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The BCR-ABL1 oncoprotein transforms pluripotent HSCs and initiates chronic myeloid leukemia
(CML). Patients with early phase (also known as chronic phase [CP]) disease usually respond to
treatment with ABL tyrosine kinase inhibitors (TKIs), although some patients who respond ini-
tially later become resistant. In most patients, TKIs reduce the leukemia cell load substantially, but
the cells from which the leukemia cells are derived during CP (so-called leukemia stem cells [LSCs])
are intrinsically insensitive to TKIs and survive long term. LSCs or their progeny can acquire

additional genetic and/or epigenetic changes that cause the leukemia to transform from CP to a
more advanced phase, which has been subclassified as either accelerated phase or blastic phase disease. The latter
responds poorly to treatment and is usually fatal. Here, we discuss what is known about the molecular mechanisms
leading to blastic transformation of CML and propose some novel therapeutic approaches.

Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative disorder
characterized by excessive accumulation of apparently normal
myeloid cells. It occurs with an annual incidence of 1.0-1.5 per
100,000 persons. CML occurs very rarely in children. In the Western
world, the median age of onset is 50-60 years, which reflects the
average age of the population. Although symptoms at presentation
may include lethargy, weight loss, unusual bleeding, sweats, anemia,
and splenomegaly, in more developed countries, 50% of patients are
asymptomatic and are diagnosed as a consequence of blood tests
performed for unrelated reasons. More than 90% of CML patients
are diagnosed when their disease is in a relatively early phase known
as the chronic phase (CP).

CML-CP is characterized by the presence of the Philadelphia
(Ph) chromosome and the oncogene that it encodes in the vast
majority of myeloid cells and some lymphocytes. The Ph chromo-
some results from a (9;22)(q34;q11) reciprocal translocation that
juxtaposes the c-abl oncogene 1 (ABLI) gene on chromosome 9
with the breakpoint cluster region (BCR) gene on chromosome 22,
generating the BCR-ABLI fusion oncogene with greatly enhanced
ABL1 kinase activity. It is generally accepted that acquisition of
the BCR-ABLI oncogene is the initiating event in the genesis of
CML-CP, despite various lines of evidence suggesting that, at least
in some cases, hematopoiesis may already be clonal before the
acquisition of the Ph chromosome (1). It is believed that acquisi-
tion of the BCR-ABLI gene occurs initially in a single HSC that
gains a proliferative advantage and/or aberrant differentiation
capacity over its normal counterparts, giving rise to the expanded
myeloid compartment (2).

Most CML-CP patients are currently treated with one of three
drugs designed to block the enzymatic action of the BCR-ABL1
tyrosine kinase. The first of these to be developed was imatinib.
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Recent karyotype analyses show that 60%-70% of patients achieve
complete disappearance of Ph-positive marrow cells and maintain
exclusively Ph-negative bone marrow cells (a state designated as a
complete cytogenetic response [CCyR]) 5 years after initiating ima-
tinib treatment. The incidence of progression to a more advanced
phase of leukemia in patients responding to imatinib is extremely
low beyond the first two years (3). However, a small number of
patients fail to respond to imatinib (primary resistance), while oth-
ers respond initially and then lose their response (secondary resis-
tance) (4). The reasons for imatinib resistance in CML-CP patients
are poorly understood. Primary resistance may be related, at least
in part, to the intrinsic heterogeneity of the disease (e.g., differ-
ent BCR-ABL1 levels) in different patients and to the survival of
variable numbers of quiescent cells from which the more mature
leukemia cells are derived during CP (5). Secondary resistance may
have a wide range of causes, of which the best characterized is the
acquisition of mutations in the BCR-ABL1 kinase domain (such as
the T315I mutation) (6).

In the last few years, two new tyrosine kinase inhibitors (TKIs),
dasatinib and nilotinib, have become available, both of which
are more potent in vitro inhibitors of the BCR-ABL1 kinase than
imatinib. Both of these “second-generation” TKIs are effective at
inducing or restoring CCyR in 40%-50% of patients who appear to
have failed primary treatment with imatinib. However, approxi-
mately 20% of patients presenting with CML-CP fail to respond
to both imatinib and a subsequent second-generation TKI; their
prognosis is poor because of a higher risk of disease progression.

Before the advent of BCR-ABL1 TKIs, all patients with CML-CP
progressed spontaneously to advanced phase CML after a median
interval of approximately 5 years. The advanced phase is divided
into an initial accelerated phase (AP), during which patients may
still respond to treatment for some months or sometimes years,
and a subsequent more aggressive blastic phase (BP). Patients
with CML-BP have a median survival of approximately 6 months.
Some patients progress directly to BP without an intermediate
AP. The precise definitions of these three phases have been much
debated in recent years (3, 7).
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The biological basis of BP is poorly understood. Although the
majority of patients have a myeloblastic phenotype, approximately
25% of CML-BP patients show a pre-B lymphoblastic cell pheno-
type (8). Occasional cases of T lymphoblastic transformation have
been identified (9). These findings lend support to the notion that
the BCR-ABLI oncogene arises in a primitive cell, namely a leuke-
mia stem cell (LSC), not yet committed to either myeloid or lym-
phoid differentiation. Conversely the blastic clone may originate
either at the level of the multipotent LSC or at the level of a more
committed leukemia progenitor cell (LPC). Here, we discuss genet-
ic and epigenetic mechanisms leading to the transition of CML-CP
into CML-BP and propose some novel therapeutic modalities that
might prevent malignant progression.

CML-BP patients: a therapeutic challenge

In the past, CML-BP was often treated with drugs used for acute
leukemias, but patients usually relapsed within a few months. The
introduction of TKIs has improved prognosis to some degree. The
majority of CML-BP patients not previously treated with TKIs do
initially respond to treatment with these agents, either alone or
in combination with conventional chemotherapeutic drugs, but
most still relapse within a few months of achieving a seemingly
complete hematologic or even cytogenetic response. Therefore, any
CML-BP patient who does respond to modern therapy should pro-
ceed, if possible, to allogeneic stem cell transplant prior to relapse.
In the 1990s, the results of allografting for CML-BP patients were
not impressive — only 5%-10% of patients experienced long-term,
leukemia-free survival (10) — but the use of a TKI after transplant
may improve these results.

