Targeted T cell immunotherapies using engineered T lymphocytes expressing tumor-directed chimeric antigen receptors (CARs) are designed to benefit patients with cancer. Although incorporation of costimulatory endodomains within these CARs increases the proliferation of CAR-redirected T lymphocytes, it has proven difficult to draw definitive conclusions about the specific effects of costimulatory endodomains on the expansion, persistence, and antitumor effectiveness of CAR-redirected T cells in human subjects, owing to the lack of side-by-side comparisons with T cells bearing only a single signaling domain. We therefore designed a study that allowed us to directly measure the consequences of adding a costimulatory endodomain to CAR-redirected T cells. Patients with B cell lymphomas were simultaneously infused with 2 autologous T cell products expressing CARs with the same specificity for the CD19 antigen, present on most B cell malignancies. One CAR encoded both the costimulatory CD28 and the ζ-endodomains, while the other encoded only the ζ-endodomain. CAR+ T cells containing the CD28 endodomain showed strikingly enhanced expansion and persistence compared with CAR+ T cells lacking this endodomain. These results demonstrate the superiority of CARs with dual signal domains and confirm a method of comparing CAR-modified T cells within individual patients, thereby avoiding patient-to-patient variability and accelerating the development of optimal T cell immunotherapies.
Barbara Savoldo, Carlos Almeida Ramos, Enli Liu, Martha P. Mims, Michael J. Keating, George Carrum, Rammurti T. Kamble, Catherine M. Bollard, Adrian P. Gee, Zhuyong Mei, Hao Liu, Bambi Grilley, Cliona M. Rooney, Helen E. Heslop, Malcolm K. Brenner, Gianpietro Dotti
Usage data is cumulative from October 2022 through October 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 1,605 | 447 |
122 | 204 | |
Figure | 113 | 0 |
Supplemental data | 36 | 24 |
Citation downloads | 50 | 0 |
Totals | 1,926 | 675 |
Total Views | 2,601 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.