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Infection with influenza A virus represents a major public health threat worldwide, particularly in patients with
asthma. However, immunity induced by influenza A virus may have beneficial effects, particularly in young
children, that might protect against the later development of asthma, as suggested by the hygiene hypothesis.
Herein, we show that infection of suckling mice with influenza A virus protected the mice as adults against aller-
gen-induced airway hyperreactivity (AHR), a cardinal feature of asthma. The protective effect was associated
with the preferential expansion of CD4-CD8-, but not CD4*, NKT cells and required T-bet and TLR7. Adoptive
transfer of this cell population into allergen-sensitized adult mice suppressed the development of allergen-
induced AHR, an effect associated with expansion of the allergen-specific forkhead box p3* (Foxp3*) Treg cell
population. Influenza-induced protection was mimicked by treating suckling mice with a glycolipid derived
from Helicobacter pylori (a bacterium associated with protection against asthma) that activated NKT cells in a
CD1d-restricted fashion. These findings suggest what we believe to be a novel pathway that can regulate AHR,
and a new therapeutic strategy (treatment with glycolipid activators of this NKT cell population) for asthma.

Introduction

Bronchial asthma, a complex and heterogeneous trait, is a major
public health problem, affecting nearly 10% of the general popula-
tion and disproportionately affecting children. Moreover, the preva-
lence of asthma has increased dramatically over the past 3 decades,
an increase thought to be due to changes in our environment. These
environmental changes include reductions in the incidence of infec-
tious diseases that may exert protective effects against asthma, as
suggested by the hygiene hypothesis (1). While the infectious agents
responsible for this relationship, and the precise mechanisms by
which infectious microorganisms might protect against asthma,
are very poorly understood, epidemiological studies suggest that
infection with bacteria (e.g., Helicobacter pylori [refs. 2, 3], endotoxin
[ref. 4], or Acinetobacter lwoffii [ref. 5]) or viruses (e.g., hepatitis A virus
[refs. 6, 7]) might reduce the likelihood of developing asthma.

The role of viral infection in modulating the development of
asthma is particularly complex because many different viruses
affect the respiratory tract, some appearing to enhance and some to
protect against the development of asthma. For example, infection
with human rhinovirus in children before 3 years of age increases
the later risk of developing asthma (8), while other respiratory
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viral infections appear to protect against the later development
of asthma (9-14). However, in older individuals with established
asthma, respiratory viral infection, particularly with influenza A
virus, almost always triggers acute symptoms of asthma (15-17).
These discrepancies may be due to the timing of the infection, since
infection in very young children may profoundly alter the develop-
ing innate immune system in such a way as to protect against the
later development of asthma, or to the specific immunological cell
types activated by a given infectious agent.

To improve our understanding of the role of respiratory viral infec-
tion in children in the development of asthma, we studied a mouse
model of asthma in which suckling mice were infected with the influ-
enza A virus (H3N1), and were subsequently studied as adults for
susceptibility to allergen-induced airway hyperreactivity (AHR), a car-
dinal feature of asthma. We found that H3N1 infection in suckling
mice protected the mice as adults against allergen-induced AHR. The
protective effect was associated with the preferential expansion of a
subpopulation of suppressive double-negative (DN) NKT cells and
was mimicked by treatment of suckling mice with several specific
glycolipids, including one derived from H. pylori.

Results
Infection of suckling mice with H3N1 protects against AHR. We infected suck-
ling pups (2 weeks old) or adult mice (8 weeks old) with the influenza
A/Mem71 (H3N1) virus, and 6 weeks later the mice were examined
for susceptibility to OVA-induced AHR (Figure 1A). H3NT1 infection
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in 2-week-old mice protected the mice as adults (at 8 weeks of age)
against OVA-induced AHR (Figure 1B) and airway inflammation
(Figure 1, B and C). In contrast, severe OVA-induced AHR and airway
inflammation developed in the mock-infected mice at 8 weeks of age.
Whereas infection in 2-week-old suckling mice conferred protection,
infection in 8-week-old adult mice with H3N1 did not protect against
subsequent OVA-induced AHR or airway inflammation (Figure 1D).

Adoptive transfer of NKT cells cannot reconstitute OVA-induced AHR
in Jo.187/~ mice. Infection with a different influenza virus strain
(H3N2) enhanced the ability of respiratory tolerance to prevent
OVA-induced AHR (11), consistent with the idea that influenza
infection is complex and can affect multiple compartments of the
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immune system. Because infection with the influenza A virus has
been shown to directly activate NKT cells (18), which play a very
important role in asthma (19), we asked whether infection with
the H3N1 virus affected the function of NKT cells. We therefore
purified NKT cells from mice infected with H3N1 as sucklings
(42 days after infection) and adoptively transferred these cells
(92%-97% purity; Supplemental Figure 1A; supplemental mate-
rial available online with this article; doi:10.1172/JCI44845DS1)
into adult OVA-sensitized, NKT cell-deficient recipients (Jal87/~
mice) (Figure 2A). After receiving the H3N1-exposed NKT cells,
the Jo.187/~ mice, which have CD1d-restricted non-invariant
(but not invariant) TCR NKT cells, and which cannot develop
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Figure 2