Extrapolating from the good clinical outcomes of treating CML-CP
with TKIs and the dismal responses achieved in treating CML-BP,
one might reasonably conclude that the best approach to CML-BP
would be prevention. Indeed, it appears today that continued use
of TKIs to treat CML-CP may prevent BP in a large proportion of
patients, but 15%-20% of patients, most of whom will have been
classified as nonresponders, may progress to BP (11). Indeed, the
GIMEMA Working Party (Italian Group for Adult Hematologic
Diseases) reported that the detection of TKI-resistant BCR-ABLI
mutations in CML-CP is associated with a greater likelihood of
disease progression (12). These patients may possess genetic/epi-
genetic abnormalities distinct from the patients with nonmutated
BCR-ABLI, the appearance of which could be influenced by the
duration of the BCR-ABL1-induced signals. Furthermore, the
ability of TKIs to render residual CML cells “inactive” rather than
to eradicate them entirely suggests that BP might still occur occa-
sionally even in “responding” patients.

However, as a minority of patients will still progress to CML-BP,
the routine use of TKIs may need to be supplemented with other
agents, any of which might prevent BP. Possible examples are antiox-
idants (13), which protect against cancer-causing DNA mutations;
farnesyl transferase inhibitors (14), which inhibit RAS signaling;
hydroxychloroquine (15), which inhibits autophagy in some situ-
ations; sonic hedgehog pathway antagonists (16, 17), which impair
self-renewal pathways only when used in combination with TKIs;
and activators of protein phosphatase 2A (PP2A) (18), which targets
BCR-ABL1 and other downstream oncogenic signaling cascades.

Biological complexity of CML-BP
At present, the molecular mechanisms underlying disease pro-

gression are still uncertain, but most likely involve activation of
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oncogenic factors and/or inactivation of tumor suppressors (19).
A plausible assumption is that BP is a multistep, time-dependent
process initiated by both BCR-ABL1-dependent and -indepen-
dent DNA damage associated with inefficient and unfaithful DNA
repair in CML-CP that, if facilitated by an increased level of BCR-
ABL1 activity, leads to selection of one or more CML-BP clones.

The genetic lesions observed in CML-BP patients in the past and
now since the introduction of TKIs mostly include the presence of
additional chromosomes, gene deletions, gene insertions, and/or
point mutations (including BCR-ABLI mutations) (20-22), but
patterns differ in myeloblastic and lymphoblastic transformations
(23). At the molecular level, the most common mutations detect-
able (other than those in the BCR-ABLI kinase domain) occur at
the loci of the tumor suppressor genes P53 (20%-30% of cases) and
the runt-related transcription factor gene (RUNX1I) (38% of cases)
in myeloid BP and at the loci of cyclin-dependent kinase inhibitor
2A/2B (CDKN2A/B) (50% of cases) and Ikaros transcription fac-
tor (IKZF1) (55% of cases) in lymphoid BP (22, 24-28). As specific
CML-BP-associated genetic alterations are relatively common, no
one lesion occurs in the majority of CML-BP patients, and it is
unlikely that any one specific secondary genetic aberration can be
defined as the “culprit” causing disease progression. More likely,
CML-BP results from the accumulation of a critical number or
combination of different mutations.

Epigenetic changes are dependent mostly on the pleiotropic
effect of constitutive BCR-ABL1 activity (19, 29), the levels of
which start to increase in CML-AP (30). In support of this sug-
gestion, expression studies revealed that BCR-ABL1 dramati-
cally perturbs the CML transcriptome (31), resulting in altered
expression of genes, some of which (e.g., PRAME, MZF1, EVI-1,
WT1I, and JUN-B) might play a role in BP (19, 32-34). Nonethe-
less, the posttranscriptional, translational, and posttransla-
tional effects of high BCR-ABL1 levels result in the constitutive
activation of factors with reported mitogenic, antiapoptotic,
and antidifferentiation activity (e.g., MAPKERKL/2. MYC, JAK2,
YES-1, LYN, hnRNP-E2, MDM2, STATS, BMI-1, and BCL-2) and
inhibition of major key regulators of cellular processes, such as
those regulated by the tumor suppressors p53, CCAAT/enhanc-
er binding protein-a (C/EBPa), and PP2A (19, 29, 35). Inter-
estingly, a signature based on six genes (NOB1, DDX47, IGSF2,
LTB4R, SCARBI1, and SLC25A3) was recently found to accurately
discriminate early from late CP, CP from AP, and CP from BP
(36); however, the biological role of these genes in disease pro-
gression is still unknown.

Thus, it is highly plausible that unrestrained and increasing
BCR-ABL1 activity promotes and/or contributes to clonal evolu-
tion, thereby leading to CML-BP (37). This might occur at the level
of LSCs, which display innate or acquired TKI resistance, and/or
at the level of an LPC population that might have developed resis-
tance and expanded during TKI therapy (38, 39).

Because there is a direct correlation between levels of BCR-
ABL1, the frequency of clinically relevant BCR-ABLI mutations
(40, 41), and the differentiation arrest of myeloid progenitors
(42), it is likely that disease progression is triggered by the “right”
combinations of genetic and epigenetic abnormalities (Figure 1).
Thus, we can speculate that prevention or effective treatment of
CML-BP will only be achieved if novel therapeutic strategies can
be developed that are capable of interfering with the biological
processes currently considered critical for the leukemic behavior
of CML-BP progenitors.
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BCR-ABL1-dependent pathways to blastic transformation. Schematic representation of the potential BCR-ABL1-dependent molecular mecha-
nisms leading to CML disease progression.The relatively high BCR-ABL1 expression/activity in CML-CP CD34+CD38- stem cells and/or CD34+
early progenitors compared with more committed progenitors, which is further markedly increased in CML-BP CD34+ progenitors results in the
following: enhancement of proliferation/survival pathways; increased genomic instability; and activation of pathways leading to a block in myeloid
differentiation, acquisition of the ability to self renew, and inhibition of tumor suppressors with broad cell regulatory functions. BAD, BCL2 antago-
nist of cell death; DNA-PKcs, DNA-dependent protein kinase, catalytic subunit; FOXO, forkhead box O; IK6, Ikaros 6; miR-328, microRNA-328;
MLH1, mutL homolog 1; PMS2, postmeiotic segregation increased 2; RAD51, RecA homolog in Escherichia coli; RAD52, RAD52 homolog
(Saccharomyces cerevisiae); Shh, Sonic Hedgehog; wnt/3-catenin, wingless-int1/beta-catenin.

CML-BP LSCs: BCR-ABL1 overexpression,
self renewal, and survival
According to the basic concept, LSCs should represent the most
primitive cell able to initiate leukemia in animal xenograft lim-
iting dilution experiments, to display self-renewal capacity, and
to proliferate and differentiate (43, 44). In CML-CP, LSCs are
located in the self-renewing Lin-"CD34*CD38- population, but
not in the non-self-renewing Lin-CD34*CD38" population (45),
indicating that, in contrast to other oncogenes (e.g., MOZ-TIF2
and MLL-ENL) BCR-ABLI cannot confer self-renewal proper-
ties (46, 47). While most human LSC research has focused on
the Lin"CD34* compartment, a recent study suggests that a
Lin"CD34 fraction of CML-CP cells also engrafts immunode-
ficient mouse strains, underscoring the complexity of the LSC
compartment (48).

However, in CML-BP, Lin"CD34*CD38" granulocyte-macro-
phage progenitors (GMPs) that overexpress BCR-ABL1 behave like

LSCs (49), suggesting that the acquisition of self renewal in GMPs
may depend on epigenetic and/or genetic alterations caused by
elevated expression of BCR-ABL1. Thus, LSCs in CML-BP patients
may reside in at least 3 different subsets: Lin-CD34*CD38- and
Lin-CD34* cells remaining from CML-CP and the disease-driving
Lin"CD34*CD38" GMPs.

Progression to BP is marked by overexpression of BCR-ABL1 in
committed progenitors, leading to a multiplicity of genetic and
epigenetic events. These cell type- and context-specific molecu-
lar events serve to enhance survival and self renewal, leading to
impaired differentiation and generation of CML-BP LSCs. To date,
the cell type- and context-specific effects of BCR-ABL1 overexpres-
sion have not been clearly elucidated in human stem cells, nor has
the effect of the microenvironment on LSC maintenance. It seems,
however, that increased BCR-ABL1 expression does play a critical
role in promoting the genetic instability that drives progression to
BP and the molecular evolution of LSCs in CML.
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BCR-ABLI overexpression and aberrant splicing. BCR-ABLI induces
alterations in pre-mRNA splicing in hematopoietic progenitor
cells that result in aberrant adhesion, differentiation, survival, and
self renewal as well as therapeutic resistance. Ectopic BCR-ABLI
expression in human bone marrow and cord blood CD34* cells
results in induction of factors involved in mRNA processing,
export, and translation (50, 51). Interestingly, the metabolism
of several mRNAs has been found to be altered in CML-BP (51).
Among these, BCR-ABL1 induces alternative splicing of proline-
rich tyrosine kinase 2 (PYK2) mRNA, thereby increasing expression
of the 1-integrin-responsive PYK2 kinase, which in turn may con-
tribute to aberrant adhesion of CML-BP progenitors (50).

Likewise, BCR-ABL1-induced aberrant splicing might play
an important role in those cases of CML-BP without deletion
of the IKZF1 gene (25). Indeed, a recent study suggests that
BCR-ABL1 may inhibit differentiation and contribute to lym-
phoid CML-BP by promoting the production of a dominant
negative splice isoform (IK6) of IKZF1, a transcription factor
gene involved in pre-B cell differentiation (52). When this aber-
rant, non-DNA-binding splice isoform, IK6, was silenced in
Ph-positive pre-B cells using siRNA or its production reduced
by imatinib treatment, differentiation along the B cell lineage
was partially restored (52). Notably, alternative splicing was
also observed for BCR-ABLI. Aberrant BCR-ABLI mRNA splic-
ing results in the generation of transcripts harboring a 35-kb
insertion between ABLI domain exons 8 and 9, resulting in a
frameshift with a truncation that, like IK6 expression, is associ-
ated with imatinib resistance (53, 54).

Finally, BCR-ABL1 overexpression is associated with mis-splicing
of glycogen synthase kinase 3 (GSK3f) (55), a key component of
the B-catenin destruction complex, leading to enhanced self renew-
al of GMPs that behave like LSCs (49). Lentiviral overexpression of
wild-type GSK3f in CML-BP progenitors inhibits their capacity to
engraft leukemia in immunocompromised mice (55).

Stem cell self renewal. Self renewal refers to division without dif-
ferentiation and is a property normally ascribed to long-term
HSCs. In mouse models, loss of junB/AP-1 enhances HSC pro-
liferation and myeloid progenitor expansion, setting the stage
for BP (56). In CML-BP, committed progenitors subvert this
stem cell property of self renewal, lack the capacity to regulate
it, and are able to propagate leukemia more readily. Various self-
renewal pathways — including Wnt/p-catenin, sonic hedgehog,
and Notch signaling — have been implicated in the generation
and maintenance of CML-BP LSCs. Indeed, BCR-ABL1-inde-
pendent (57) and -dependent (49, 58) mechanisms both seem
to contribute to the acquisition of self renewal by CD34*CD38*
CD45RA*CD123*Lin- CML-BP GMPs. In fact, CML-BP is associ-
ated with accumulation of B-catenin, a key stem cell self-renewal
mediator, in the nucleus of GMPs, thereby endowing them with
self-renewal potential (49, 59). BCR-ABL1 stabilizes B-catenin
through phosphorylation of tyrosines 86 and 654, which inhibits
binding to axin/GSK3, thereby enabling binding to T cell factor
4 (TCF4) and activation of transcription.

By inhibiting BCR-ABL1, imatinib prevents tyrosine phosphory-
lation of P-catenin and thus prevents nuclear translocation and
transcriptional activation (58). Loss of B-catenin in a CML mouse
model impairs self renewal of both normal HSCs and CML-BP
LSCs, although the effects of decreased nuclear f-catenin on
human normal HSC and CML-BP LSC maintenance remains to
be established in xenograft models (60).
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Decreased expression of functional GSK3p enhances CML
progenitor self renewal by activating -catenin and by elevating
levels of sonic hedgehog pathway-mediators such as GLI family
zinc finger 1 (GLI1) and GLI2 (32, 55). Recently, two independent
studies demonstrated that overexpression of smoothened homo-
log (Drosophila) (Smo), an essential activator of sonic hedgehog
signaling, enhanced LSC maintenance in mouse models of CML
(16, 17). Conversely, Smo inhibition reduced LSC, but not normal
HSC engraftment (16, 17), suggesting that the sonic hedgehog
pathway is preferentially utilized by LSCs for self renewal.

