Supplemental Note. The Fragmentation Patterns of Methyl Sterols Identified In the Patient's Plasma and Skin By GC-MS

The numbered peaks correspond to the peaks in Figure 2

Peak 6 unidentified mono methyl sterol 55 (100%), 472 (52%), 227 (25%), 367 (18%), 269 (15%), 457 (14%), 283 (11%), 382 (5%) Peak 8 methyl cholest 8(9)-en 75 (100%), 472 (87%), 227 (50%), 367 (37%), 269 (29%), 243 (21%), 457 (16%), 282 (10%) Peak 10* methyl cholest 7(8)-en 472 (100%), 269 (76%), 382 (40%), 227 (33%), 367 (27%), 243 (23%), 457 (17%) Peak 11 unidentified isomer of peak 12 135 (100%), 486 (22%), 353 (21%), 283 (15%), 381 (12%), 396 (10%), 368 (7%), 458 (6%), 472 (6%) Peak 12* 4,4-dimethyl cholest 8(9)-en 135 (100%), 486 (25%), 381 (20%), 260 (20%), 283 (11%), 396 (9%), 353 (8%), 471 (4%) (Hashimoto F, Hayashi H. Biochimica et Biophysica Acta 1086 (1991) 115-124) ** Peak 13

4,4-dimethyl cholest 8(9), 24-dien 69 (100%), 135 (77%), 484 (22%), 379 (16%), 394 (11%), 351 (6%), 469 (6%)

*The fragmentation pattern of these two peaks were previously published: Hashimoto F, Hayashi H. Biochimica et Biophysica Acta 1086 (1991) 115-124 ** The fragmentation pattern of peak 13 is published in the National Institute of Standards (NIST) library

Human	1	MATNESVSIF-SSASLAVEYVDSLLPENPLQ	30
Chimp	1	MEMADYSRQKGQFEQKHGGMKQQYSVFRSSQALTGNLPGTQLPRRLRAAGRGGHPSVP	59
Dog	1	MATNESISIF-SSASLAVEYVDSLLPENPLQ	30
Mouse	1	ENPLQ	30
Rat	1	ENPLQ	30
Yeast	1	QASTYSQTLQNVAHYQPQL	27
Human	31	EPFKNAWNYMLNNYTKFQIAT-WGSLIVHEALYFLFCLPGFLFQFI	75
Chimp	60	APSRRDALSRFPASGRSAVPT-IGWPCRSHYPHSIRGANGWDRQELDGPPGPPGSTPQ	115
Dog	31	EPFKNAWNYMLNNYTKFQIAT-WGSLIVHEVLYFLFCLPGFLFQFI	75
Mouse	31	EPFKNAWVYMLDNYTKFQIAT-WGSLIVHEAIYFLFSLPGFLFQFI	75
Rat	31	EPFKNAWVYMLDNYTKFQIAT-WGSLIVHETIYFLFSLPGFLFQFI	75
Yeast	28	NFMEKYWAAWYSYMNNDVLATGLMFFLLHEFMYFFRCLPWFIIDQI	79
Human	76	PYMKKYKIQKDKPETWENQWKCFKVLLFNHFCIQLPLICGT	116
Chimp	116	PGEAGSETGTPGESSVSVAGSHLAAVQDKPETWENQWKCFKVLLFNHFCIQLPLICGT	173
Dog	76	PFMKKYKIQKDKPETWENQWKCFKVLLFNHFCIQLPLICGT	116
Mouse	76	PYMRKYKIQKDKPETFEGQWKCLKKILFNHFFIQLPLICGT	116
Rat	76	PFMRKYKIQKDKPETFEGQWKCLKGILFNHFFIQLPLICGT	116
Yeast	80	PYFRRWKLQPTKIPSAKEQLYCLKSVLLSHFLVEAIPIWTF	120
		I II 🗸	H173Q
human	117	YYETEYENT PYDWERMPRWYELLARCEGCAVIEDTWHYEIHRLLHHKRTYKYTHKVHH	174
Chimp	174	YYFTEYFNI PYDWERMPRWYFI JARCFGCAVI EDTWHYFI HRI JHHKRIYKY IHKVHH	231
Dog	117	YYFTEYFNIPYDWERMPRWYMLLARCFGCAVIEDTWHYFIHRLLHHKRIYKYIHKVHH	174
Mouse	117	YYFTEFFNIPYDWERMPRWYLTLARCLGCAVIEDTWHYFIHRLLHHKRIYKYIHKVHH	174
Rat	117	YYFTEFFNIPYDWERMPRWYFTLARCLGCAVIEDTWHYFIHRLLHHKRIYKYIHKVHH	174
Yeast	121	HPMCEKLGITVEVP-FPSLKTMALEIGLFFVLEDTWHYWAHRLFHYGVFYKYIHKOHH	177
		HXXXH HXXHH	
Human	175	EFQAPFGMEAEYAHPLETLILGTGFFIGIVLLCDHVILLWAWVTIRLLETIDV	227
Chimp	232	EFQAPFGMEAEYAHPLETLILGTGFFIGIVLLCDHVILLWAWVTIRLLETIDV	284
Dog	175	EFQAPFGMEAEYAHPLETLILGTGFFIGIMLLCDHVILLWAWVTIRLIETIDV	227
Mouse	175	EFQAPFGIEAEYAHPLETLILGTGFFIGIVLLCDHVILLWAWVTIRLLETIDV	227
Rat	175	EFQAPFGIEAEYAHPLETLILGTGFFIGIVLLCDHVILLWAWVTMRLLETIDV	227
Yeast	178	RYAAPFGLSAEYAHPAETLSLGFGTVGMPILYVMYTGKLHLFTLCVWITLRLFQAVDS	234
Human	228	HSGYDIPLNPLNLIPFYAGSRHHDFHHMNFIGNYASTFTWWDRIFGTDSQYNAYNEKR	285
Chimp	285	HSGYDIPLNPLNLIPFYAGSRHHDFHHMNFIGNYASTFTWWDRIFGTDSQYNAYNEKR	342
Dog	228	HSGYDIPLNPLNLIPFYAGSRHHDFHHMNFIGNYASTFTWWDRIFGTDSQFTAYNEKM	285
Mouse	228	HSGYDIPLNPLNLVPFYTGARHHDFHHMNFIGNYASTFTWWDKLFGTDAQYHAYIEKS	285
Rat	228	HSGYDIPLNPLNYIPFYTGARHHDFHHMNFIGNYASTFTWWDRIFGTDVQYHAYTEKM	285
Yeast	235	HSGYDFPWSLNKIMPRWAGAEHHDLHHHYPIGNYASSFRWWDYCLDTESGPEAKASRE HXXXH/D HXXHH	293
Human	286	ккғеккте 293	
Chimp	343	KKFEKKTE 350	
Dog	286	KKIEKKMQ 293	
Mouse	286	KKLGKKSD 293	
Rat	286	KKLGKKSE 293	
Yeast	294	ERMKKRAENNAQKKTN 309	