Adoptive transfer of H3N1-exposed NKT cells fails to reconstitute OVA-induced AHR. (A) Schematic showing the protocol for adoptive transfer
of NKT cells to OVA-immunized Ja.787- recipients. The donor mice were infected with H3N1 or mock infected at 2 weeks of age. Six weeks
after infection, NKT cells were purified and adoptively transferred into OVA-sensitized Ja.78-- mice, which were then challenged with OVA and
assessed for AHR. (B) Adoptive transfer of H3N1-exposed NKT cells (vVNKT) to Jo.78-- mice failed to reconstitute OVA-induced AHR (measured
as lung resistance in response to methacholine challenge) (left panel). Adoptive transfer of NKT cells from mock-infected mice (NKT) fully recon-
stituted AHR. H3N1 infection at 2 weeks of age of Ja.78-- mice (vJa18--) and reconstitution at 8 weeks of age with NKT cells from mock-infected
mice did not protect against AHR (n = 8—-10 per group). BAL fluid was collected and analyzed (right panel). *P < 0.05 and **P < 0.01, compared
with Ja78- + NKT group. (C and D) Lung cells were isolated from the recipients after measurement of AHR, and the absolute numbers (C)
and percentages (D) of lung CD4+ or CD4-CD8- (DN) NKT subsets were assessed by FACS. Upper panels show dot plots for NKT cells in lung
leukocytes. After gating on the NKT cells, the cells were analyzed for CD4 and CD8 (lower panels). ***P < 0.001 compared with WT NKT group.

Data are representative of 3 independent experiments.

allergen-induced AHR unless reconstituted with functional invari-
ant TCR NKT cells (20-22), failed to develop OVA-induced AHR
(Figure 2B). In contrast, transfer of NKT cells from mock-infected
mice to JaI87~ mice fully reconstituted AHR. Moreover, H3N1
infection in 2-week-old Jo187~ suckling mice (¢Jo.187~ mice) and
later reconstitution (at 8 weeks of age) with NKT cells from mock-
infected mice did not prevent OVA-induced AHR (Figure 2B), indi-
cating that early exposure of all of the non-NKT cells in Jo187~
mice (e.g., conventional CD4* and CD8* T cells) to H3N1 was not
effective in preventing AHR. Finally, in the lungs of mice receiving
the H3N1 virus-exposed NKT cells (42 days after infection), sig-
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nificantly more CD4-CD8- (DN) NKT cells and significantly fewer
CD4* NKT cells were present (Figure 2, C and D), suggesting that
H3NT1 infection of 2-week-old suckling mice reduced the inflam-
matory function of the NKT cells, possibly by altering the CD4*
versus DN NKT cell subset proportions.

H3NI infection accelerates the expansion of pulmonary NKT cells in
suckling mice. In 2-week-old naive suckling mice, few NKT cells were
present in the lungs, although this number increased normally to
adult levels over a 6-week period (Figure 3A). Importantly, H3N1
infection but not mock infection in suckling mice greatly accelerat-
ed the expansion of the pulmonary NKT cell numbers (Figure 3B).
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Figure 3

H3N1 infection in 2-week-old mice alters the phenotype of the NKT
cells. (A) Lung cells were isolated over a 6-week period and analyzed
for NKT cells. Left: Absolute numbers of lung NKT cells. Right: Per-
centage of NKTs (top) in lung leukocytes. NKT cells were analyzed
for CD4 and CD8 (bottom). (B) Left: BALB/c mice (n = 3/group) were
infected with H3N1 or AF at 2 or 8 weeks of age, and lung NKT cells
were assessed over 2 weeks. Right: Percentage of NKT cells in lungs
of 2-week-old and 8-week-old mice. (C) Two-week-old BALB/c mice
were mock infected or infected with H3N1, and pulmonary CD4+ NKT
and DN NKT cell numbers were assessed on days 1 and 14 after infec-
tion. (D and E) NKT cells from C were assessed for CD4, IFN-y, and
IL-4 expression (D) and absolute numbers quantified (E). (F) BALB/c
mice (n = 4-5/group) were infected with H3N1 or mock infected at 2 or
8 weeks of age, and lung samples were taken 42 days later to assess
NKT cell subsets. One of 2 independent experiments is shown. (G)
Two-week-old BALB/c mice were infected with H3N1 or mock infected.
After 42 days, lung cells were harvested and stimulated ex vivo with
vehicle or a-GalCer for 96 hours. IFN-y and IL-4 in supernatants from
triplicate wells were determined by ELISA and the IFN-y/IL-4 ratio cal-
culated. *P < 0.05, ***P < 0.001 compared with mock infection.

In contrast, H3N1 infection in adult mice had little effect on pul-
monary NKT cell numbers. In fact, H3N1 infection in the adult
mice transiently reduced the number of NKT cells, possibly due to
activation-induced TCR downregulation (Figure 3B). In 2-week-
old suckling naive mice, approximately 50% of the pulmonary
NKT cells were CD4*, and over time this fraction increased such
that in 8-week-old adult naive mice, 89% of the pulmonary NKT
cells were CD4" (dot plots in Figure 3A). However, H3N1 infection
of suckling mice preferentially increased the number of DN NKT
cells by day 14 after infection (Figure 3C). Both CD4* and DN
NKT cells from the suckling mice secreted IFN-y on day 1 of infec-
tion, but 14 days after infection only DN but not CD4* pulmonary
NKT cells continued to secrete IFN-y (and IL-4), as assessed with
intracellular staining without in vitro restimulation (Figure 3D).
Thus, 14 days after infection the great majority of cytokine-secret-
ing cells in the lungs were DN NKT cells (Figure 3E).