Another recent study confirmed that sonic hedgehog signaling
is dispensable for normal adult mouse HSC function, suggest-
ing the possibility of targeting leukemic GMP without damaging
residual HSCs (61). These findings provide the impetus for pre-
clinical testing of a combination of Smo and BCR-ABL1 inhibitors
to determine whether LSCs can be eradicated both in vitro and in
xenogeneic transplantation models.

LSC survival. Resistance to apoptosis, an intrinsic property of
normal HSCs, is also a hallmark of LSCs. In vivo inactivation of
Dok-1 or Dok-2 decreases apoptosis, resulting in a myeloprolifer-
ative disorder (62). Moreover, the promyelocytic leukemia (PML)
gene, a tumor suppressor that was first shown to be deregulated
in acute promyelocytic leukemia, was recently found to play a piv-
otal role in LSC maintenance in a CML mouse model (63). Other
investigators demonstrated that enhanced progenitor cell surviv-
al driven by B cell leukemia/lymphoma 2 (BCL2) and BCR-ABL1
overexpression promoted CML-BP development in a transgenic
mouse model (64), underscoring the importance of resistance to
apoptosis in BP evolution.

Although extensive SNP marker analyses demonstrated that a
SNP (rs1801018) in the BCL2 gene was associated with susceptibil-
ity to CML (65), the role of BCL2 in CML-BP progenitor survival
remains to be elucidated. In CML-BP cell lines, expression levels
of BCL2-interacting mediator of cell death (BIM), a proapoptotic
BCL2 family member, are low and can be induced by BCR-ABL1
inhibition (66). In recent studies, induction of apoptosis correlat-
ed with the magnitude and duration of BCR-ABL1 kinase inhibi-
tion (67). Transient, potent BCR-ABL1 inhibition was associated
with BIM activation and induction of apoptosis, underscoring
the importance of BCR-ABLI gene dosage in regulating apoptot-
ic responses (67). In addition, JAK2-mediated activation of LYN
kinase through the suppressor of variegation, enhancer of zeste,
and Trithorax (SET)/PP2A/SHP1 pathway (68) may be important
in promoting CML-BP LSC survival during imatinib therapy and
disease progression. Pharmacologic inhibition of JAK2 induced
apoptosis in imatinib-resistant CML-BP cells to a greater degree
than in normal progenitors (68). Recently, targeted inhibition of
arachidonate S-lipoxygenase (ALOXS) with a S-lipoxygenase inhib-
itor was shown to impair LSC survival in a CML mouse model, a
finding that warrants further investigation into the role of ALOXS
in CML-BP pathogenesis (69).

Interestingly, a recent study has shown that imatinib induces
autophagy in CML-BP primitive progenitors through a mecha-
nism that is independent of imatinib-induced, caspase-dependent
apoptosis but is associated with ER stress and is suppressed by
intracellular Ca?* depletion (15). Suppression of autophagy genes
enhanced imatinib-induced death of Ph-positive cells (15). Critical-
ly, the combination of TKIs with autophagy inhibitors resulted in
killing of CML LSCs (15). Thus, autophagy inhibitors may enhance
the therapeutic effects of TKIs in the treatment of CML-BP.
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Since the late 1980s, when BCR-ABL1 was identified as a constitu-
tively active tyrosine kinase, an impressive series of in vitro and in
vivo studies have indicated a direct causal role of BCR-ABL1 activ-
ity in the acquisition of the molecular changes that characterize
the phenotype of CML-BP progenitors (19).

In vivo resistance and in vitro sensitivity of CML-BP progenitors to TKI
treatment: a biological paradox. Compelling research shows that
CML-CP LSCs are resistant to imatinib as a result of various col-
laborating factors. These factors include quiescence, high BCR-
ABLI1 levels, lack of “oncogene addiction,” increased activity of the
drug efflux pumps ATP-binding cassette sub-family B member 1
(ABCB1) and transporter G2 (ABCG2), and decreasing organic cat-
ion transporter 1 (OCT1) expression (5,70, 71).

In CML-BP, increased BCR-ABL1 expression (49, 72) accounts
for activation of pathways transducing mitogenic, antiapoptotic
signals and for differentiation arrest of the Ph-positive progenitors
(42, 49, 73, 74). However, BCR-ABL1-independent mechanisms
(e.g., LYN kinase-dependent mechanisms) also contribute to dis-
ease progression and imatinib resistance in some CML-BP cases
with no BCR-ABL1 amplification/overexpression (75-78). In this
regard, the paradoxical in vitro and in vivo response of CML-BP
progenitors to TKIs needs to be taken into consideration. While
most CML-BP patients do not show long-term responses to TKIs
and relapse within 12-24 months, CML-BP progenitors from
these patients are still sensitive to the proapoptotic effects of ima-
tinib when administered ex vivo. Thus, it is possible that the bone
marrow environment elicits BCR-ABL1-independent signals con-
ferring TKI resistance and sustaining in vivo survival of CML-BP
blasts. In this scenario, BCR-ABL1-dependent and -independent
signals likely synergize in inducing and maintaining the CML-BP
phenotype. Furthermore, from this consideration, the concept
2258
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Figure 2

BCR-ABL1 and PP2A interplay. (A) In CML-BP and Ph-positive ALL
CD34+ progenitors, p210 and p190 BCR-ABL1 oncoproteins inhibit
PP2A activity by inducing hnRNP-A1, which, in turn, enhances expres-
sion of SET. In BCR-ABL—positive myeloid progenitor cells, suppres-
sion of PP2A phosphatase activity is required for sustained activation
of mitogenic and survival signals. (B) Restored PP2A activity, achieved
by treatment with PP2A activators (e.qg., Forskolin or FTY720), impairs
in vitro and in vivo wild-type and T315| BCR-ABL1 leukemogenesis
by antagonizing the effects of BCR-ABL1 on its downstream signal
transducers (not shown) and promoting SHP-1-mediated BCR-ABL1
inactivation and proteasome-dependent degradation.

emerges clearly that TKI treatment, especially at high dosage,
might exert a selective pressure allowing clonal expansion of genet-
ically unstable CML-BP progenitor cell clones that are more prone
to acquire secondary chromosomal abnormalities and/or clinically
relevant mutations in the BCR-ABLI oncogene itself and, likely, in
other kinases targeted by TKIs. As CML-BP is also characterized by
the loss of function of tumor suppressors, a rational and alterna-
tive therapeutic approach might envision the use of drugs capable
of reactivating a tumor suppressor or SUppressors.

Pharmacologic reactivation of the PP2A tumor suppressor gene. The
notion that the serine-threonine phosphatase PP2A is inhibited in
several types of cancer, through mechanisms that either involve the
loss of expression/activity of one or more subunits or the enhanced
expression of the endogenous PP2A inhibitors SET (79, 80) and
cancerous inhibitor of PP2A (CIP2A) (81), led to the recognition
of PP2A as a true tumor suppressor. In fact, loss of PP2A activity
plays a central role in the pathophysiology of BCR-ABL1-driven
leukemias. PP2A activity is slightly reduced in CML-CP CD34" pro-
genitors but becomes markedly inhibited in CML-BP through the
BCR-ABL1 dose- and kinase-dependent induction of SET (74, 82)
(Figure 2). Remarkably, several targets that are shared by BCR-
ABL1 and PP2A are either essential for BCR-ABL1 leukemogenesis
or are altered in CML-BP (19).

Restoration of PP2A activity, either by chemical PP2A activa-
tors (e.g., forskolin and FTY720) (Figure 2) or by interfering
with SET/PP2A interplay, promotes Src homology region 2-
domain phosphatase 1 (SHP-1) tyrosine phosphatase-dependent
BCR-ABL1 dephosphorylation (inactivation) which, in turn, trig-
gers its degradation (74, 82, 83). Notably, SHP-1 expression is
diminished in most leukemias and lymphomas (84, 85). Restoring
normal PP2A activity induces marked apoptosis of CD34" CML
(CP and BP) progenitors and suppresses in vivo leukemogenesis
regardless of sensitivity to imatinib/dasatinib (74, 82) (Figure 2).

Loss of PP2A activity is also a feature of imatinib/dasatinib-
insensitive CD34*CD38 BCR-ABLI* HSCs from CML (CP and
BP) patients (57). Clonogenic, colony-forming cell (CFC)/replat-
ing, long-term culture-initiating cell (LTC-IC), and CFSE-medi-
ated cell division-tracking assays revealed that FTY720 suppress-
es survival and self renewal and triggers apoptosis of BCR-ABLI*
stem cells in a BCR-ABL1 kinase-independent and -catenin-
mediated manner (57). Notably, normal quiescent stem cells are
not sensitive to FTY720 (57).

Because of the central role of PP2A in the regulation of sur-
vival, proliferation, self renewal, and differentiation of CML
stem/progenitor cells, it is highly plausible that its loss of func-
tion contributes to BP. In this scenario, PP2A may have the role
of a “gatekeeper,” as its activation may control and restrain
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BCR-ABLI1 expression/activity, whereas its inhibition allows
increased oncogene activity and induces a cascade of events that
promotes disease development and progression. Thus, incorpo-
rating PP2A-activating drugs into current therapeutic protocols
for CML-BP and imatinib/dasatinib-resistant (including T315T)
patients has not only the potential to treat CML-BP but also to
eradicate CML at the stem cell level.

Impaired myeloid differentiation in CML-BP:

a true BCR-ABL1 dosage effect

Blastic transformation is phenotypically associated with the clonal
expansion of the GMP pool (49), members of which have lost the
ability to differentiate in response to cytokine stimuli. If we exclude
the 20%-30% of CML-BP cases with P53 mutations (28), the 11% of
CML-BP cases with GATA-binding protein 2 (GATA2) mutations
(86), and the 1%-2% of CML-BP cases with the t(3;21)(q26;q22) and
t(7;11)(p15;p15) translocations associated with expression of AME
(AML-1 [acute myeloid leukemia 1], MDS/EVI1 [Myelodysplastic
syndrome-associated gene 1]) (87) and NUP98-HOXA9 (88) chime-
ric proteins, we can safely state that impaired myeloid maturation
of Ph-positive GMPs is the consequence of increased BCR-ABLI
dosage. Indeed, low BCR-ABLI1 levels allow G-CSF-induced granu-
locytic maturation, while high oncogene expression impedes dif-
ferentiation of Lin- progenitors (89).

BCR-ABL1 levels and C/EBPa. inhibition. Different genetic and epi-
genetic mechanisms may act alone or in cooperation to enhance
BCR-ABLI expression and activity. Among them, BCR-ABLI gene
amplification (90, 91), increased BCR promoter activity (92),
decreased miR-203 expression (93), impaired PP2A activity (74),
and genetic/epigenetic inhibition of SHP-1 phosphatase (74,
94) may all account for increased BCR-ABL1 expression/activity
observed during disease progression (72). Interestingly, restora-
tion of PP2A activity in myeloid precursors expressing high BCR-
ABLI levels restores G-CSF-driven differentiation (74), suggesting
that PP2A loss of function might play a central role in impairing
maturation of Ph-positive GMPs.

