Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy
Ning Liu, Svetlana Bezprozvannaya, John M. Shelton, Madlyn I. Frisard, Matthew W. Hulver, Ryan P. McMillan, Yaru Wu, Kevin A. Voelker, Robert W. Grange, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson
Ning Liu, Svetlana Bezprozvannaya, John M. Shelton, Madlyn I. Frisard, Matthew W. Hulver, Ryan P. McMillan, Yaru Wu, Kevin A. Voelker, Robert W. Grange, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson
View: Text | PDF
Research Article Muscle biology

Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy

  • Text
  • PDF
Abstract

MicroRNAs modulate cellular phenotypes by inhibiting expression of mRNA targets. In this study, we have shown that the muscle-specific microRNAs miR-133a-1 and miR-133a-2 are essential for multiple facets of skeletal muscle function and homeostasis in mice. Mice with genetic deletions of miR-133a-1 and miR-133a-2 developed adult-onset centronuclear myopathy in type II (fast-twitch) myofibers, accompanied by impaired mitochondrial function, fast-to-slow myofiber conversion, and disarray of muscle triads (sites of excitation-contraction coupling). These abnormalities mimicked human centronuclear myopathies and could be ascribed, at least in part, to dysregulation of the miR-133a target mRNA that encodes dynamin 2, a GTPase implicated in human centronuclear myopathy. Our findings reveal an essential role for miR-133a in the maintenance of adult skeletal muscle structure, function, bioenergetics, and myofiber identity; they also identify a potential modulator of centronuclear myopathies.

Authors

Ning Liu, Svetlana Bezprozvannaya, John M. Shelton, Madlyn I. Frisard, Matthew W. Hulver, Ryan P. McMillan, Yaru Wu, Kevin A. Voelker, Robert W. Grange, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson

×

Figure 5

miR-133a regulates Dnm2 expression in skeletal muscle.

Options: View larger image (or click on image) Download as PowerPoint
miR-133a regulates Dnm2 expression in skeletal muscle.
   
(A) Position ...
(A) Position of miR-133a target site in Dnm2 3′ UTR and sequence alignment of miR-133a and the Dnm2 3′ UTR from various species are shown. Conserved miR-133a binding sites in Dnm2 3′ UTR are shown in red. Mutations in Dnm2 3′ UTR were introduced to disrupt base-pairing with miR-133a seed sequences (blue). (B) Luciferase reporter constructs containing WT and mutant Dnm2 3′ UTR sequences were cotransfected into COS-1 cells with a plasmid expressing miR-133a. 48 hours after transfection, luciferase activity was measured and normalized to β-galactosidase activity. (C) Real-time RT-PCR showing expression of Dnm2 mRNA in WT and dKO TA muscle. n = 3 (WT and dKO). (D) Western blot showing expression of dynamin 2 protein in TA muscle of WT and dKO mice. n = 2 (WT and dKO). The blot was stripped and reprobed with an antibody against α-actin as a loading control. Quantification of dynamin 2 protein, determined by densitometry and normalized to α-actin, is also shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts