## Wilson Goehe at al. Supplemental Table 1

| Sample | Diagnosis              | Group    | Caspase 9a/9b<br>ratio | Sample   | Diagnosis                    | Group        | Caspase 9a/9b<br>ratio |
|--------|------------------------|----------|------------------------|----------|------------------------------|--------------|------------------------|
| 1-1    | Normal                 | Normal   | 4.0                    | K-11     | Adenocarcinoma of lung       | Moderate     | 3.1                    |
| 7-1    | Normal                 | Normal   | 4.0                    | K-19     | Adenocarcinoma of lung       | Normal       | 4.5                    |
| 10-1   | Not reported           | High     | 1.5                    | K-20     | Adenocarcinoma of lung       | Moderate     | 27                     |
| 12-1   | Not reported           | High     | 1.5                    | K-21     | Adenocarcinoma of lung       | Moderate     | 3.1                    |
| 15-1   | Adenocarcinoma of lung | High     | 1.5                    | K-24     | Adenocarcinoma of lung       | High         | 22                     |
| 16-1   | Adenocarcinoma of lung | High     | 1.5                    | K-26     | Adenocarcinoma of lung       | High         | 0.9                    |
| 25-1   | Adenocarcinoma of lung | Moderate | 3.1                    | 4-111    | Normal                       | Normal       | 4.0                    |
| 27-1   | Adenocarcinoma of lung | Moderate | 2.8                    | 5-111    | Normal                       | Normal       | 36                     |
| 33-1   | Adenocarcinoma of lung | High     | 2.0                    | 11-11    | Adenocarcinoma of lung       | High         | 22                     |
| 34-1   | Adenocarcinoma of lung | High     | 1.8                    | 13-111   | Adenocarcinoma of lung       | Normal       | 37                     |
| 36-1   | Adenocarcinoma of lung | High     | 1.0                    | 14-111   | Adenocarcinoma of lung       | High         | 21                     |
| 37-1   | Adenocarcinoma of lung | High     | 21                     | 18-111   | Adenocarcinoma of lung       | Normal       | 3.9                    |
| 39-1   | Adenocarcinoma of lung | High     | 1.8                    | 21-111   | Adenocarcinoma of lung       | Normal       | 4 1                    |
| 42-1   | Adenocarcinoma of lung | High     | 1.6                    | 24-111   | Adenocarcinoma of lung       | High         | 16                     |
| 45-1   | Adenocarcinoma of lung | High     | 17                     | 26-111   | Adenocarcinoma of lung       | Moderate     | 3.0                    |
| 4-11   | Adenocarcinoma of lung | Moderate | 23                     | 28-111   | Adenocarcinoma of lung       | High         | 13                     |
| 5-11   | Adenocarcinoma of lung | High     | 12                     | 29-111   | Adenocarcinoma of lung       | Moderate     | 24                     |
| 7-11   | Adenocarcinoma of lung | Normal   | 4.0                    | 36-111   | Adenocarcinoma of lung       | Normal       | 43                     |
| 8-11   | Adenocarcinome of lung | Moderate | 3.1                    | 38-111   | Adenocercinome of lung       | Moderate     | 31                     |
| 9-11   | Adenocarcinoma of lung | High     | 1.8                    | 40-111   | Adenocarcinoma of lung       | Normal       | 3.9                    |
| 12-11  | Adenocarcinoma of lung | Moderate | 23                     | 42-111   | Adenocarcinoma of lung       | Normal       | 3.0                    |
| 13-11  | Adenocarcinoma of lung | High     | 17                     | 46-111   | Adenocarcinoma of lung       | High         | 1.5                    |
| 15-11  | Adenocarcinoma of lung | High     | 11                     | 47-111   | Adenocarcinoma of lung       | Moderate     | 23                     |
| 16-1   | Adenocarcinoma of lung | High     | 1.0                    | 48-111   | Adenocarcinoma of lung       | Moderate     | 24                     |
