prediction patterns tested. They were the first and eighth residues of the LCBD of THP (CAHWSGH), and their binding led to the formation of a tight loop. A molecular model of the cyclic peptide (CAHWSGHC) was generated using GAMESS and TINKER (27–29). The most common rotamers were selected, except when orbital overlap prevented it. Charge and multiplicity were assigned, and the data were sent to GAMESS for energy minimization initially in vacuo and then solvated in a water box. Energy minimization was then carried out in TINKER using Amber94 as the parameter file. The model depicts the terminal cysteines paired to form a loop structure that forces the 2 histidine residues into close proximity. The model further predicts the potential for strong ionic interaction between the histidines on THP and negatively charged residues on the FLCs, a finding demonstrated in the present series of studies. The data fit well with prior studies showing the effect of pH on binding of FLCs to THP (30) and prevention of AKI from monoclonal FLCs (31). This model also correlates well with the yeast 2-hybrid data in the present study and provides new insights into the structure of the LCBD. As predicted from this model and the data presented, the charge of the THP-binding peptide, particularly at the fourth residue, was a critical determinant of binding, since replacing the aspartate with histidine inhibited the binding interaction.

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial BW (g)</th>
<th>Final BW (g)</th>
<th>BW change (g)</th>
<th>Final BUN (mg/dl)</th>
<th>Final serum creatinine (mg/dl)</th>
<th>Urine flow rate (μl/min per 100 g BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ3 FLC</td>
<td>79 ± 2</td>
<td>86 ± 3</td>
<td>7 ± 2</td>
<td>15 ± 5</td>
<td>0.39 ± 0.03</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>+CP</td>
<td>74 ± 2</td>
<td>67 ± 3</td>
<td>−7 ± 2</td>
<td>47 ± 7</td>
<td>2.38 ± 0.16</td>
<td>0.09 ± 0.04</td>
</tr>
<tr>
<td>+Vehicle</td>
<td>0.231</td>
<td>0.008</td>
<td>0.01</td>
<td>0.02</td>
<td>0.0003</td>
<td><0.0001</td>
</tr>
<tr>
<td>κ2 FLC</td>
<td>130 ± 3</td>
<td>150 ± 4</td>
<td>18 ± 4</td>
<td>13 ± 2</td>
<td>0.46 ± 0.02</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>+CP</td>
<td>130 ± 1</td>
<td>146 ± 2</td>
<td>8 ± 2</td>
<td>52 ± 5</td>
<td>1.30 ± 0.07</td>
<td>2.3 ± 0.7</td>
</tr>
<tr>
<td>+Vehicle</td>
<td>0.811</td>
<td>0.361</td>
<td>0.098</td>
<td>0.003</td>
<td>0.0003</td>
<td>0.355</td>
</tr>
</tbody>
</table>

CP, cyclic peptide.
Figure 6
Light and immunofluorescence micrographs depicting the beneficial effect of the synthetic, cyclized competitor peptide in preventing cast nephropathy in vivo. Rats were injected intraperitoneally with the cyclic peptide (AHX-CLSADSSGYSYLYVCKK), 8 mg, or vehicle 2 hours prior to injection with 1 of 2 unique monoclonal FLCs. Both were obtained from patients who had myeloma and renal dysfunction compatible with cast nephropathy. The patient who donated the \(\kappa \) 2 FLC had biopsy-proven cast nephropathy. Addition of the cyclic peptide prevented cast formation and accumulation of the monoclonal FLCs in the kidney, as demonstrated by H&E staining and by immunofluorescent labeling of human \(\kappa \) or \(\lambda \) light chains, respectively, using specific primary antibodies with Texas red–labeled secondary antibody. Nuclei were visualized in the fluorescent images by DAPI staining. \(n = 3 \) rats in each group. Scale bars: 100 \(\mu \)m.

The level of renal function is a critical determinant of prognosis in multiple myeloma (12, 32), and cast nephropathy from monoclonal FLCs is the most common cause of renal dysfunction in this setting (13). When renal failure is defined as serum creatinine greater than or equal to 1.3 mg/dl, nearly half of these patients have this complication (10). Approximately 22% have moderate to severe renal failure (i.e., serum creatinine above 2 mg/dl) at presentation, with about 8% of patients requiring renal replacement therapy (12). With successful treatment, renal function normalized in 31% to 58% of patients (32, 33); recovery of renal function correlated with the degree of FLC proteinuria (32). Casts can also disappear with successful removal of the monoclonal FLCs (34). Along with data showing that recovery of renal function portends improved outcomes (12), these observations have led investigators to promote aggressive therapies to remove circulating FLCs, with significant improvement in renal function documented using these techniques despite severe renal injury at the initiation of treatment (13, 35). The present study further demonstrates the therapeutic potential of targeting the underlying pathogenetic mechanism of cast nephropathy. By providing an inhibitor of cast formation, there is opportunity to protect functioning nephrons from new cast formation and prevent AKI as well as progressive renal failure, while chemotherapy or other measures are applied to lower systemic FLC concentrations at levels that are safe for the kidney. Because cast nephropathy is the most common form of renal injury and is potentially reversible, this approach alone may offer substantial therapeutic benefit for patients who have multiple myeloma and overproduce monoclonal FLCs.

