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The homeodomain transcription factor pancreatic duodenal homeobox 1 (Pdx1) is a major mediator of insulin
transcription and a key regulator of the f§ cell phenotype. Heterozygous mutations in PDX1 are associated with
the development of diabetes in humans. Understanding how Pdx1 expression levels are controlled is therefore
of intense interest in the study and treatment of diabetes. Pdx1 C terminus-interacting factor-1 (Pcif1, also
known as SPOP) is a nuclear protein that inhibits Pdx1 transactivation. Here, we show that Pcif1 targets Pdx1 for
ubiquitination and proteasomal degradation. Silencing of Pcif1 increased Pdx1 protein levels in cultured mouse
B cells, and Pcifl heterozygosity normalized Pdx1 protein levels in Pdx1*~ mouse islets, thereby increasing
expression of key Pdx1 transcriptional targets. Remarkably, Pcifl heterozygosity improved glucose homeosta-
sis and {3 cell function and normalized 3 cell mass in Pdx1*~ mice by modulating {3 cell survival. These findings
indicate that in adult mouse f3 cells, Pcif1 limits Pdx1 protein accumulation and thus the expression of insulin
and other gene targets important in the maintenance of 3 cell mass and function. They also provide evidence

that targeting the turnover of a pancreatic transcription factor in vivo can improve glucose homeostasis.

Introduction
The homeodomain transcription factor pancreatic duodenal
homeobox 1 (Pdx1) is required for pancreas development in mice
and in humans (1-4). Pdx1 is required for the specification of pan-
creatic progenitors after which its expression becomes restricted
primarily to the insulin-producing f cell, where it plays critical
roles in insulin gene transcription and insulin secretion as well as
B cell survival (reviewed in ref. 5). Tight regulation of Pdx1 pro-
tein levels is necessary for Pdx1 to play its developmental and adult
physiological roles. Genetic studies in which Pdx1 is conditionally
inactivated in mice suggest that PdxI gene dosage is critical both
for development of the endocrine and exocrine pancreas and for
the maintenance of adult f§ cells (6-8). Heterozygous loss of Pdx1
resulting in approximately 30% reduction in protein levels is suffi-
cient to induce impaired glucose tolerance and insulin secretion in
mice, and heterozygous mutations are associated with the develop-
ment of diabetes in humans (9-11). Furthermore, Pdx1 haploinsuf-
ficiency limits the f cell compensatory mechanisms that occur in
response to genetic and diet-induced insulin resistance (12-14).
Much of the regulation of Pdx1 dosage occurs at the transcrip-
tional level. Upstream regulatory elements have been described
that temporally and spatially control Pdx1 expression and are
required for outgrowth and differentiation of pancreatic progeni-
tors (8, 15-20); however, posttranslational regulation of Pdx1 via
phosphorylation has also been proposed to have diverse func-
tional effects, including regulation of Pdx1 transactivation and
protein stability (13, 21-25). We previously described Pdx1 C ter-
minus-interacting factor 1 (Pcif1, also known as SPOP), a broad
complex, tramtrack, bric-a-brac (BTB) domain-containing pro-
tein that interacts directly with the C terminus of Pdx1 (26, 27).
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BTB-domain containing proteins have recently been identified
as substrate-specific adaptors for ubiquitin ligase complexes that
contain the scaffolding protein Cul3 (28, 29). We demonstrate
here that the Pcif1-Cul3 complex targets Pdx1 protein for ubig-
uitination and proteasomal degradation. Further, we derived and
characterized mice with a mutant allele of PcifI (Pcif1#) and found
that reduction of Pcifl gene dosage improves glucose tolerance,
normalizes (3 cell mass, and rescues f§ cell apoptosis rates in PdxI*/~
mice while normalizing Pdx1 protein levels and the expression of
Pdx1 transcriptional targets.

Results

Pcifl targets Pdx1 for ubiquitination by a Cul3-based E3 ubiquitin
ligase. BTB domain-containing proteins have been identified as
substrate-specific adaptors for ubiquitin ligase complexes that
include the scaffold protein Cul3 (30). The Drosophila ortholog
of Pcifl targets cubitus interruptus for ubiquitination, while the
human ortholog SPOP has been linked to multiple targets, includ-
ing the polycomb protein Bmil (31, 32). To determine whether
a similar mechanism underlies Pcifl-mediated downregulation
of Pdx1 transactivation, we utilized heterologous HEK293T cells
overexpressing Pdx1 with or without coexpression of Pcifl and
Cul3. In cells overexpressing Pdx1, treatment with the protea-
some inhibitor MG-132 induced a slight increase in Pdx1 protein
levels, suggesting that Pdx1 protein is proteasomally degraded in
this system (Figure 1A). Addition of Pcif1 and Cul3 resulted in a
dramatic decrease in Pdx1 protein accumulation that was partially
reversed by proteasome inhibition. Notably, the ability of Cul3 to
decrease Pdx1 accumulation was attenuated by alanine substi-
tutions for key leucine and glutamic acid residues required for
interactions between Cul3 and BTB domain-containing proteins
(Cul3L52AES5A) (30, 33) (Figure 1A).