Analysis of the mice 42 days after H3N1 infection showed that
the proportion of DN versus CD4* NKT cells in the lungs doubled,
whereas 42 days after H3N1 infection in 8-week-old mice, there was
no effect on the proportion of DN NKT cells in the lungs (Figure
3F). Assessment of the cytokine profile of NKT cells 42 days follow-
ing infection after ex vivo stimulation with a-galactosylceramide
(a-GalCer, which specifically activates NKT cells) demonstrated
increased IFN-y but not IL-4 production by the H3N1-exposed
NKT cells (Figure 3G), resulting in a greatly increased IFN-y/IL-4
ratio (Figure 3G). These results suggested that H3N1 infection in
suckling mice preferentially expanded a unique NKT cell popula-
tion in the lungs that, by day 42, preferentially produced IFN-y but
not IL-4 and was associated with a reduced expression of CD4.

Adoptive transfer of H3N1-exposed NKT cells suppresses AHR and
induces Treg cells. While the H3N1-exposed NKT cells (vNKT) could
not induce AHR when transferred into Jo.l8~~ mice (Figure 2), they
were not anergic, but instead potently suppressed OVA-induced
AHR (Figure 4, A and B) and inflammation (Figure 4C), as assessed
by adoptive transfer 42 days after infection into adult WT OVA-
sensitized mice. In contrast, NKT cells from mock-infected mice
(WT NKT) (Figure 4, B and C) or from adult mice infected with
H3N1 (data not shown) did not suppress OVA-induced AHR. The
proportion of DN NKT cells in the lungs of mice receiving the
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H3N1 virus-exposed NKT cells was increased (Figure 4D), consis-
tent with the idea that H3N1 infection in suckling mice preferen-
tially expands a subpopulation of DN NKT cells.

To more clearly demonstrate that the DN NKT cell subpopula-
tion was responsible for the suppression of AHR, we purified CD4*
and DN NKT cell subpopulations from the spleens of mice (purity
96%-99%) (Supplemental Figure 1C), which had been infected with
H3N1, and adoptively transferred these cells into OVA-sensitized
mice. Figure 4E shows that the DN but not the CD4* NKT cell
population suppressed AHR that developed on challenge of the
mice with OVA, confirming that the H3N1-exposed DN NKT cell
population was responsible for this effect.

The suppression of AHR by the transferred H3N1-exposed NKT
cells was associated with a 50% increase in the number of natu-
ral Foxp3* Treg cells and with a 300% increase in the number of
adaptive OVA-specific Foxp3* Treg cells in the lungs (assessed
by transferring DO11.10 Tg OVA-specific Foxp3~ T cells from
DO11.10 Tg x Rag”/~ mice), compared with when NKT cells from
mock-infected mice were transferred (Figure 4F). Furthermore, the
inhibitory effect of the NKT cells exposed to H3N1 was reversed
by treatment of the recipient mice with an anti-CD25 mAb (Fig-
ure 4G). These results together indicated that H3N1-exposed NKT
cells could suppress the development of experimental asthma, and
that natural and adaptive Treg cells might mediate the suppressive
effects of the NKT cell population.

We found a similar suppressive NKT cell population in Val4
TCR Tg mice. Adult Va14 TCR transgenic mice have a 5- to 10-
fold increase in the number of NKT cells in the spleen, of which
the majority (53%) are DN NKT cells (Supplemental Figure 1B),
whereas in WT BALB/c mice, only 11% of the splenic NKT cells
are DN (Supplemental Figure 1B). Adoptive transfer of NKT cells
purified from Va14 TCR Tg mice into adult WT OVA-sensitized
BALB/c mice greatly suppressed the development of OVA-induced
AHR and airway inflammation (Figure 4, H-J). Transfer of Va.14
TCR Tg NKT cells was also associated with a 50% increase in the
number of natural Foxp3* Treg cells and in a 300% increase in the
number of adaptive OVA-specific Foxp3* Treg cells (assessed by
transfer of DO11.10 Tg OVA-specific cells), compared with trans-
fer of naive (WT) NKT cells (Figure 4F). These results suggest that
NKT cells in Va14 Tg mice were similar to NKT cells from suck-
ling mice exposed to H3N1, in that they had suppressive activity
for allergen-induced AHR.

The protective effect of H3N1 infection depends on TLR7 and T-bet.
Since influenza A virus is a single-stranded RNA (ssRNA) virus,
and since T-bet participates in IFN-y production and in NKT cell
maturation (23), we infected 2-week-old Tlr7/ Tbetr/~ mice and
control WT BALB/c mice with the H3N1 virus. Six weeks later, the
mice were examined for OVA-induced AHR (protocol shown in Fig-
ure SA). Whereas H3N1 infection in suckling WT mice protected
against subsequent OVA-induced AHR and airway inflammation
(Figure 5, B and C), H3N1 infection in suckling Tlr77/~ or suck-
ling Thet”~ mice failed to protect against, and even exacerbated,
OVA-induced AHR and airway inflammation. Furthermore, the
ratio of IFN-y production to IL-4 production in NKT cells from
Tlr7/~ mice was reduced (Supplemental Figure 2D), while IFN-y
was reduced and IL-13 and IL-17 production increased in NKT
cells in Thet”~ mice compared with WT mice (Supplemental Figure
2, A and E). (Note that Thet /- mice have reduced numbers of NKT
cells, particularly in the liver [ref. 23] but have significant num-
bers of pulmonary NKT cells compared with WT mice [ref. 24]).
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Figure 4