| 19-11  | Adenocarcinoma of lung | High     | 21                     | 40-111   | Adenocal cinoma of long      | woderate     | 2.4                    |
| 22-11  | Adenocarcinoma of lung | High     | 2.1                    |          |                              |              |                        |
| 25-11  | Adenocarcinoma of lung | Moderate | 27                     |          |                              |              |                        |
| 26-11  | Adenocarcinoma of lung | Moderate | 3.3                    | Matchar  | - nair Analysis /Normal tics |              | ar ticcua)             |
| 28-11  | Adenocarcinoma of lung | Normal   | 5.1                    | materies | -part Analysis (Normal ciss  | ue vs. runny | or ussue)              |
| 29-11  | Adenocarcinoma of lung | Moderate | 2.8                    | 2.1/     | Normal 1                     | Normal       | 4.0                    |
| 30-11  | Adenocarcinoma of lung | Normal   | 4.0                    | 4.17     | Adenocarcinoma of lung 1     | High         | 4.0                    |
| 33-11  | Adenocarcinoma of lung | Moderate | 24                     | 7-14     | Normal 2                     | Normal       | 0.9                    |
| 34-11  | Adenocarcinoma of lung | High     | 1.1                    | 8-14     | Adenocarcinoma of lung 2     | High         | 3.0                    |
| 40-11  | Adenocarcinoma of lung | Moderate | 23                     | 13.1/    | Normal 3                     | Normal       | 20                     |
| 41-11  | Adenocarcinoma of lung | Normal   | 3.5                    | 14-14    | Adenocarcinoma of Jung 3     | High         | 4.6                    |
| 43-11  | Adenocarcinoma of lung | High     | 17                     | 15.17    | Normal 4                     | Normal       | 2.7                    |
| 44-11  | Adenocarcinoma of lung | Moderate | 3.1                    | 16 1/    | Adenocercinome of lung A     | Moderate     | 3.1                    |
| 45-11  | Adenocarcinoma of lung | Moderate | 23                     | 27-N     | Normal 5                     | Normal       | 2.0                    |
| 46-11  | Adenocarcinoma of lung | High     | 4.4                    | 28.1/    | Adenocarcinoma of lung 5     | High         | 3.0                    |
| 47-11  | Adenocarcinoma of lung | High     | 17                     | 33.1/    | Normal 6                     | Normal       | 1.0                    |
| 48-11  | Adenocarcinoma of lung | High     | 22                     | 24.17    | Adenocercinome of June 6     | Normal       | 4.0                    |
| K-1    | Adenocarcinoma of lung | Moderate | 2.0                    | 34-19    | Normal 7                     | Normal       | 4.0                    |
| K-3    | Adapacarcinoma of lung | Moderate | 3.2                    | 38-14    | Adenocarcinome of lung 7     | High         | 4.3                    |
| K-4    | Adenocarcinoma of lung | Moderate | 3.4                    | 30.1/    | Normal 8                     | Normel       | 4.0                    |
| K-5    | Adenocarcinoma of lung | Moderate | 3.1                    | 40 N     | Adenocarcinome of lung 8     | Modoreto     | 4.0                    |
| K-B    | Adenocarcinoma of lung | Moderate | 2.2                    | 40-10    | Normal 9                     | Normal       | 2.3                    |
| K-7    | Adenocarcinoma of lung | Normal   | 5.5<br>A A             | 42.0/    | Adapacercinoma of luce 0     | High         | 3.8                    |
| K-9    | Adenocarcinoma of lung | Moderate | 9.9                    | 42-14    | Normal 10                    | Nerma        | 2.0                    |
| K-0    | Adenocarcinoma of lung | Moderate | 2.0                    | 40-1     | Adenocarcinoma of luca 40    | Normal       | 3.7                    |
| K-10   | Adenocercinome of lung | Normal   | 10                     | 40-14    | Toono on on on a finang 10   | Normal       | 3.8                    |