The inhibitory effect of high BCR-ABL1 levels on differentiation
depends on marked downregulation of C/EBPa. (42), a transcrip-
tion factor essential for granulocytic differentiation. The impor-
tance of the loss of C/EBPa. activity as a central mechanism lead-
ing to differentiation arrest of myeloid CML blasts is supported
by evidence that ectopic C/EBPa expression induces maturation
of differentiation-arrested BCR-ABLI* myeloid precursors and
CD34* CML-BP progenitors (42, 95, 96) and that a CML-BP-like
process emerges in mice transplanted with BCR-ABL1-trans-
duced Cebpa-null fetal liver cells (97). In CD34* CML-BP GMPs,
loss of C/EBPa. does not depend on CEBPA gene mutations (98),
but results from the BCR-ABL1 dose-dependent induction of the
RNA-binding protein heterogenous nuclear ribonucleoprotein
E2 (hnRNP-E2) that, upon interaction with the CEBPA upstream
open reading frame (WORF)/spacer element, inhibits CEBPA trans-
lation (42). hnRNP-E2 expression is high in CD34* CML-BP pro-
genitors, where it suppresses C/EBPa and inhibits differentiation
(42). Highlighting the importance of loss of C/EBPa expression
in CML-BP, coexpression of BCR-ABL1 and AME also suppresses
CEBPA translation and induces accumulation of blasts through
activation of the CEBPA uORF-binding protein calreticulin (99,
100). Notably, C/EBPf is also repressed in CML-BP (101), sug-
gesting that loss of C/EBP activity contributes to differentiation
arrest and aggressive behavior of CML-BP cells. In this regard,
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suppression of C/EBP proteins in CML-BP may also depend on
BCR-ABLI1-induced preferentially expressed antigen in melanoma
(PRAME) expression, which impairs myeloid differentiation when
ectopically expressed in CD34" progenitors (34).

The BCR-ABLI1/hnRNP-E2/MAPK inhibitory pathway. The ability of
hnRNP-E2 to suppress C/EBPa requires the constitutive activation
of the MAPKs ERK1 and ERK2 (89, 102), which directly increases
hnRNP-E2 stability (89). This is consistent with the observation that
enhanced expression of various RNA-binding proteins is among the
many imatinib-sensitive changes found in myeloid CML-BP (51).
The involvement of ERK1/2 in the regulation of hnRNP-E2 is not
surprising, as constitutive MAPK activation is readily detectable in
CD34* CML-BP (102), while CML-CP progenitors show transient
MAPK activation in response to mitogenic/survival signals induced
by extracellular growth factors (103). Accordingly, levels of activat-
ed ERK1/2 in the absence of exogenous cytokines were similar in
normal and CD34* CML-CP progenitors and were not affected by
imatinib (103). Graded BCR-ABLI1 expression correlates with a pro-
gressive increase in ERK1/2 activity (102), and ERK1/2 suppression
rescues C/EBPa expression and allows G-CSF-driven maturation
of differentiation-arrested progenitors expressing high BCR-ABL1
levels (89). Thus, constitutive ERK1/2 activation in CML-BP is not
only essential for transduction of mitogenic/survival signals but
also promotes the activation of antidifferentiation signals leading
to translational (42) and, perhaps, posttranslational (104) inacti-
vation of C/EBPa. Notably, a decrease in monophosphorylated
ERK?2 in imatinib-responsive but not -resistant patients suggests
that ERK signaling may be important for transformation of TKI-
resistant CML (105).

miR-328: a molecular relay in CML disease progression. A few miRNAs
are aberrantly regulated in CML (93, 106, 107), but their involve-
ment in disease progression is unclear. Interestingly, the correct
functioning of the BCR-ABL1/MAPK/hnRNP-E2 inhibitory axis
requires the inhibition of miR-328, which, otherwise, would bind
hnRNP-E2 and prevent its interaction with CEBPA mRNA, thus
restoring CEBPA mRNA translation. Loss of miR-328 occurs in
CD34* CML-BP but not CML-CP myeloid progenitors, and forced
miR-328 expression at levels resembling those observed in CML-CP
rescues C/EBPa expression and reverses the CML-BP-like leukemia
to a disease that resembles a myeloproliferative disorder in mice
transplanted with BCR-ABLI-expressing myeloid precursors (108).

Genomic instability facilitates blastic transformation
Genomic instability usually results from an aberrant cellular
response to enhanced DNA damage. In CML cells, these mecha-
nisms can be modulated by BCR-ABL1 kinase (Figure 3) or may be
kinase-independent.

Enbanced DNA damage. Much endogenous DNA damage arises
from ROS such as superoxide radical anion (-O;"), which may
lead to the production of hydrogen peroxide (H,0,) and hydroxyl
radical (OH). BCR-ABL1-transformed cell lines and CD34* CML
cells contain, on average, 2-6 times more ROS than their normal
counterparts (CML-BP > CML-CP > normal) (37, 109, 110); the
mitochondrial respiratory chain, enhanced glucose uptake, and
NADPH oxidase may play a role in this phenomenon (111). ROS
can cause damage to all nucleobases and deoxyribose residues in
DNA and free nucleotides, generating oxidized bases and DNA
double-strand breaks (DSBs) (112). The number of oxidative “hits”
to DNA per normal human cell per day is about 104 and normal
cells contain approximately 50 DSBs per cell per cell cycle. CD34*
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BCR-ABL1 regulates DNA damage and DNA repair, the 2 major components of genomic instability. BCR-ABL1—positive leukemia cells accumu-
late more DNA lesions, such as 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), and DNA DSBs induced by ROS, AID, and genotoxic agents
(e.g., y-radiation, cisplatin, mitomycin C, hydroxyurea, and UV light) in comparison with normal cells. In addition, BCR-ABL1 inhibits MMR and
stimulates mutagenic NER to generate point mutations including those causing TKI resistance. Moreover, BCR-ABL1 activates unfaithful DSB
repair mechanisms, HRR, NHEJ, and SSA, which contribute to chromosomal aberrations. The effect of BCR-ABL1 on base excision repair
(BER) and O(6)-methylguanine—-DNA methyltransferase (MGMT) is not known. Altogether, elevated levels of DNA damage combined with inef-
ficient/unfaithful DNA repair cause genomic instability in CML-CP and facilitate CML-BP.

CML cells display 3-8 times more oxidized nucleobases and 4-8
times more DSBs (37, 109, 110).

DNA damage could also be directly induced by ionizing radia-
tion and genotoxic drugs, which are used as part of a condition-
ing regimen in hematopoietic transplantation for CML patients.
BCR-ABLI1-positive cells, in comparison with normal cells, accu-
mulate more irradiation- and drug-induced DNA lesions, thus
generating more chromosomal aberrations (113, 114).

