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A lineage of CD4+ T cells known as Th17 cells, which are derived by exposure of naive CD4+ T cells to IL-6 and TGF-β,
have been implicated in several autoimmune diseases. In this issue of the JCI, studies by Acharya et al. and Melton et al.
show that TGF-β is activated at the DC/CD4+ T cell synapse by αv integrins and that this activation is required for Th17
differentiation and autoimmunity in the central nervous system. Thus, these studies offer a potential therapeutic target in
fighting autoimmune diseases.
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Th17 cells are a recently identified and 
critical component of the adaptive immune 
system (1–3). They are characterized by the 
production of IL-17A and IL-17F as well as 
other cytokines such as IL-22. These effec-
tor cytokines have been shown to be critical 
for clearance of certain bacteria and fungal 
pathogens (4). In addition, vaccine-induced 
Th17 cells have been shown to have broad 
protective roles against extracellular patho-

gens such as Streptococcus pneumoniae and to 
control Th1 cell migration in the context of 
vaccination against the intracellular patho-
gen Mycobacterium tuberculosis (4). However, 
this protective aspect of the Th17 lineage 
comes at a cost, as these cells have been 
implicated in autoimmune diseases such 
as multiple sclerosis, psoriasis, and rheu-
matoid arthritis (1–3).

Several groups have shown that naive 
CD4+ T cells differentiate into Tregs in the 
presence of TGF-β (5, 6). However, in the 
presence of TGF-β and IL-6, naive CD4+  
T cells differentiate into Th17 cells (6–8). 
Early work by Li et al. (9) showed that the 

source of TGF-β in this context was the 
CD4+ T cell. However, TGF-β is secreted 
from cells in an inactive form, in which bio-
active TGF-β is in a complex with its latency-
associated peptide (LAP) through noncova-
lent bonds. Two studies in this issue of the 
JCI demonstrate that DCs activate TGF-β  
in an integrin-dependent fashion (10, 11), 
suggesting that the activation of TGF-β 
occurs at the DC/T cell synapse (Figure 1) 
and that this activation is required to drive 
the differentiation of Th17 T cells.

TGF-β and integrins
TGF-β is a multifunctional cytokine 
involved in many aspects of immunology, 
angiogenesis, and epithelial growth as well 
as in pathogenic states such as fibrosis 
(12). Activation of TGF-β has been an area 
of intense study. Mechanisms identified as 
leading to the disruption of the noncova-
lent interaction between LAP and bioac-
tive TGF-β and thus activation of TGF-β 
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include low pH, heat, reactive oxygen spe-
cies produced as a result of environmental 
exposures, and LAP cleavage by proteases 
such as thrombin, elastase, MMP-2, and 
MMP-9 (13). Because of the ubiquitous 
expression of TGF-β by many cell types, 
indiscriminate activation of TGF-β is not 
advantageous. A more spatially regulated 
activation occurs through latent TGF-β 
binding to integrins at the cell surface, 
which allows activation of TGF-β in a more 
regulated and localized manner (13).

Integrins are a family of heterodimeric 
cell surface receptors consisting of an a and 
a b subunit. There are 24 total integrin sub-
units (18 a and 6 b). Among the integrins, 
five share the αv subunit (αvβ1, αvβ3, αvβ5, 
αvβ6, and αvβ8) and are capable of binding 
the RGD tripeptide sequence on the LAP of 
TGF-β (1). Studies in mice that have a muta-
tion converting the RGD sequence of LAP 
to RGE demonstrate the same embryonic 
lethality and inflammatory phenotype as 
mice lacking TGF-β (14), suggesting integ-

rin-mediated activation of TGF-β is critical 
in development. There are two proposed 
mechanisms of integrin-dependant activa-
tion of TGF-β. In the case of integrins that 
are bound to the cytoskeleton, such as inte-
grin αvβ6, binding of TGF-β induces a con-
formational change upon the latent com-
plex of TGF-β, allowing the active portion of 
TGF-β to be exposed to its receptor, without 
breaking the LAP/TGF-β bonds (15). Integ-
rin αvβ8 lacks this cytoskeletal connection. 
In its case, the integrin acts as an anchor for 
TGF-β, allowing proteolysis by membrane-
bound MMP-14 (also known as mt1-MMP) 
(16). Both of these integrin-related mecha-
nisms allow TGF-β to be activated in a very 
focal manner, which may be important in 
the context of Th17 differentiation.

Integrin-mediated Th17 development
In this issue of the JCI, two complimentary 
papers demonstrate the requirement of 
integrin αvβ8 activation of TGF-β in the 
differentiation of Th17 cells (10, 11). Previ-