H3N1-exposed NKT cells suppress AHR and increase OVA-specific
Tregs. (A) Protocol for adoptive transfer of NKT cells. (B and C) Lung
resistance was measured in recipient mice (B; n = 15/group) and BAL
cells collected (C). (D) Relative numbers of CD4+ versus DN NKT cells
in recipients’ lungs were assessed (E) H3N1-exposed CD4-CD8-NKT
(vDN NKT) or CD4*NKT (vCD4 NKT) cells were purified and trans-
ferred as in A. Lung resistance was measured in recipient mice
(n = 5/group). (F) Eight-week-old WT BALB/c mice received 5 x 104
DO11.10 Rag T cells and were sensitized with OVA/alum. Seven
days later, NKT cells from WT BALB/c, Va14tg, or H3N1-infected mice
were adoptively transferred into OVA-sensitized mice. After OVA chal-
lenge, the numbers of natural Tregs (CD4+C25*Foxp3+) and adaptive
OVA antigen—specific Tregs (CD4+ CD25+ Foxp3+KJ1-26*) were deter-
mined. Absolute cell numbers were calculated (n = 5/group). (G) Eight-
week-old WT BALB/c recipients were depleted of Tregs through injec-
tions of anti-CD25 mAb (clone PC61; 0.5 mg) and assessed as in A
(n = 5/group). (H and I) NKT cells from WT or Va14 Tg were transferred
to OVA-sensitized BALB/c mice (n = 4—-6/group), which were assessed
as in A (H), and BAL cells were analyzed (1). (J) Representative lung
sections from recipients described in H were H&E stained (original
magnification, x10). Data represent 2—-3 independent experiments.
*P < 0.05, **P < 0.01, ***P < 0.001 versus WT NKT-OVA (B-D), OVA
(E), WT NKT (F, H, and I), and OVA-vNKT (G).

As noted above (Figure 3F), protection against AHR was associated
with an increase in the number of DN NKT cells following H3N1
infection in WT mice, which did not occur in Tl#77/~ or Thet/~ mice
(Figure 5D). Moreover, adoptive transfer of NKT cells purified 6
weeks after H3N1 infection of WT, but not Tlr77~ or Thet”/~ mice,
into OVA-sensitized WT BALB/c mice suppressed OVA-induced
AHR and airway inflammation (Figure 5, E and F). Taken together,
these results indicate that protection by H3N1-exposed NKT cells
against AHR depends on TLR7 and T-bet.

Induction of protection with o-C-GalCer and a glycolipid from H. pylori.
Since NKT cells appeared to mediate the effects of H3N1 infection,
we examined a panel of glycolipids that specifically activate NKT
cells for the capacity to replicate the beneficial effects of H3N1
infection. We first examined the effects of a-C-GalCer, a synthetic
C-glycoside analog of a-GalCer that preferentially induces IFN-y
but not IL-4 synthesis (25-27). Treatment of suckling mice with
a-C-GalCer (5 ug), but not a-GalCer, which induces production of
both IFN-y and IL-4, protected the mice as adults (42 days later) from
the development of OVA-induced AHR (Figure 6A). The protective
effect was dependent on T-bet, since Thet”~ mice were not protected
by treatment with o-C-GalCer (Figure 6B). Moreover, adoptive trans-
fer of NKT cells exposed to a-C-GalCer protected recipients against
the development of AHR and airway inflammation (Figure 6C).

We also found a second glycolipid, PI57, a cholesterol-derived
lipid from H. pylori (28), that could protect against the develop-
ment of AHR (Figure 6D). H. pylori, a bacteria that colonizes the
stomach (29) and is associated with protection against asthma (2,
3), produces cholesteryl a-glucosides (30), including cholesteryl
6-O-acyl a-glucoside (AGlc-Chol) (Supplemental Figure 4), which
was chemically synthesized (P157) (Figure 6D). PI57, when admin-
istered i.p. to 2-week-old mice, increased the total number of NKT
cells, particularly the number of DN NKT cells, found in the lung 2
weeks later (Figure 6, E and F). In contrast, treatment with o-GalCer
increased both CD4* and DN NKT cells in the lungs. Importantly,
treatment of 2-week-old mice with PI57 (50 or 100 ug) (Figure 6G)
protected the mice from the development of OVA-induced AHR,
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induced 6 weeks after the glycolipid treatment. On the other hand,
treatment of 2-week-old mice with PBS30, a lipid present in the cell
walls of Sphingomonas bacteria (31, 32), failed to protect the mice
from OVA-induced AHR (Figure 6H). Moreover, adoptive transfer
of NKT cells from PI57-treated, but not vehicle-treated, 2-week-
old mice (harvested 6 weeks after treatment) into OVA-sensitized
WT mice, suppressed AHR and airway inflammation (Figure 6,
Iand]). Transfer of NKT cells from a-GalCer-treated mice reduced
AHR slightly, but this was not statistically significant (Supple-
mental Figure 3A). The production of IFN-y by the NKT cells was
important, since the protective effect of PI57, like that of H3N1 and
a-C-GalCer, was dependent on T-bet, since PI5S7 treatment of
2-week-old Thet/~ mice did not protect against subsequent OVA-
induced AHR (Supplemental Figure 3B). These results together
suggest that a subset of NKT cells that can be specifically activated
by some but not all glycolipid antigens, and that preferentially pro-
duces IFN-y, mediates the protective effects of H3N1 infection.