Pathologist-verified patient normal and tumor tissue samples (Origene; Rockville, MD). Each sample is detailed with diagnosis, group and the ratio of caspase 9a/9b mRNA as indicated.

| Cell line | Species and tissue of origin | Tumor Type     | Phenotype                             |
|-----------|------------------------------|----------------|---------------------------------------|
| A549      | Human lung                   | Adenocarcinoma | WT p53, K-ras <sup>V12</sup> mutation |
| H838      | Human lung                   | Adenocarcinoma | p53 mutation, WT Ras                  |
| H2030     | Human lung                   | Adenocarcinoma | WT p53, K-ras <sup>V12</sup> mutation |
| HBEC-3KT* | Human lung                   | N/A            | WT p53, WT Ras                        |

Characterization of cell lines utilized in Figure 1, Panels C and D with species, tissue of origin, tumor type, and phenotype. The HBEC-3KT\* cell line has been immortalized by ectopic expression of cdk4 and hTERT30. WT = wild-type.

# Wilson Goehe et al. Supplemental Table 3

| Cell line              | Plasmid                 | Insert                   | Figure          |  |
|------------------------|-------------------------|--------------------------|-----------------|--|
| A549                   | N/A                     | N/A                      | Figures 1-3,5-9 |  |
| A549 Vector Control    | pcDNA3.1(-)             | N/A                      | Figures 2,3,6-9 |  |
| A549 shRNA Control     | TRC1/1.5<br>pKLO.1-puro | 28mer scrambled<br>shRNA | Figures 2 & 7   |  |
| A549 Vector Control    | pcDNA3                  | N/A                      | Figures 6,8 & 9 |  |
| A549 + C9b ectopic     | pcDNA3.1(-)             | Caspase 9b cDNA          | Figures 2 & 7   |  |
| A549 + C9b shRNA       | LentiMax                | 21mer C9b shRNA          | Figure 2        |  |
| A549 + hnRNP L shRNA   | TRC1/1.5<br>pKLO.1-puro | 21mer hnRNP L shRNA      | Figures 6 & 7   |  |
| A549 + hnRNP L ectopic | pcDNA3                  | hnRNP L cDNA             | Figures 6,8 & 9 |  |

This table depicts multiple clones and "batch cultures" of A549 cells stably expressing the listed plasmids along with their appropriate insert. The figure(s) in which the cell lines were utilized is listed.

# Wilson Goehe et al. Supplemental Table 4

| Possible phosphosite | Determination           | ESI-LC-MS/MS<br>confirmed | Affect on C9a/C9b<br>ratio |
|----------------------|-------------------------|---------------------------|----------------------------|
| Y47                  | Mass Spectrometry       | Yes                       | No                         |
| Y48                  | Mass Spectrometry       | Yes                       | No                         |
| Y92                  | Domain-motif prediction | n No                      | No                         |
| Y363                 | Domain-motif prediction | n No                      | No                         |
| S52                  | Mass Spectrometry       | Yes                       | Yes                        |
| S250                 | Domain-motif prediction | n No                      | No                         |
| S298                 | Mass Spectrometry       | Yes                       | No                         |
| S381                 | Kinase site prediction  | No                        | No                         |
| S542                 | Kinase site prediction  | No                        | No                         |
| S543                 | Kinase site prediction  | No                        | No                         |
| S544                 | Kinase site prediction  | No                        | No                         |
| S553                 | Kinase site prediction  | No                        | No                         |
| T98                  | Kinase site prediction  | No                        | No                         |
| T577                 | Kinase site prediction  | No                        | No                         |

This table lists a range of possible phospho-sites for hnRNP L predicted by various phosphosite determination databases. Indicated are the specific residues, how the residues were determined, ESI-LC-MS'MS verified, and whether the residue demonstrated an effect on the caspase 9 splice variants.



Supplemental Figure 1: Caspase 9b shRNA reduced the mean diameter of cellular colonies in anchorage-independent growth studies. Colony formation assays in soft agar for the A549 vector control, A549 + C9b shRNA, and A549 + C9b ectopic cell lines. A total of 2,000 cells were plated into 6-well tissue culture dishes in soft agar and cultured for 14 days before the colony count. Quantization (mean) of colony diameters (cm) for the indicated clonal cell lines. N=6; error bars represent SE; \*P < 0.005 between A549 + C9b shRNA, \*\*P < 0.001 between A549 vector control versus A549 + C9b ectopic, student t-test.