To determine whether ubiquitination of Pdx1 is promoted by
Pcifl and Cul3, we employed an in vivo ubiquitination assay in
HEK293T cells. Cells expressing Myc-tagged ubiquitin were sub-
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Pcif1 and Cul3 target Pdx1 for ubiquitination. (A) HEK293T cells were transfected with the indicated plasmids and treated with vehicle or MG-132
for 4 hours before harvest. Western blots probed for Pdx1, Flag (Cul3 and Pcif1), and Tubulin (loading control). (B-D) HEK293T cells transfected
with the indicated plasmids prior to immunoprecipitation with IgG or anti-Myc—coupled agarose. Western blots probed for HA (Pdx1). Brackets

indicate ubiquitinated Pdx1.

jected to immunoprecipitation with anti-Myc or isotype-matched
control IgG and the products immunoblotted for Pdx1. Ubiqui-
tination of Pdx1 was detectable as a ladder of high-molecular-
weight bands that were immunoprecipitated in cells that expressed
Pcif1 and Pdx1, and ubiquitination was further increased by the
addition of Cul3 (Figure 1B and Supplemental Figure 1; supple-
mental material available online with this article; doi:10.1172/
JCI40440DS1). Cul3L52AESSA supported a minimal level of ubig-
uitination, consistent with the proposed role of Cul3 interaction
with Pcif1 in promoting Pdx1 ubiquitination.

We previously determined that the TRAF domain of Pcifl is
required for the physical and functional interaction with Pdx1 in
vitro (27). To determine whether the interaction between Pcif1 and
Pdx1 was required for Pdx1 ubiquitination, we replaced full-length
Pcif1 with Pcifl lacking the TRAF domain (Pcif1A TRAF) in the
in vivo ubiquitination system and found that the TRAF domain
was required to promote Pdx1 ubiquitination (Figure 1C). Further,
deletion of a conserved 28-amino-acid motif in the C terminus of
Pdx1 (aa 210-238) that is required for the physical and functional
interaction with Pcifl (26, 27) abolished Pcif1-mediated ubiqui-
tination of Pdx1 (Figure 1D). Taken together, these data strongly
suggest that physical interactions among Cul3, Pcif1, and Pdx1 are
required to promote Pdx1 ubiquitination.

Pcif1 regulates Pdx1 protein accumulation in Min6 3 cells. The experi-
ments described above are in agreement with those of Bunce et al,
who demonstrated Pcifl-mediated ubiquitination of Pdx1 in an
overexpression system (34). To determine whether endogenous
Pcif1 regulates Pdx1 protein levels in f cells, we next examined the
impact of Pcif1 loss of function on Pdx1 protein accumulation in
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Min6 mouse insulinoma cells. shRNA-mediated silencing of Pcif1
resulted in a greater than 50% reduction in Peif] transcript (Figure
2A). Compared with cells transfected with a nontargeting shRNA,
endogenous Pdx1 protein levels were substantially increased in cells
after Pcif1 silencing (Figure 2B). Pdx1 protein levels are critical for
maintaining p cell function and mediate these effects by regulat-
ing the transcription of f cell genes such as MafA and the glucose
transporter Glut2 (35, 36). Downregulation of Pcif1 in Min6 cells
was sufficient to induce a greater than 2-fold upregulation of MafA
and 1.5-fold upregulation of Glut2 transcript (Figure 2C). Insu-
lin mRNA was not regulated under these conditions, likely due
to its long half-life. Downregulation of Pcifl in Min6 cells also
extended the half-life of endogenous Pdx1, dramatically increas-
ing protein stability over the course of a 6-hour treatment with
cycloheximide (Figure 2D). Treatment of Cul3-overexpressing
Min6 cells with the proteasome inhibitor LLnL induced the accu-
mulation of high-molecular-weight ubiquitinated proteins (Figure
2E), including bands detected by Pdx1 Western blot that may rep-
resent polyubiquitinated Pdx1. Accumulation of this species was
abolished upon Pcifl knockdown (Figure 2E, left panel). Probing
Pdx1 immunoprecipitates from LLnL-treated Min6 cells with an
anti-ubiquitin antibody revealed the presence of a high-molecular-
weight (~98 kDa) band that was substantially diminished upon
Pcifl knockdown (Supplemental Figure 2). These data suggest
that Pcifl-mediated regulation of endogenous Pdx1 protein levels
directly impacts Pdx1 protein ubiquitination, accumulation, and
stability and the expression of key Pdx1 target genes.

