HLA-C allotype	Control IgG	W6/32	BBM.1	4C11		HLA-B allotype	Control IgG	W6/32	BBM.1	4C11	HLA-A allotype	Control IgG	W6/32	BBM.1	4C11
0						B*0700		40.747	44.470	4 5 40	410404	- · ·	0.773	44.040	
Group 1:	00	10 (40	E 240	14 200		B*0001	14	10,616	11,470	1,540	A*0101	6	9,667	11,013	4
CW 0102	24	10,649	5,309	14,200		B 0001	20	0 112	14,190	110	A 0201	4	12,904	14,030	1
Cw*0302	112	11 378	5 745	16,826	-	B*1301	27	9,112	10 772	35	A*0203	13	12,055	13,676	2
Cw*0303	58	11,570	5 70/	16,020	-	B*1401	120	12 744	13 060	4 432	A*0301	45	11 874	13,370	1
Cw*0702	98	9,608	4 803	4 218		B*1407	120	7 0/3	8,665	4,432	A*1101	43	12 354	13,377	5
Cw*0801	55	12 134	4,075	16 360	-	B*1501	18	13,400	14 238	170	A*1107	15	12,334	14 890	1
Cw*1203	26	6 830	3 428	9 361	-	B*1502	11	12 766	13 703	1 548	A*2301	13	12 598	13 745	2
Cw*1402	73	10 746	5 410	14 423		B*1503	10	12,700	12 772	32	A*2402	28	11 249	12 471	37
Cw*1601	97	9.055	4 576	12 586		B*1510	68	12,826	13 745	243	A*2403	25	12 008	13 357	6
		7,000	1,070	12,000		B*1512	7	12,156	13,033	31	A*2501	128	12,875	13,764	1
						B*1513	11	11 335	12 454	46	A*2601	14	13 045	14 157	2
Cw*0202	86	8.530	4.308	199		B*1516	30	9.004	9,892	4	A*2901	12	11,942	13.087	2
Cw*0403	79	6.003	3.041	48		B*1801	7	12,096	12,907	55	A*2902	30	12,740	13.854	6
Cw*0501	80	10,999	5,540	1,492		B*2705	16	12,712	13,480	4	A*3001	34	12,497	13,898	5
Cw*0602	16	7.090	3,553	24		B*2708	17	13,677	14,457	2,639	A*3002	11	8,613	9,918	2
Cw*1502	32	6,028	3,030	24		B*3501	72	12,528	13,636	2,968	A*3101	7	11,635	13,011	2
Cw*1701	21	6.417	3.219	35		B*3701	13	12,742	13,864	36	A*3201	63	12,337	13.680	6
	106	11,302	5,704	651		B*3801	22	12,536	13,346	23	A*3301	25	10,936	12,141	46
						B*3901	21	12,053	13,057	1,320	A*3303	53	11,966	13,048	3
						B*4001	11	6,560	6,636	7	A*3401	29	11,493	12,534	3
						B*4002	23	9,644	10,460	51	A*3402	12	12,271	13,417	3
						B*4006	59	9,787	10,745	333	A*3601	155	9,726	10,857	39
						B*4101	10	6,477	7,244	16	A*4301	54	10,631	12,225	4
						B*4201	12	13,938	14,554	5,344	A*6601	23	13,141	14,342	3
						B*4402	15	9,520	10,213	9	A*6602	10	11,663	12,739	2
						B*4403	9	7,522	8,576	4	A*6801	68	12,423	13,757	4
						B*4501	79	13,346	14,198	160	A*6802	23	12,079	13,340	2
						B*4601	21	8,459	9,170	10,008	A*6901	73	11,000	12,394	5
						B*4701	18	8,172	8,712	5	A*7401	19	13,276	14,397	2
						B*4801	21	9,862	10,485	10	A*8001	30	12,223	13,466	26
						B*4901	20	10,100	11,299	5					
						B*5001	26	12,999	13,988	13					
						B*5101	27	12,500	13,470	17					
						B*5102	11	12,609	13,670	52					
						B-5201	6	9,748	10,734	/					
					-	B*5301	12	11,148	12,370	10					<u> </u>
	1				-	D*5401	32	11,999	12,/36	38		-			<u> </u>
						B 5501	25	14,411	14,976	298					
	-				-	B 3001	22	10,307	11,284	13					
					-	B 5701	32	9,695	10,947	30					
					-	B*5801	13	9,40/	0,002	7					
					-	B*5001	25	0,702	7,034	33		-			+
					-	B*6701	23	10,666	11 /17	869		-			-
					-	B*7301	20	10,000	11 711	10 845		-			-
	1				+	B*7801	49	11 645	12 561	31		-			ł
	1				+	B*8101	23	11 524	12 251	9		-			ł
	1				-	B*8201	74	13 481	14 357	4 816					

Supplementary Table I. Characterisation of the specificity of mAb WK4C11 by binding to HLA class I conjugated beads (LAB screen Single Antigen Beads from ONE Lamda).