PI57 is a CD1d-dependent NKT cell antigen. To demonstrate that
PI57, like a-C-GalCer, can directly activate NKT cells, we showed
that PIS7, when added to cultures of NKT cell lines plus DCs,
induced the production of IFN-y in a CD1d-restricted manner,
since cytokine production was blocked by anti-CD1d mAb (Figure
7A). In addition, PI57 induced higher levels of IFN-y and less IL-4
in NKT cell lines compared with PBS30 (from Sphingomonas) or
a-GalCer, and did so in a CD1d-restricted manner, since DCs from
Cd1d~~ mice failed to support PI57-induced cytokine production
(Figure 7B). Furthermore, the PI57 response occurred by direct
activation of NKT cells, since PI57 induced cytokine production
in NKT cell lines with DCs from Myd88~~ or Trif 7~ mice (Figure
7B), and since 3 different NKT cell hybridomas derived from Va.14
NKT cells but not from Va14- T cells produced IL-2 in response to
immobilized recombinant CD1d previously loaded with PIS7 but
not with PI56, a control glycolipid (Figure 7C). Moreover, CD1d
tetramers loaded with PIS7 stained 10%-23% of NKT cells in an
NKT cell line (Figure 7D). Of the PIS7-CD1d tetramer* cells, 92%
were CD4- (DN) (data not shown). This strongly suggests that PIS7
bound to CD1d was directly recognized by the TCR of a popula-
tion of NKT cells. Finally, human NKT cells were also activated
by PI57, since NKT cells lines (Figure 7E) as well as a Va24* NKT
cell clone (BM2a.3) (Figure 7F) responded to this glycolipid. The
response was also directly induced, since plate-bound CD1d load-
ed with PIS7 induced IFN-y in BM2a.3 cells (Figure 7G). Taken
together, these results indicated that both mouse and human NKT
cells were directly activated by PIS7, an H. pylori glycolipid, in a
CD1d-restricted manner.

Discussion
Herein, we showed that infection of 2-week-old pups with influ-
enza A virus H3N1 protected against the subsequent development
of allergen-induced AHR, whereas infection of adult (8-week-old)
mice with H3N1 did not protect against the subsequent develop-
ment of AHR. The protective effect H3N1 in suckling mice was
associated with the maturation and expansion of a specific sub-
set of NKT cells, which suppressed the development of allergen-
induced AHR, demonstrated by adoptive transfer of these NKT
cells into normal allergen-sensitized adult mice. The protective
NKT cell subset required T-bet, as the NKT cells had to be derived
from T-bet* mice; this subset also produced IFN-y and was present
in NKT cell populations enriched for DN (CD4-) NKT cells. Adop-
tive transfer of the protective NKT cell population was associated
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The protective effect of H3N1 infection depends on TLR7 and T-bet. (A) Schematic showing the protocol for WT, TIr7--, or Tbet~ mice infected at
2 weeks of age with H3N1 virus or mock infected and examined for OVA-induced AHR at 8 weeks of age (n = 4—6 per group). (B) Lung resistance
was measured. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the mock-OVA group. (C) BAL cells from B were collected. (D) WT, Tir7--,
or Tbet’~ mice were infected with H3N1 or mock at 2 weeks of age, and lung samples were taken 42 days later to asses for NKT cell subsets.
***P < 0.001 compared with the mock group. (E) Schematic showing the adoptive transfer of NKT from virus-infected WT, Tlr7--, or Tbet”- mice
to OVA-sensitized BALB/c recipients (n = 4—6 per group). The donor mice were infected with H3N1 or mock-infected at 2 weeks of age. NKT cells
were purified from these mice 42 days after infection and transferred to OVA-sensitized BALB/c mice, which were then challenged with OVA to
induce AHR. (F) Left: After OVA challenge, AHR was measured as described in D. Right: Cells in BAL were assessed. ***P < 0.001 compared
with the WT-OVA group. Data are representative of 2 independent experiments.
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with the expansion of allergen-specific Foxp3* Treg cells, suggest-
ing that the suppressive effect was mediated by Foxp3* Treg cells.
Moreover the protective effect of H3N1 infection could be replicat-
ed by treating suckling mice with NKT cell-activating glycolipids
from H. pylori or with a-C-GalCer. These studies are particularly
important not only because they characterize an NKT cell popula-
tion that suppresses AHR, but also because they provide a plausi-
ble mechanism for the hygiene hypothesis and for epidemiological
studies indicating that infection with respiratory viruses (9) and
H. pylori (2, 3) protect against the development of asthma.

NKT cells comprise a small subset of T lymphocytes that share
characteristics with NK cells and conventional T cells, with potent
functions in modulating immunity that have only recently become
appreciated (33). NKT cells express a relatively unique transcrip-
tion factor, PLZF, specific for NKT cells (34) and other innate or
activated T cells (35), and an invariant TCR, Va14J0.18 in mice and
Va24 in humans, and are restricted by the MHC class I-like mol-
ecule, CD1d. The conservation of this invariant TCR across many
mammalian species suggests that it is a pattern recognition recep-
tor, and that NKT cells play an important role in innate immu-
nity. Activation of NKT cells through this invariant TCR results
in the rapid production of large amounts of cytokines, including
IL-4 and IFN-y, particularly from mature NKT cells found in adult
mice and humans. In contrast, NKT cells in neonates or in cord
blood are immature, and produce only small amounts of cytokines
(36, 37). Nevertheless, the ability of mature NKT cells to rapidly
produce very large quantities of cytokines endows that NKT cell
with the capacity to play very important regulatory roles in auto-
immunity, cancer, asthma, and infectious diseases (38).

NKT cells participate in immune responses to a growing list of
infectious microorganisms, driven either by direct TCR recogni-
tion of specific glycolipids expressed by microorganisms, as in
the case of Borrelia burgdorfer] (39) and Sphingomonas paucimobilis
(32, 40), or by indirect responses to cytokines released by activated
DCs, as in the case of Salmonella typhimurium (41), E. coli, Staphylo-
coccus aureus, Listeria monocytogenes (42), and Mycobacteria tuberculosis
(43, 44). During influenza A infection in adult mice, NKT cells
abolished the suppressive activity of influenza A-induced myeloid-
derived suppressor cells, thereby enhancing survival (18). Our
current studies also suggest that NKT cells may respond during
infection with influenza A, and to glycolipids (PI57) produced by
H. pylori, resulting in inhibitory effects on immunity, though pri-
marily in young mice. The capacity of H. pylori glycolipids to acti-
vate a regulatory NKT cell subset (but only in young mice) may also
explain the protective effects of H. pylori infection in neonatal but
not older mice against gastritis and malignant metaplasia (45) as
well as the observation that only WT, and not cholesterol-a-gluco-
syltransferase-deficient, H. pylori can infect the gastric mucosa of
mice (28), given that cholesterol-a-glucosyltransferase is required
for synthesis of PI57 (46). Finally, we would like to point out that
the structure and function of PI57 is unique, since it includes a
cholesterol-containing tail distinct from previously described
NKT cell ligands, and since it represents the first demonstration
of cholesterol as a target for TCR recognition.

NKT cells thus react to a diverse group of pathogens by function-
ing as an innate immune cell that can sense and rapidly respond to
the presence of infectious agents. The capacity to respond to such
pathogens, however, may be limited in neonates and young chil-
dren due to limited numbers and to the immaturity of NKT cells
(36, 37). On the other hand, the immaturity of NKT cells in young
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children may provide an opportunity for infection and therapeu-
tic intervention to influence the subset composition of NKT cells,
thereby preventing the development of asthma and allergy.

In asthma, NKT cells have been suggested to play a very impor-
tant pathogenic role (20, 47). This idea has become controversial,
since some patients, particularly those with mild or well-controlled
asthma, have few detectable pulmonary NKT cells, although
patients with severe or poorly controlled asthma have a signifi-
cant increase in pulmonary NKT cells (19, 48, 49). Nevertheless,
in many distinct mouse models of asthma, the presence of specific
NKT cell subsets was required for the development of AHR. For
example, CD4'IL-17RB* NKT cells are required in allergen-induced
AHR (19, 20, 50, 51); in ozone-induced AHR, an NK1.1- IL-17-pro-
ducing subset is required (21); and in Sendai virus-induced AHR, a
CD4* NKT cell population that interacts with alternatively activat-
ed alveolar macrophages is required (22). While previous studies
have suggested that some (DN) NKT cells could not induce AHR
(50), we now show for the first time that a population of NKT cells,
enriched for a DN, T-bet-dependent, and IFN-y-producing subset,
has a potent regulatory role, suppressing the development of AHR.
Although previous studies have suggested an inhibitory role for
NKT cells in asthma, since adoptive transfer of NKT cells acutely
activated with a-GalCer (1 hour prior to transfer) inhibit the devel-
opment of experimental asthma in a C57BL/6 mouse model (52),
we believe that our current studies are quite distinct. We showed
that H3N1 infection in suckling mice expanded a population of
NKT cells that, when examined 42 days after infection, specifically
suppressed allergen-induced AHR without the need for acute acti-
vation with exogenous glycolipids.

While H3N1 infection affects many different cell types, the fact
that the protective effect of H3N1 infection could be transferred
with purified NKT cells, and the fact that the protective effect
could be replicated by treatment of suckling mice with a-C-Gal-
Cer or a glycolipid from H. pylori (P157) that specifically activated
NKT cells in a CD1d-restricted fashion, strongly suggests that the
protective effect of H3N1 infection in young mice was primarily
mediated by a subset of NKT cells. The NKT cell subset activated
by PI57 in suckling mice appeared to be a subset of invariant NKT
cells, since DN NKT cells in suckling mice expanded after treat-
ment with PI57, and since CD1d tetramers loaded with PIS7 could
stain NKT cells. The precise mechanism by which the DN NKT
cells suppressed AHR is not clear, but may involve the preferen-
tial production of IFN-y but not IL-4, since DN NKT cells from
H3N1-infected suckling Thetr”/~ mice failed to inhibit AHR. A role
for IFN-y is also supported by our observation that treatment of
suckling mice with a-C-GalCer, which preferentially induces IFN-y
(26), also prevented the development of OVA-induced AHR 42
days later, whereas treatment with a-GalCer or with Sphingomonas
glycolipid (PBS30) did not.

The “regulatory” NKT cells mediating the inhibitory effect of
H3N1 and of PI57 and a-C-GalCer may be similar to previously
described DN NKT cells that protected against the development of
type I diabetes in humans and in mice (53, 54), to IFN-y-produc-
ing NKT cells that were required for allograft tolerance (55), or to
IL-4-producing NKT cells that induced Treg cells in the prevention
of graft versus host disease (56-58). In our experiments, increased
numbers of both natural and adaptive OVA-specific Treg cells
were associated with the regulatory NKT cells and were blocked by
treatment with anti-CD25 mAb (Figure 4, F and G). Moreover, we
believe that our studies are the first to demonstrate the existence of a
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Figure 6

Induction of protection with o.-C-GalCer and a glycolipid from H. pylori. (A) Two-week-old BALB/c mice (n = 6-8/group) or (B) Tbet”- mice (n = 4—6 per
group) received 5 ug a-GalCer (cGal), 2 ug a-GalCer, or vehicle. After OVA sensitization and challenge, AHR was measured on day 44. (C) Donor
mice were treated with a-C-GalCer (5 ug) or vehicle i.p. NKT cells served as donors, as in Figure 4A (n = 4 per group). Lung resistance (left) and cell
counts in BAL (right) were assessed. (D) Structure of PI57. (E) Mice received PI57 (50 ug), a-GalCer (2 ug), or vehicle i.p., and lungs were examined
1 or 14 days later for CD4 and CD8 expression. (F) Absolute numbers of CD4+ NKT and DN NKT subsets from E were assessed. (G) BALB/c mice
(n = 5-8/group) received PI57 or vehicle i.p. Lung resistance (left) and BAL cells (right) were assessed. (H) BALB/c mice treated with PI57 (50 ug),
PBS30 (Sphingomonas glycolipid) (50 ug), or vehicle i.p. were assessed for AHR as in G. (I) Donor mice were treated with PI57 (50 ug) or vehicle
i.p. NKT cells served as donors as in Figure 4A. Lung resistance (left) and BAL cells (right) were assessed (n = 4 per group). (J) Representative lung
sections from | stained with H&E (original magnification, x10). Data represent 2—3 independent experiments. *P < 0.05, #P < 0.05, ***P < 0.001 versus
vehicle-OVA (C, G, and I), DN NKT saline (F), and CD4+ NKT saline (F).
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P157 directly activates NKT cells. (A) NKT cell lines were cocultured with BM-derived DCs (BMDCs) and a-GalCer (100 ng/ml), PI57 (10 ug/ml),
or vehicle for 48 hours, with or without pre-incubation with anti-CD1d (10 ug/ml). IFN-y was measured by ELISA. (B) Murine NKT cell lines
were cocultured as in A with BMDCs from WT, Cd71d--, Myd88--, or Trif- mice. Cells were treated with a-GalCer (100 ng/ml), PI57 (2.5, 5, or
10 ug/ml), PBS30 (1, 2.5, or 5 ug/ml), or vehicle for 48 hours. IFN-y and IL-4 were measured by ELISA. (C) IL-2 production from hybridomas
derived from invariant Va14 NKT cells (RT2, RT23, and RT24) and an irrelevant VB8+ T cell (RT8; control) (see Supplemental Methods). (D)

Mouse NKT cell lines were stained with PE-labeled CD1d tetramers of

P157 or a-GalCer at 4°C for 45 minutes or 37°C for 25 minutes, and with

anti-TCRB—APC antibody. Top: Lymphocytes were gated in the FSC/SSC window. Bottom: Percentage of CD1d tetramer* cells. (E) IFN-y and

IL-4 production from human NKT cell lines by treatment with a-GalCer

(100 ng/ml), P157 (10 ug/ml), or vehicle for 48 hours in vitro (see Supple-

mental Methods). (F) IFN-y production from CD1d-transfected NKT cell clone BM2a.3 in presence of PI57 and blocking mAb against human
CD1d or CD1b (see Supplemental Methods). (G) CD1d Fc-coated Maxisorp plates were loaded with lipid and cultured with 5 x 104 NKT cells.
IFN-y was analyzed by ELISA after 24 hours. Data represent 3 or 5 independent experiments.

subpopulation of NKT cells that can suppress the effects of other
subpopulations of NKT cells that enhance the development of exper-
imental asthma. These results suggest that a balance exists between
NKT cells that induce, and those that protect against, AHR, and that
stimulation with H3N1, a-C-GalCer, or H. pylori glycolipids, but
not a Sphingomonas glycolipid or a-GalCer, may selectively expand
this regulatory NKT cell population in young mice. The inability of
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o-GalCer to protect may be due to the fact that it nonselectively stim-
ulates all invariant NKT cells or because it may anergize NKT cells,
including suppressive populations. Nevertheless, these data support
the idea that under normal, pathogen-free conditions, CD4* NKT
cells that induce AHR predominate, but that in very young mice,
exposure to Th1-skewing reagents that can alter the composition of
NKT cell subpopulations may change subsequent lung immunity.
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Therefore, it appears that the balance between CD4* versus regula-
tory (presumably DN) NKT cells is determined or imprinted early in
life but might be influenced by exposure to specific types of infec-
tions, particularly those that can affect NKT cells. In our studies,
H3N1 infection in 2-week-old pups activated the immature NKT cells
and preferentially expanded a DN NKT cell subset. In addition, our
studies suggest that a-C-GalCer and glycolipids from H. pylori can
profoundly affect this NKT cell subpopulation, which may explain
epidemiological studies showing an association of H. pylori infection
with protection against asthma (2, 3). Although these studies were
performed in mice, which mature from neonates to adults in only 35
days versus many years in humans, taken together, our results sug-
gest that infection with certain microorganisms can prevent the sub-
sequent development of asthma and allergy by expanding the rela-
tive proportion of a specific subset of NKT cells, thus providing an
immunological mechanism for the hygiene hypothesis. Finally, these
results predict that treatment of children with compounds such as
a-C-GalCer and others derived from microorganisms (e.g., H. pylori)
might expand this regulatory NKT cell subset and be effective in pre-
venting the development of asthma.