Wilson Goehe et al. Supplemental Figure 2





в



**Supplemental Figure 2:** *A)* Characterization of H838 and H2030s with caspase 9b shRNA or caspase 9b ectopic expression by quantitative/competitive RT-PCR analysis. *B)* Quantization of the number of colonies (% control) for H838 batch cell lines formed in soft agar. N=6; error bars represent SE.

Wilson Goehe et al. Supplemental Figure 3



| Number | Location            | WT Sequence                                     | Mutated Sequence                                   |
|--------|---------------------|-------------------------------------------------|----------------------------------------------------|
| 1      | Exon 3              | GAGAGTTTG <b>AGGGG</b> AAAT                     | GAGAGTTTG <u>CTACT</u> AAAT                        |
| 2      | Exon 4              | TG <u>G</u> T <u>G</u> GA <u>G</u> GT           | TG <b>C</b> T <b>C</b> GACGT                       |
| 3      | Intron between E4-5 | T <u>G</u> GA <u>G</u> G <u>G</u> A <u>G</u> AC | T <u>C</u> GA <u>C</u> GCACAC                      |
| 4      | Intron between E4-5 | A <u>G</u> G <b>G</b> T <u>G</u> G <u>G</u> G   | A <u>C</u> GCTCGCGCG                               |
| 5      | Intron between E4-5 | CAGT <u>G</u> GGTG <u>G</u> GAA <u>G</u>        | CAGT <u>C</u> G <u>C</u> TG <u>C</u> GAA <u>C</u>  |
| 6      | Intron between E4-5 | CAT <b>GG</b> GAGGTAGGAC                        | CAT <b>AA</b> G <b>CTT</b> TAGGAC                  |
| 7      | Intron between E5-6 | TGGGAGA <b>G</b> G <b>GAGG</b> GCAG             | TGGGAGA <u>A</u> G <u>CTTT</u> GCAG                |
| 8      | Exon 6              | CA <u>G</u> CCT <u>G</u> GGAG <u>G</u> G        | CA <u>C</u> CCT <u>C</u> G <u>C</u> AG <u>C</u> G  |
| 9      | Intron between E6-7 | T <u>G</u> G <u>G</u> TG <u>G</u> GT            | T <u>C</u> GCTGCGT                                 |
| 10     | Intron between E6-7 | CT <u>G</u> GT <u>G</u> GGGAGGGA                | CT <u>C</u> GT <u>C</u> G <u>CC</u> AG <u>C</u> GA |

**Supplemental Figure 3:** Schematic representation of 10 potential regulatory *cis*-elements and their corresponding mutagenic sequences (No.'s 1-10) and location in caspase 9. Number 1 represents the sequence termed C9/E3-ESS.



**Supplemental Figure 4:** A549 cells were and transfected with 3 different duplex sequences of hnRNP L siRNA and hnRNP A2/B1 siRNA at a final concentration of 100 nM. As a control, scrambled siRNA (100 nM) was utilized. Total RNA was isolated and analyzed by competitive/quantitative RT-PCR for caspase 9 splice variants. The ratio of caspase 9a/9b mRNA was determined by densitometric analysis of RT-PCR fragments. Simultaneously, total protein lysates were also produced, subjected to SDS-PAGE analysis and immunoblotted for anti-hnRNP L, anti-hnRNP A2/B1, and  $\beta$ -actin as described in the "Materials and Methods" section. (A) hnRNP L; B) hnRNP A2/B1).