Median fluorescence intensities are shown for the mAb, WK4C11, compared to W6/32 (binds all fully conformed class I molecules), BBM.1 (binds to ß2-microglobulin) and control IgG. Staining with W6/32 and BBM.1 showed similar levels of HLA class I were present for each allotype. WK4C11 preferentially bound to most HLA-C group 1 molecules and also to two HLA-B allotypes, *4601 and *7301, that share the same C1 epitope (Moesta et al., 2008. ref 54). HLA-Cw*07, all HLA-C2, all other HLA-B and all HLA-A allotypes did not bind WK4C11.

Supplementary Figure 1. Further characterisation of mAb WK4C11 reactivity using HLA-conjugated beads, transfectants and primary cells.

(A) Reactivity of the mAb WK4C11 was characterised against common HLA class I allotypes using beads coated with individual HLA class I molecules (see Table S1 for raw data). The median fluorescence intensity of WK4C11 binding to each allele is plotted. The grey bar indicates the threshold of binding to these beads which results in binding to live cells and was determined by testing binding of the mAb to donors with selected HLA class I type. The mAb WK4C11 recognises all C1 alleles except Cw*07. (B) HLA-C transfectants, peripheral blood CD3+ cells, or HLA-G+ first trimester extravillous trophoblast cells are shown according to HLA-C type, with C1 alleles highlighted in red. Median fluorescence intensity of WK4C11 binding (filled) or secondary alone (open points) is plotted. WK4C11 binds all samples where a group 1 HLA-C allele is present, except where this allele is Cw*07. (C) As expected for a mAb preferentially reactive with C1 alleles, WK4C11 blocks binding of KIR2DL3-Fc fusion protein to HLA-Cw*0302 (C1) transfectants, but had no effect on KIR2DL1-Fc binding HLA-Cw*0401 (C2). Binding of KIR-Fc is shown in red, compared to secondary reagent alone (grey) or cells pre-incubated with the mAb, WK4C11 (blue).

Supplementary Figure 2. Identification of uterine NK cells (uNK) expressing KIR2DS1 but not KIR2DL1.

CD56+ve, CD14-ve uNK cells were stained with mAbs, EB6 and 8C11. EB6 recognises KIR2DL1 and KIR2DS1. 8C11 recognizes most KIR2DL1 alleles but not KIR2DS1, allowing uNK cells expressing 2DS1 but not 2DL1 to be identified (i.e. EB6+, 8C11-). (A) uNK cell sample from a KIR2DS1 positive woman. (B) uNK cell sample from a KIR2DS1 negative woman. The maternal KIR2DL1 alleles were confirmed by sequencing to be those recognised by the 8C11 antibody.

Supplementary Figure 3. Maternal *KIR AA* frequency in each cohort of control and affected pregnancies.

Maternal *KIR AA* frequency was similar in all 3 cohorts of normal control pregnancies (Controls 1, 2 and 3) and is higher in all affected pregnancies: fetal growth restriction (FGR), three cohorts with pre-eclampsia (PE1, 2 and 3) and recurrent miscarriage women (RM). Two of the PE study groups and the RM women had significantly higher *KIR AA* frequencies. Initial results for Controls1 and PE1 have been reported (Hiby et al., 2004, ref.2) and the RM data is updated and re-analysed from our previous publication with additional samples from the same hospital clinic (Hiby et al., 2008, ref 3).

Supplementary Figure 4. Frequency of *HLA-C2* carriers in controls and affected cohorts.

HLA-C2 carriers tend to be more frequent in the fetuses and mothers of affected pregnancies compared to controls (odds ratios shown). The male partners of the women with RM also had an increased *HLA-C2* frequency. The products of conception (PoC) from the miscarrying pregnancies had the highest frequency of *C2*.

Supplementary Figure 5. Frequency of maternal KIR Cen-B and Tel-B regions, comparing controls with affected pregnancies complicated by pre-eclampsia (PE), fetal growth restriction (FGR) and recurrent miscarriage (RM).

All affected pregnancies show the same increase in maternal KIR AA (Cen-

B-/Tel-B-) genotype and significant lack of the *Tel-B* region. p for trend for PE is 8×10^{-6} , for RM 3×10^{-4} and for FGR 0.06. KIR haplotype regions were defined by presence of particular KIR genes: Cen-A /2DL3; Tel-A /3DL1 and 2DS4; Cen-B /2DL2 and 2DS2; Tel-B /2DS1 and 3DS1.

Supplementary Figure 6. Individual maternal KIR gene frequencies in control and affected

pregnancies. The *KIR* genes are depicted as usually located on the *A* and *B* haplotypes from centromeric to telomeric end.(**A**) Pre-eclampsia (PE) mothers compared to controls. (**B**) fetal growth restriction (FGR) mothers compared to controls and (**C**) Recurrent miscarriage (RM) women and their male partners compared to the controls. The RM men have the same *KIR* gene frequencies as normal controls but are shown separately in (**C**) to contrast with their RM women partners. There was a highly significant lack of the *KIR* genes usually located telomeric to *KIR2DL4* on the *B* haplotype in the pre-eclamptic and recurrent miscarriage women. The FGR mothers showed the same trend but this did not reach significance.