Supplemental Figure 1. Alignment of sterol methyl oxidase protein sequences across evolution. From yeast to human, SC4MOL is highly conserved. Four conserved metal-binding domains were identified and are highlighted with black squares. The conserved metal binding motifs HXXXH/D and HXXHH are marked under the alignment. 519T>A changes amino acid H173 to Q, which replaces the histidine at an active site of the second metal binding domain with glutamine; 731A>G changes amino acid Y244 to C; Y244 is in the fourth metal binding domain and also is conserved across evolution.

Northern European

German/ Canadian/ Northern European

Supplemental Figure 2. Paternal family history is significant for early onset of arthritis. Patient's father, one paternal uncle, paternal grandmother, and paternal, maternal great grandmother all have arthritis that started in their late 30s or early 40s. Only one paternal uncle and the paternal grandmother were available for analysis, and both of them were found to have the 519T>A mutation. Maternal family members were unavailable for studies. N/A: sample not available.

Supplemental Figure 3. Diagram of the enzymatic pathway for conversion of lanosterol to cholesterol. The saturation of the C-24 double bond can occur at multiple points in the pathway. Both DHCR14B/LBR and TM7SF2 encode proteins with sterol 14 reductase activity.

Fluorescence									
Samula	Pacific	Pacific	EITC	DE	PerCp-	DE C v7	ADC	ADC Cu7	Durnoso
<u></u> 1	CD3	CD8	TLR-2	TLR-9	CD4	CD56	TLR-4	CD16	Comparison of T-cell lymphocytes and NK cell subpopulations expressing NK cell marker CD56 and/ or TLR's
2	CD3 CD3	-	CD86 IgG	CD27 CD27	-	HLA-DR	CD40 IgM	CD20 CD20	B-Cell activation and expression of HLA-DR B-Cell expression of immunoglobulin B-cell receptor isotypes (B-cell maturation)
4	CD3	CD8	CD16	CD16b	CD4	CD56	CD69	CD25	Comparison of activation among all cell types
5	CD127 CD127		CD80 CD14	CD62L TLR-9	-	CD3 CD3	CD69 CD69	CD25 CD25	Measurement of granular cell activation, subtype discrimination Measurement of granular cell activation, subtype discrimination, and TLR expression
7	CD127	-	CD66	CD14	-	CD3	CD69	CD25	Granular cell activation, subtype discrimination Granular cell activation, subtype discrimination and TLR
8	CD127	-	TLR-2	CD14	CD3	CD69	TLR-4	CD25	expression