Methods
Reagents: QSYDNTLSGYSYVF, CQSYDNTLSGYSYVF, AHX-LSADSSGSYLYVCF, AHX-CLSADSSGYSYLYVCKK, AHX-CLSADSSGYSYLYVCKK, and AHX-CLSAHSSGYSYLYVCKK were synthesized commercially (Open Biosystems Products, Thermo Fisher Scientific; Biomatik Corp.). 6-Aminohepoxanoic acid (AHX) was added to the amino terminus of the last 4 peptides, and 2 lysine residues were added to the carboxyl terminus of the last 3 peptides to increase solubility. Peptides were cyclized by adding cysteine residues near the amino and carboxyl termini of the peptide and forming a disulfide bridge. Purity was confirmed using both mass spectrometry and HPLC.

Human THP and FLCs were purified from urine in standard fashion (6, 7, 14–16, 30). Purified human THP was biotinylated as described previously (36), using sulfo-N-hydroxysuccinimide biont (Immunopure Sulfo-NHS-Biotin; Pierce Protein Products, Thermo Fisher Scientific), followed by dialysis against PBS at 4°C for 24 hours to remove free biont. Seven different FLCs (4 \(\kappa \) and 3 \(\lambda \) arbitrarily named \(\kappa 2, \kappa 3, \kappa 6, \lambda 2, \lambda 3, \) and \(\lambda 5 \) were used in this study and were obtained from the urine of patients who had FLC proteinuria and clinical renal failure. Patients who donated \(\lambda 2 \) and \(\lambda 5 \) had biopsy-proven cast nephropathy. Patients who donated \(\lambda 3, \kappa 2, \kappa 3, \) and \(\kappa 7 \) had clinical presentations that were compatible with
Figure 7
Experimental peptide 1 served as an effective inhibitor of cast nephropathy in vivo. Changes in (A) mean serum creatinine, determined by tandem mass spectrometry, and (B) medullary cast formation of 3 groups of rats (n = 5–6 per group) were determined in a rescue experiment in which the competitive cyclized experimental (exp.) peptide 1 (AHX-CLSADSSGSLYVCKK), a control cyclized peptide (AHX-CLSAHSSGSLYVCKK), or vehicle alone was administered intraperitoneally 4 hours after rats received the nephrotoxic FLC (κ2). Mean serum creatinine increased in the vehicle-treated and control cyclized peptide–treated groups, but rats given competitor cyclized peptide 1 were protected from AKI. Animals that received experimental peptide 1 also had fewer casts in the medulla compared with animals that received vehicle alone. *P < 0.05 compared with the other 2 groups. Data are shown as mean ± SEM.

Figure 8
Schematic depicting the different domains on THP as well as potential alternative splice sites (represented by vertical lines). The FLC-binding domain (LCBD) lies between the EGF-like repeats and the zona pellucida domains.

Peptide competition experiments. To quantify the inhibitory capability of the competitor peptide of interest in preventing THP-FLC binding, a competitive ELISA was performed as described previously (16). In these experiments, the plates were initially coated with human FLCs, 0.2 μM, and blocked using 1% BSA in PBS. Biotinylated human THP, 0.1 μM in PBS, was then added, along with the competitor peptides in concentrations that ranged from 0 to 333 μM. After washing, the reaction was developed using avidin conjugated with HRP, 1:10000 dilution in PBS, followed by azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid). The optical density was determined at 405 nm.

Protein expression and purification. The cDNA constructs for full-length human soluble THP and the Vκ domain of ITPBLL86 were each ligated into the pFN19K HaloTag T7 SP6 Flexi Vector (Promega Corp.), and the 2 fusion proteins (HaloTag attached to the THP and to the Vκ domain) were expressed using a cell-free system (TNT SP6 High-Yield Wheat Germ Protein Expression System; Promega Corp.). The proteins were purified by covalent immobilization using the attached HaloTag and HaloLink Resin (HaloTag Protein Purification System; Promega Corp.). A His-tagged TEV Protease was then used to cleave the HaloTag from the proteins; the His-tag permitted subsequent removal of the protease using His-Link Resin. The estimated purity was greater than 95% by SDS-PAGE analysis.

Nonisotopic protein labeling. To biotin-label the Vκ fragment, the Transcend Non-Radioactive Translation Detection System (Promega Corp.) was employed. This system labeled the protein by permitting incorporation of biotin-labeled lysines during translation.

Overlay (far-Western) assays. Experiments were performed using a protocol previously reported (16). Following electrophoresis using a 10% SDS-PAGE gel under nonreducing conditions, an FLC and the Vκ domain obtained from the same FLC were transferred to Immobilon PVDF. After washing and blocking, the membrane containing these proteins was incubated in PBS containing human THP, approximately 0.2 μmol/l. After additional washes, the membrane was exposed to rabbit anti-human THP (Biomedical Technologies Inc.) and then HRP-conjugated anti-rabbit IgG, with development proceeding in standard fashion.