ous work using conditional knockout mice 
has shown that mice lacking either αv (17) 
or αvβ8 (18) in myeloid cells develop colitis 
and a spontaneous autoimmune disease, 
believed to be due to the inability of these 
mice to activate TGF-β and develop Tregs. 
Acharya et al. (10) have now considered 
the common requirement for TGF-β in the 
development of Tregs and Th17 cells and 
find that conditional knockout mice (which 
they generated using tie2-cre and termed αv-
tie2 mice) that lack integrin αv on all hema-
topoietic cells have reduced proportions of 
Th17 cells in the lamina propria. However, 
CD4+ T cells from these mice were capable 
of differentiating into Th17 cells when sup-
plied with exogenous TGF-β in vitro (10). By 
crossing mice with a floxed Itgav allele (i.e., 
the allele that encodes αv) to LysM-cre mice, 
which allowed expression of αv integrins on 
lymphoid cells but not on macrophages and 
DCs, the authors demonstrated that integ-
rin αv expression on LysM-expressing cells 
was required for the TGF-β activation that is 
required for Th17 cell generation in αv-tie2 
mice (10). While these data demonstrate the 
importance of αv, they do not completely 
identify which integrin is responsible, as 
mice lacking αv are incapable of making 
αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8. In sup-
port of this work, Melton et al. (11) show 
a similar phenotype of markedly reduced 
numbers of Th17 cells in the lamina propria 
of mice lacking integrin β8 expression on 
DCs (mice that they term β8fl/fl × CD11c-cre 
mice) (11). Using the experimental model 
of autoimmune encephalitis (EAE), which 
is Th17 dependant, neither the αv-tie2 
mice (10) nor the β8fl/fl × CD11c-cre mice 
developed EAE (11). To understand what 
role integrin αvβ8 may have in Th17 devel-
opment, both groups looked at cytokines 
involved in Th17 polarization. There were no 
differences in IL-6, IL-23, TGF-β (10, 11), or 
IL-1β (10) expression after immunization in 
the EAE model. Further, IFN-γ, which inhib-
its Th17 development, was not increased 
in β8fl/fl × CD11c-cre mice, and, thus, the 
reduced Th17 polarization in vivo could not 
be explained by enhanced Th1 polarization 
(11). In vitro, both groups of investigators 
showed that DCs were required to activate 
TGF-β, as naive CD4+ T cells did not dif-
ferentiate in the presence of latent TGF-β 
unless DCs were present (10, 11). Further, 
this activation did not occur in the presence 
of DCs from either αv-tie2 or β8fl/fl × CD11c-
cre mice or in the presence of RGD mimetics 
(10) or TGF-β antibodies (11). Interestingly, 
this activation required cognate interaction 

Figure 1
Schematic representation of Th17 differentiation. Two studies in this issue of the JCI (10, 11) 
demonstrate that TGF-β is activated at the DC/CD4+ T cell synapse by αv integrins and that 
this activation is required for Th17 differentiation in vitro. Moreover, mice lacking αv integrins 
on DCs fail to develop EAE, a disease mediated by Th17 cells.
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between the CD4+ T cells and DCs (Figure 1), 
as MHC class II–mismatched DCs, which are 
unable to present antigen to T cells, did not 
induce Th17 differentiation (10, 11).

Conclusions
Given the importance of IL-17 in autoim-
mune disease, the mechanisms of Th17 dif-
ferentiation are under extensive study. The 
works presented by Acharya et al. (10) and 
Melton et al. (11) demonstrate a novel mech-
anism for the development of Th17 cells, in 
which naive CD4+ T cells recognize antigens 
presented by DCs in an MHC class II–depen-
dent manner, while at the same time induc-
ing the cell to differentiate to a Th17 cell 
through the activation of TGF-β by an integ-
rin αvβ8–dependant mechanism (Figure 1).  
While these studies do not explain the pro-
duction of IL-17 by other sources, such as γδ 
T cells, they do offer insight into the devel-
opment of an important cell lineage that is 
implicated in autoimmune states. They also 
suggest the use of RGD mimetics to block 
the activation of TGF-β could be a feasible 
therapy to reduce the severity of Th17-
related diseases. Recently, however, work 
by Ghoreschi et al. demonstrates that Th17 
cells can develop in the absence of TGF-β, 
and Th17 cells grown in these conditions 
show enhanced pathogenic potential after 
adoptive transfer (19). These data highlight 
the complexities of Th17 differentiation and 
suggest that it will be important to under-

stand the origins and phenotypes of Th17 
cells (and their nuanced subsets) in order to 
develop therapeutic approaches.
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A tincture of hepcidin cures all:  
the potential for hepcidin therapeutics
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Iron overload as a result of blood transfusions and excessive intestinal 
iron absorption can be a complication of chronic anemias such as β-thalas-
semia. Inappropriately low levels of hepcidin, a negative regulator of iron 
absorption and recycling, underlie the pathophysiology of the intestinal 
hyperabsorption. In this issue of the JCI, Gardenghi et al. demonstrate that 
increasing hepcidin expression to induce iron deficiency in murine β-thalas-
semia not only mitigates the iron overload, but also the severity of the ane-
mia. These data illustrate the therapeutic potential of modulating hepcidin 
expression in diseases associated with altered iron metabolism.
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Hepcidin, iron, and erythropoiesis
Erythropoiesis consumes the majority of 
the iron present in the human body (1). 
Most of this iron is obtained from the 

recycling of effete red blood cells by macro-
phages found in the liver, spleen, and bone 
marrow. Interruption of iron export from 
macrophages leads to functional iron defi-
ciency and iron-limited erythropoiesis. At 
equilibrium, only a small amount of iron 
is absorbed in the duodenum from the 
diet each day. Further, there is no physi-
ologically regulated mechanism of elimi-
nating excess iron from the body. Conse-
quently, the proper regulation of dietary 
iron absorption as well as iron recycling is 
essential to maintaining iron homeostasis 
and to sustaining erythropoiesis.