Supplementary Table 1. Surface markers used in flow cytometry assays

Cell Population	Patient	Father	Healthy
			Control ¹
Granulocytes ²			
% CD16 ^{bright} (GMFI ³)	93.3 (16317)	84.6 (24889)	97.5 (34540)
% CD16 ^{dim} (GMFI)	6.35 (1044)	12.3 (1706)	1.68 (1403)
% CD16b (GMFI)	44.1 (185)	86.4 (338)	99.5 (1074)
% CD25+ (GMEI)	13 3 (3921)	27.8 (3126)	10.8 (473)
% CD69+ (GMFI)	34.6(1265)	27.0(3120) 23.7(1094)	6.81(120)
% CD86+ (GMFI)	33.4(9421)	23.7(1094) 22 4 (8488)	20.7(25)
% HLA-DR+ (GMFI)	31.3(1235)	21.9 (998)	10.8(708)
% TLR-2+ (GMFI)	30.7 (2756)	16.8 (2437)	5 63 (1785)
% TLR-4+ (GMFI)	0.80 (724)	1.40 (769)	87.2 (1010)
T cells ⁴			
CD4 subset (% of total CD3+)	50.7	40.3	64.3
% CD28+ (GMFI)	99.9 (1031)	99.9 (1127)	98.0 (1689)
% CD56+ (GMFI)	0.67 (1214)	0.66 (1233)	0.29 (1101)
CD8 subset (9/ of total $CD2+$)	41.0	40.4	26.2
$0/(CD28 \pm (CMEI))$	41.9	40.4 86 8 (604)	20.2
$\frac{70 \text{ CD2}}{70 \text{ CD2}} + (\text{GMFI})$	07.4(003) 10.8(2218)	14.3(2208)	(21/1)
/6 CD30+ (GMI-1)	10.8 (3318)	14.3 (2298)	0.32 (2889)
CD8 ^{dim} (% of total CD3+)	4.12	6.58	1.9
% CD28+ (GMFI)	55.8 (817)	56.9 (774)	54.5 (1280)
% CD56+ (GMFI)	43.5 (3152)	48.5 (2285)	25.7 (2870)
		()	

Supplementary Table 2. Comparative analysis of granulocyte and T cell phenotypes between patient, her father, and healthy controls by multicolor flow cytometry.

¹Values shown are means of 20 controls; with standard deviations within 15% of the mean.

² Granulocyte gate A in Figure 4d; CD3⁻CD20⁻CD16⁺ cells.

³ GMFI, geometric mean fluorescence intensity of the indicated antigenic marker. All GMFI values shown have robust coefficients of variation less than 1%.

⁴ Lymphocyte gate C in Figure 4d; CD3⁺CD20⁻CD16⁻ cells.

Tather using multiplex beau array						
Proinflammatory	IL-1β	IL-6	IL-8	TNF-α	GM-CSF	G-CSF
Patient	1.5	9.1	9.1	0	7.8	26.3
Father	0.2	0	1.8	0	1.3	25.1
Th1/Th2	IFN-y	IL-2	IL-4	IL-5	IL-10	IL-12
distinguishing	distinguishing					
Patient	91.2	35.5	2.2	0	1.1	0
Father	44	0	0.6	0	1.5	0.48
Chemokines	MCP-1			MIP-1β		
Patient	23.8			10		
Father	17.1			41.2		

Supplementary Table 3. Selected Serum cytokine levels (pg/ml) in patient and her father using multiplex bead array*

* Serum cytokine levels in healthy controls are generally below the detection level

Fibroblasts*	Culture Conditions							
	Cholesterol	Statin	10% FBS	Cellular Cholesterol				
	Restriction			(mg/mg protein)				
SC4MOL def	3 Days	—		0.31, 0.62				
-	7 Days	—		1.15, 0.98				
	7 Days	+		0.88, 0.64				
	None		+	1.49, 2.25				
Control	3 Days	_		0.88, 1.08				
	7 Days	_		2.13, 2.05				
	7 Days	+		0.76, 1.08				
	None		+	0.75, 0.96				

Supplemental Table 4. Cellular Cholesterol Levels In Patient and Control Fibroblasts Under Variable Growth Conditions

* Data from duplicated experiments are shown.