Unfaithful and inefficient DNA repair. Unfaithful and/or inefficient
repair of ROS-induced oxidized DNA bases and DSBs may lead to
a variety of point mutations and chromosomal aberrations (115).
CD34* CML cells display a malfunctioning mismatch repair (MMR)
pathway, which can facilitate accumulation of point mutations (116)
(Figure 3). BCR-ABL1 also promotes mutagenic nucleotide excision
repair (NER) (117) and stimulates DSB repair, but the fidelity of the
repair mechanisms (homologous recombination repair [HRR], non-
homologous end-joining [NHEJ], and single-strand annealing [SSA])
is compromised (37,110, 118, 119). In BCR-ABL1-positive cells, point
mutations were introduced during usually faithful HRR, extensive
nucleobase loss was associated with NHEJ, and enhanced SSA gener-
ated large deletions. Overexpression and tyrosine phosphorylation of
RAD51, a key element in HRR responsible for strand invasion and
pairing, may result in aberrant HRR. Deregulation of DNA ligase Illc,
Werner helicase/exonuclease, and Artemis may contribute to excessive
loss of DNA bases during NHE] in BCR-ABL1-positive cells.
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Consequences of genomic instability in CML. Genomic instabil-
ity is probably responsible for two major problems in CML: TKI
resistance and disease progression (13). Both phenomena could
be induced by accumulation of point mutations and additional
chromosomal aberrations in CML-CP cells irreversibly changing
their phenotype toward that in CML-BP.

BCR-ABLI point mutations have been detected in 50%-90% of
patients displaying resistance to imatinib, including approximate-
ly 23% of imatinib-naive patients (120). Moreover, second-genera-
tion TKI treatment in imatinib-resistant cases led to selection of
additional resistance mutations (121).

TKI-resistant BCR-ABL1 mutants exhibit altered kinase activity,
substrate utilization, and transformation potency and are associated
with clonal cytogenetic evolution, which may have an impact on dis-
ease progression (120, 122). Accordingly, BCR-ABL1 kinase muta-
tions are associated with greater likelihood of disease progression,
which suggests enhanced genomic instability in these cells (12).

Accumulation of various chromosomal aberrations and muta-
tions is believed to be responsible for the transition of a relative-
ly benign CP to aggressive BP (13). The frequency of additional
chromosomal abnormalities is approximately 7% in CML-CP and
increases to 40%-70% in the advanced phases of disease, as evalu-
ated by standard cytogenetic analysis (23).

Numeric chromosomal changes are detected at a 50-fold higher
frequency and structural changes at a 12-fold higher frequency in
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CML-BP, in comparison with CML-CP. More sensitive compara-
tive genomic hybridization (CGH) and SNP analyses detect mul-
tiple genetic aberrations already in CP, but CML-BP patients have
much more complex karyotypes (123, 124). This observation sug-
gests that genomic instability is an early event in CML. Patients
from the pre-imatinib and imatinib era display similar types of
genetic aberrations (125).

These aberrations involve acquisition of major alterations, such as
the following: (a) the acquisition of additional chromosomes (e.g.,
+Ph, +8, +19); (b) the acquisition of isochromosome i(17q); (c) the
acquisition of t(1;17), which is associated with loss of p53; (d) the
acquisition of t(1;21), which affects RUNX1 (which is also known
as AMLL1); (e) the acquisition of t(3;21), which generates the AML-1/
EVI-1 fusion protein (a negative transcriptional regulator and cell sig-
naling modulator); (f) the acquisition of t(7;11), which produces the
NUP98-HOXAO9 fusion protein that causes aberrant self renewal; and
(g) the acquisition of translocations and inversions associated with
AML/myelodysplasia (e.g., inv[3] and t[15;17]). In addition, minor
genetic aberrations such as loss of heterozygosity (LOH) at 14q32,
homozygous mutations/deletions of pRB, inactivating point muta-
tions in P53 and in interferon consensus sequence binding protein
(ICSBP, which encodes an interferon regulatory transcription factor
with leukemia-suppressor activity), gain-of-function mutations in
GATA-2 (which regulates myelomonocytic differentiation) and RAS
(small GTP-binding signal transduction protein), and mutationsina
zinc finger transcription factor PR domain containing 16 (PRDM16,
mutated in myelodysplastic syndrome and AML) have been also
detected. Numerous SNPs have been reported in additional genes
regulating cell differentiation, such as ICSBP, GATA-3, and AMLI in
myeloid CML-BP (86); however, these results await confirmation.

Inaddition, mutations in CDKN2A/B and IKZFI facilitate CML-CP
progression to CML-lymphoid BP (24, 25). Moreover, BCR-ABL1-
mediated stimulation of activation-induced cytidine deaminase
(AID) leads to a hypermutator phenotype, CML-lymphoid BP, and
imatinib resistance (126).

Experimental findings support the conclusion that genetic aber-
rations contribute to malignant progression of CML. For example,
loss of p53 led to a CML-BP-like disorder in mice (127). CDKN2A
gene loss enhanced oncogenicity in mouse models of BCR-ABL1-
induced ALL (128). Coexpression of BCR-ABLI and NUP98-HOXA9
caused CML-BP-like disease in mice (129). GATA-2 gain-of-func-
tion mutations, partial deletions of PMRD16 and RUNXI, and
expression of RUNXI1-PMRDI16 detected in CML-myeloid BP may
disturb myelomonocytic differentiation, strongly suggesting their
involvement in acute myeloid transformation (86, 130).

Moreover, genetic aberrations associated with CML-BP progres-
sion likely play a role in TKI resistance (131), causing a high risk
of treatment failure (132). For example, additional chromosomal
aberrations, loss of P53, and CDKN2A and RUNX1 abnormalities
may be responsible for disease persistence under imatinib treat-
ment (128, 133-135).

BCR-ABLI kinase—dependent and —independent genomic instability in
CML-CP LSCs and/or LPCs. The (9;22) translocation that results in
the formation of the Ph chromosome may be a random event or may
result from preexisting conditions associated with genomic instabil-
ity in HSCs. Therefore, additional genetic aberrations accumulated
during the course of CML may be promoted by BCR-ABL1 kinase
and also by a preexisting abnormality responsible for the formation
of t(9;22)(q34;q11). The former statement is supported by reports
that BCR-ABL1 kinase-positive cells acquire more oxidative DNA
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lesions than normal counterparts in response to endogenous ROS
and genotoxic treatment (109, 110) and that BCR-ABL1 can inhibit
some DNA repair mechanisms (MMR) and stimulate other mecha-
nisms (NER, HRR, NHE]J, and SSA) at the cost of their fidelity (136)
(Figure 3). However, the latter speculation about preexisting abnor-
mality cannot be ruled out because chromosome abnormalities were
detected in £(9;22)(q34;q11)-negative metaphases appearing during
imatinib therapy in patients with newly diagnosed CML-CP (121).