**Supplemental Figure 5:** *A,B***)** A549 cells were transfected with a final concentration of 100nM control siRNA or dose-responsive treatments of 25 nM and 50 nM for sihnRNP L or sihnRNP A2/B1. Total RNA was isolated and analyzed by competitive/quantitative RT-PCR for caspase 9 splice variants. The ratio of caspase 9a/9b mRNA was determined by densitometric analysis of RT-PCR fragments. Simultaneously, total protein lysates were also produced, subjected to SDS-PAGE analysis and immunoblotted for hnRNP L, hnRNP A2/B1, and  $\beta$ -actin as described in the "Materials and Methods" section (A) hnRNP A2/B1; B) hnRNP L). Data represent 4 separate determinations on 3 separate occasions. *C,D* Total RNA was isolated from A549 stable cell lines and analyzed by competitive/quantitative RT-PCR for caspase 9 splice variants. Total protein lysates were also produced, subjected to SDS-PAGE analysis and immunoblotted for hnRNP L) and  $\beta$ -actin (C) hnRNP L; D) hnRNP A2/B1.



**Supplemental Figure 6:** H838 and H2030 cell lines were transfected with scrambled siRNA (100 nM), or hnRNP L SMARTpool siRNA (100 nM), for 48 hr. Total RNA was isolated and analyzed by competitive/quantitative RT-PCR for caspase 9 splice variants. The ratio of caspase 9a/9b mRNA was determined by densitometric analysis of RT-PCR fragments. Simultaneously, total protein lysates were also produced, subjected to SDS-PAGE analysis and immunoblotted for anti-hnRNP L and  $\beta$ -actin as described in the "Materials and Methods" section. Data are representative of three separate determinations on two separate occasions (A) H2030; B) H838).





**Supplemental Figure 7:** A549 cells were transfected with scrambled siRNA (100 nM), or hnRNP L SMARTpool siRNA (100 nM) for 48 hr. Total RNA was isolated and analyzed by competitive/quantitative RT-PCR for the designated splice variants. The ratio of: A) caspase-2S/2L, B) Bcl-xL/Bcl-xS, and C) caspase-8L/caspase 8 mRNA was determined by densitometric analysis of RT-PCR fragments. Data are representative of three separate determinations on two separate occasions. Samples utilized for the presented data were verified to demonstrate significant effects on caspase 9 splicing in response to hnRNP L siRNA.



**Supplemental Figure 8:** For confocal microscopy, the A549, H838, H2030, and HBEC-3KT cell lines (5 x 103) were seeded onto coverslips and subjected to standard incubator conditions for 24 hrs. Cells were then fixed with 100% cold methanol for 10 min at  $-20^{\circ}$ C. The slides were washed extensively after fixing with PBS containing 10 mM glycine and 0.2% sodium azide. The cells were then incubated for 1 hr with the primary antibody, hnRNP L (1:100), followed by incubation with an AlexaFlour488 anti-mouse secondary antibody (1:500) (green).

### Α



Supplemental Figure 9: Phospho-Ser<sup>52</sup>-hnRNP L binds specifically to the exonic splicing silencer in exon 3 of caspase 9. *A*) A 5' biotinylated wild-type C9/E3-ESS RO (Bio-C9/E3-ESS) or 5'biotinylated non-specific RO (Bio-NSC-2) were incubated in the presence of nuclear extract from A549 cells or IgG (control), subjected to SDS-PAGE and western immunoblotting analysus (anti-hnRNP L; anti-Phospho-Ser<sup>52</sup>-hnRNP L). An unlabeled non-specific RO (e.g NSC-1) at a 100-fold excess were also added to the reactions as inducated. Sup designates the corresponding supernatant from the Bio-WT C9/E3-ESS to show the remaining RNA *trans*-factor after affinity purification. *B*) The Panel A experiment was repeated but with the addition of either denatured PP2AC $\alpha$  or denatured PP2AC $\alpha$  as indicated.



**Supplemental Figure 10:** HBEC3-KT cells were transfected with either wild-type hnRNP L (WT-hnRNP L) (0.25  $\mu$ g), Ser<sup>52</sup>Ala hnRNP L (S52-A) (0.25  $\mu$ g), or Ser<sup>52</sup>Asp hnRNP L (S52-D) (0.25  $\mu$ g) for 24 hrs. Total RNA was extracted and analyzed by competitive/quantitative RT-PCR for caspase 9 splice variants. Data are N=3 from 3 separate occasions.