For the peptide competition experiments, equal and efficient transfer was confirmed by staining with MemCode Reversible Protein Stain (Thermo Scientific).
Research article

mo Fisher Scientific Pierce Protein Products). The PVDF membrane containing recombinant THP was then cut into strips, which were destained, washed, and blocked, then incubated with $\times 100$, 10×30, or 1×1 molar amounts (relative to bound THP) of the competitor cyclic peptide (AHX-CLSDSSGSYLYVCKK). The strips were then incubated for 4 hours with the biotinylated V_{i} domain of an FLC (ITPBBLL86), followed by incubation for 2 hours with avidin-HRP. The membrane was then developed in standard fashion using Supersignal West Pico Chemiluminescent Substrate (Pierce Protein Products; Thermo Scientific).

In additional experiments, following electrophoresis of k_{2} FLC in a 10% SDS-PAGE gel under reducing conditions, the FLC was transferred to PVDF membrane (Immobilon). Transfer was confirmed using MemCode Reversal Protein Marker (Pierce Protein Products; Thermo Scientific). The PVDF membrane containing the k_{2} FLC was then cut into strips, which were destained, washed, and blocked, then probed with 0.2μmol/l biotinylated human THP that had been preincubated with x_{100}, x_{10}, x_{3}, or 1×1 molar amounts (relative to THP) of the competitor cyclic peptide 1 (AHX-CLSDSSGSYLYVCKK) or control peptide (AHX-CLSAHSSGSYLYVCKK) overnight at 4°C. After additional washes, the membranes were incubated for 2 hours with avidin-HRP. The membranes were then developed in standard fashion using Supersignal West Pico Chemiluminescent Substrate (Pierce Protein Products; Thermo Scientific) (16).

In vivo experiments. The Institutional Animal Care and Use Committee at the University of Alabama at Birmingham approved the project. Studies were conducted using male Sprague-Dawley (SD) rats (Harlan Laboratories) that were 4 to 6 weeks of age at the start of study. The rats were housed under standard conditions and fed a formulated 0.3% NaCl diet (AIN-76A; Dyets Inc.).

Solomon et al. designed a rodent model that mimicked the human disease condition associated with monoclonal FLCs (41). The experimental protocol followed their approach, with the following modifications. To determine the in vivo efficacy of the cyclized peptide on prevention of AKI from monoclonal FLCs, on the morning of initiation of the study, rats were injected intraperitoneally with the experimental cyclized peptide 1 (AHX-CLSDSSGSYLYVCKK), 8μg (4.8 μmol) in PBS, or vehicle alone. Two hours later, each rat was injected intraperitoneally with monoclonal FLC (k_{3} or k_{2}), 20μg in PBS. Rats were placed individually into metabolic cages, and 24-hour urine samples were collected daily. On the second day of the study, the animals received a second intraperitoneal injection of the experimental peptide, 8μg, or vehicle. On the final day of the study, the rats were anesthetized by intraperitoneal injection of pentobarbital sodium injection (Lundbeck Inc.), 50 mg/kg BW, and the kidneys were removed under aseptic conditions, fixed, and processed for frozen embedding as described previously (42). Light microscopy and immunofluorescence microscopy were performed as described (43). Serum was collected for determination of creatinine concentration. In this study, serum creatinine was determined using liquid chromatography tandem mass spectrometry (Waters 2795 LC-MS/MS; Waters Corp.) (44).

To quantify cast formation, the number of casts present in 10 different $\times 300$ sections that contained medulla (defined as an absence of glomeruli in the section) was quantified in blinded fashion by one of the authors (L.M. Curtis).

Statistics. Data were expressed as mean ± SEM. Significant differences between 2 groups were determined using an unpaired 2-tailed t test, and differences among multiple data sets were determined by ANOVA with standard post-hoc testing. Cast counts in the medulla for each experimental condition in vivo were analyzed by nonparametric ANOVA (Kruskal-Wallis). SAS 9.2 was used for these statistical analyses (SAS Institute Inc.). $P < 0.05$ was considered statistically significant.

Study approval. The Institutional Animal Care and Use Committee at the University of Alabama at Birmingham approved the animal protocol. The Birmingham VA Institutional Review Board approved the human protocol. Participants provided informed consent to collect their urine samples for protein purification.

Acknowledgments

NHI grants R01 DK046199 and P30 DK079337 (George M. O’Brien Kidney and Urological Research Centers Program) and the Office of Research and Development, Medical Research Service, Department of Veterans Affairs, Washington DC, USA, supported this research.

Received for publication January 20, 2011, and accepted in revised form February 1, 2012.

Address correspondence to: Paul W. Sanders, Division of Nephrology/Department of Medicine, 642 Lyons-Harrison Research Building, 1530 Third Avenue, South, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA. Phone: 205.934.3589; Fax: 205.975.6288; E-mail: psanders@uab.edu.