Genomic instability in CML-CP most likely occurs in the LSC-
enriched CD34*CD38" population and/or the LPC-rich CD34*
population because TKI-resistant BCR-ABLI mutants and chromo-
somal aberrations were detected in both subpopulations (38, 41,
114). As CML-CP can progress to either myeloid or lymphoid BP
(sometimes a mixed myeloid/lymphoid phenotype) and chromo-
somal abnormalities are documented in both phenotypes (137),
this suggests that genomic instability may occur at the LSC and/or
LPC level. Mutations acquired by the LSCs are likely to be passed
on to successive generations of LPCs. On the other hand, genetic
aberrations acquired by CML-CP LPCs may “upgrade” them to the
status of CML-BP LSCs (49).

Altogether, we postulate that elevated levels of DNA damage
combined with unfaithful/inefficient DNA repair may generate
mutations and chromosomal aberrations in CML-CP LSCs and/or
LPCs, causing resistance to TKIs and progression toward CML-BP.
These mechanisms at least partially depend on BCR-ABL1 kinase.
Since LSCs, in contrast to LPCs, are not sensitive to TKIs, LSCs
may be “ticking time bombs,” eventually exploding to produce a
TKI-resistant LPC clone that may evolve into a CML-BP clone.

Genomic instability in CML cells in the era of TKIs. BCR-ABL1 kinase
induces genomic instability (13); therefore, imatinib and other
TKIs should prevent accumulation of additional genetic chang-
es in CML cells. In fact, imatinib reduced ROS, oxidative DNA
damage, point mutations, and other genetic aberrations in BCR-
ABL1-positive cells (109, 110, 138). Nevertheless, imatinib-treated
CML patients continue to accumulate point mutations (includ-
ing those causing resistance to other TKIs) and chromosomal
aberrations (21, 121, 130, 139).

There are several possible explanations for persistent genomic
instability during TKI treatment. First, although TKIs inhibit
BCR-ABLI kinase activity in CML-CP LPCs, their effectiveness in
CML-CP LSCs is questionable. The effect of TKIs on BCR-ABL1
kinase-induced signaling may be obscured by growth factors, usu-
ally resulting in incomplete inhibition or even stimulation of sig-
naling pathways, such as those involving STATS, AKT, and MAPKs
(140, 141). Therefore, TKIs cannot completely eliminate the effects
of BCR-ABLI kinase and may not effectively inhibit genomic insta-
bility. Second, imatinib may exert mutagenic activity to induce
centrosome and chromosome aberrations (142). The appearance of
cytogenetic aberrations in £(9;22)(q34;q11)-negative cells following
imatinib therapy supports this hypothesis (143). Third, if CML-CP
cells display an active preexisting genomic instability responsible
for generation of t(9;22), this process should be BCR-ABL1 kinase
independent and will continue generating errors despite treatment
(121). This speculation implicates BCR-ABL1 kinase-dependent
and -independent genomic instability in CML cells.

Prevention of genomic instability in CML-CP to improve therapeutic effects
of TKIs and antagonize CML-BP. The majority of CML-CP patients
at diagnosis do not have mutations or a “critical” combination of
aberrations causing either TKI resistance or disease progression.
However, a cohort of TKI-treated patients still develops mutations
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and chromosomal aberrations even though imatinib efficiently
antagonizes genomic instability in experimental CML models.
Given the fact that BCR-ABLI-negative patients, as assessed by
reverse transcriptase PCR, may contain up to 106 CML cells in their
body, that CML-CP patients can have approximately 5 x 107 CD34*
cells displaying innate imatinib resistance (144), and that even ima-
tinib-sensitive CD34* LPCs can still undergo up to 1-3 cell cycles in
the presence of the drug and growth factors before eventually being
eliminated (71), prevention of genomic instability may be critical
for a better therapeutic effect or even eradication of CML.

ROS cause oxidative DNA damage resulting in both clinically
relevant BCR-ABLI mutations and chromosomal aberrations often
detected in CML-BP (i.e., aneuploidy, translocations, and trunca-
tions) (109, 113). Antioxidants diminished ROS-mediated oxida-
tive DNA damage and reduced the appearance of TKI-resistant
mutations and chromosomal aberrations (37, 109, 110). Because
the combination of imatinib and an antioxidant exerted a syner-
gistic/additive antimutagenic effect (109), it is possible that the
combination of TKI and antioxidants may prevent CML-BP by
reducing the appearance of TKI-resistant clones and accumula-
tion of a “critical” combination of genetic aberrations.

Concluding remarks

To date, there is strong evidence supporting the idea that the
level of BCR-ABL1 kinase activity plays a pivotal role in almost
all CML patients undergoing progression and that BCR-ABL1-
induced genetic/chromosomal abnormalities can predispose to
transformation and/or markedly influence the aggressiveness of
the blast crisis progenitor cell clone. However, there are several
crucial and burning questions that remain to be answered. What
controls BCR-ABL1 expression and activity during progression?
Does malignant progression originate from CML-CP LSCs and/or
LPCs? Is the acquisition of self renewal, impaired differentiation,

—

and increased genomic instability of CML-BP stem and/or pro-
genitor cells solely a BCR-ABL1-dependent effect? A possible sce-
nario might envision a BCR-ABL1 autoregulatory loop that ampli-
fies signals that positively influence BCR-ABLI gene transcription
and enhance its protein stability. Likewise, it is highly plausible
that, in CML-CP, BCR-ABL1-induced genomic aberrations and/or
BCR-ABL1-independent preexisting genetic lesions function as
“amplifiers” of a genetically unstable phenotype and thereby pre-
dispose CML to blastic transformation by affecting stemness, sur-
vival, proliferation, differentiation, and/or genome stability of the
Ph-positive bone marrow stem and progenitor cells.
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