Methods

Mice. WT BALB/c ByJ and Tbet 7/~ (C.129S6-Tbx21tm1Glm/J) mice were pur-
chased from The Jackson Laboratory. Jo.187~ mice were gifts from M. Tani-
guchiand T. Nakayama (Chiba University, Chiba, Japan). Tlr77~ mice were
generated by Shizuo Akira, and the Va14 Tg mice were provided by Albert
Bendelac (University of Chicago, Chicago, Illinois, USA). These strains
were backcrossed to BALB/c for more than 10 generations. DO11.10 X
Rag’/~ mice were provided by Abul Abbas (UCSF, San Francisco, California,
USA). For studies in suckling mice, BALB/c, Tlr77/~, and Tbet”/~ mice were
bred, and the offspring were infected at 2 weeks of age, then weaned at 3
weeks. The Animal Care and Use Committee at Children’s Hospital Boston
approved all animal protocols.

Influenza A infection. Two-week-old pups (suckling mice) or 8-week-old
adult mice were anesthetized with 3% isoflurane and inoculated intrana-
sally (i.n.) with influenza A virus (strain Mem/71 [H3N1]) in 20 wl PBS for
suckling mice or 50 ul PBS for adult mice. The virus is a reassortant influ-
enza virus strain carrying the hemagglutinin of A/Memphis/1/71 (H3) and
the neuraminidase of A/Bellamy/42 (N1). The virus was grown and har-
vested from 10-day embryonated chicken eggs as previously described (59).
The dose of virus used (1.2 x 10* PFU/mouse) causes nonlethal pneumonia
of both suckling and adult mice, with complete virus clearance around
day 7 after infection. Control (mock-infected) mice were treated with i.n.
allantoic fluid (AF) diluted 1:500 in PBS.

Reagents. a-GalCer and PBS30 (31) were synthesized by P.B. Savage
(Brigham Young University, Provo, Utah, USA). H. pylori glycolipids were
extracted and purified as described in the Supplemental Methods. The
H. pylori glycolipid PI57 (cholesteryl 6-O-tetradecanoyl-a-D-glucopyrano-
side) was synthesized based on 'H, 13C NMR spectrometry, TLC analysis,
ES-mass spectrometry of lipids from H. pylori SS1 and human H. pylori
S strains (Supplemental Figure 4 and Supplemental Methods), and data
reported for purified H. pylori glycolipids (30). An analog of a-C-GalCer,
called “GCK151”, which has activity with mouse and human NKT cells
(27), was synthesized by Richard W. Franck (Hunter College of CUNY).

PI57-loaded CD1d tetramers. To generate PI5S7-loaded mCD1d monomers,
a 10-fold molar excess of PI57 in DMSO at 2 mg/ml was incubated with
biotinylated-mCD1d (from the NIH Tetramer facility) in 2 mM CHAPS
and 20 mM Tris pH 7.0 overnight at room temperature. The mCD1d
monomers were tetramerized by adding SA-PE (S868; Invitrogen) to the
lipid-loaded monomers as previously described (60).
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Induction of AHR and measurement of airway responsiveness in the OVA model.
To induce AHR, BALB/c mice were sensitized with 100 ug of OVA (Sigma-
Aldrich) in alum administered i.p (on day 0). After sensitization, mice were
exposed to i.n. antigen (50 ug OVA/day) or normal saline for 1 day (day 7;
single-dose challenge protocol) or for 3 consecutive days (days 7-9). AHR
was assessed on the day after last OVA challenge. Control mice received i.p.
injection of PBS and i.n. administrations of normal saline.

Collection and analysis of bronchoalveolar lavage. Immediately after the AHR
measurement, mice were euthanized and the lungs were lavaged twice with
0.5 ml of PBS, and the fluid was pooled. Cells in bronchoalveolar lavage
(BAL) were counted and analyzed as previously described (20). The relative
number of different types of leukocytes was determined from slide prepa-
rations of BAL stained with Diff-Quik solution (Dade Behring).

Adoptive transfer of NKT cells. NKT cells were purified from splenocytes of
WT BALB/c, influenza virus-infected BALB/c, influenza virus-infected
Tlr7-/~, influenza virus-infected Thet”/~, Va14 TCR transgenic mice,
PI57-treated BALB/c, and a-GalCer-treated BALB/c mice using mag-
netic cell sorting (MACS), as previously described (20). Splenic NKT cells
were labeled with PE-conjugated CD1d tetramer, followed by anti-PE
microbeads (Miltenyi Biotec) and then sorted with AutoMACS accord-
ing to the manufacturer’s instruction. Purity of NKT cells was approxi-
mately 93% (Supplemental Figure 2A), and there was no detectable Treg
cell contamination (Supplemental Figure 2B). Purified NKT cells were
adoptively transferred into immunized recipient mice by intravenous
injection (10° for Jo1877; 5 x 105 for BALB/c) 1 hour before the first chal-
lenge of OVA (day 7). For the OVA-specific Treg cell experiment, 5 x 10*
DO11.10 CD4* T cells (from DO11.10 x Rag”/~ mice) were adoptively
transferred into recipient mice 5 hours before sensitization with OVA/
alum (day 0). The recipients later received NKT cells 1 hour before the
first challenge of OVA (day 7).

ELISA. Mouse or human IL-4 and IFN-y levels were measured by ELISA,
as previously described (20). Mean values of triplicate cultures were shown.
Data are representative of 2 or 3 independent experiments.

Statistics. Differences between groups with parametric distributions were
analyzed using the Student’s 2-tailed ¢ test. Otherwise, the Mann-Whitney
U test was used. Data represent mean + SEM. P values of 0.05 or less were
considered statistically significant.
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