Derivation of a Pcifl gene trap allele. To investigate the role of
Pcif1 in vivo, we generated mice from an ES cell clone containing
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Increased Pdx1 accumulation and stability in Pcif1-deficient Min6 {3 cells and embryonic pancreas. (A—C) Min6 cells nucleofected with control
nontargeting shRNA (shNT) or shPcif1. (A) Pcif1 transcript measured by QPCR and normalized to Hprt. n = 3, **P < 0.01. (B) Western blot
probed for Pdx1 and tubulin (loading control). (C) Transcript levels of Pdx1 transcriptional targets MafA and Glut2. n = 3, **P < 0.01. (D) Min6
cells expressing shNT or shPcif1, treated with the translation inhibitor cyclohexamide (CHX) and harvested at the time points indicated. Western
blots are probed for Pdx1 and Ran (loading control). (E) Min6 cells overexpressing Cul3 and nontargeting shRNA or shPcif1 were treated with
vehicle or 20 uM LLnL for 8 hours. Western blots are probed for Pdx1 (left) and ubiquitin (right). (F) Fluorescence staining of E16.5 embryos with
dilute Pdx1 antibody. Original magnification x10. (G) p Cell area of E18.5 embryos. n = 6, **P < 0.01 compared with Pcif1+*.

a gene trap insertion in the first intron of the Pcifl locus. Mice
heterozygous for the gene trap allele (Pcif1"#) were viable and fer-
tile. In heterozygous crosses, Pcif1¢/¢ embryos harvested at E18.5
were found at Mendelian ratios (» = 372); however, no viable Pcif1/¢
mice were found after postnatal day 1, indicating that homozy-
gous loss of Pcifl results in postnatal lethality. At E18.5, Pcif18/¢
embryos displayed normal body and pancreas weight and normal
blood sugar (Supplemental Figure 3).

The gene trap insertion cassette contains a strong splice acceptor
sequence followed by the fGeo reporter and ends with a polyad-
enylation signal. The transcript generated by the gene trap should
prevent splicing between exons 1 and 2, thereby blocking the gener-
ation of the normal Pcif] transcript. Using primers that span exons
1 and 2, Pcifl transcript levels were reduced by greater than 50%
in E18.5 pancreas and lung from heterozygous animals and unde-
tectable in Pcif1#/¢ tissues (Supplemental Figure 4, A and B). Simi-
lar reductions in Pcifl protein were observed in Western blots of’
embryonic kidney lysates (Supplemental Figure 4C). No Pcif] tran-
script was detected in Pcif1$/# tissues using primers spanning exons
7 and 8 (data not shown), indicating that the gene trap efficiently
prevents the generation of a protein-coding Pcif! transcript.

Transcript analysis indicated that Pcifl is expressed during
embryonic pancreas development (data not shown). To deter-
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mine whether Pcif1 modulates Pdx1 protein accumulation during
development, we assessed staining intensity in sections from E16.5
and E18.5 embryos using an anti-Pdx1 antibody at a dilution that
enabled semiquantitative evaluation of Pdx1 protein levels. Pdx1
staining intensity was markedly increased in all pancreatic lineages
in Pcif18/% mice at these stages (Figure 2F and data not shown).
Further, mice homozygous for the Pcifl gene trap allele demon-
strated an approximately 3-fold increase in relative 3 cell area at
E18.5 (Figure 2G), consistent with previously established roles of
Pdx1 protein level in regulating endocrine progenitor specifica-
tion and lineage allocation during pancreatic development (7, 8,
37,38). There was no significant change in f§ cell area in the Pcif1"¢
mice at this stage of development (Figure 2E).

Increased Pdx1 protein levels in Pcif1/#Pdx1"/~ mouse islets. To deter-
mine whether Pcifl regulates Pdx1 protein levels in adult § cells in
vivo, we intercrossed Pcifl /¢ and Pdx1”~ mice and analyzed islets
isolated from wild-type, Pcif1*/¢, Pdx1*/-, and Pcif1*/¢Pdx1*/- litter-
mates (Figure 3, Aand B). In agreement with a study by Brissova et al.
(10), Pdx1 protein levels were reduced in Pdx1*"- islets compared
with those of wild-type littermates, whereas Pdx1 protein levels
were normalized in Pcif]1V#Pdx1"/~ islets. Pdx1 transcript levels were
not affected by Pcifl genotype, consistent with the hypothesis
that Pcifl-mediated regulation of Pdx1 occurs posttranscription-
Volume 120 3715
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ally (Figure 3C). Further, the normalization of Pdx1 protein levels
in Pcif1*/¢Pdx1*/~ islets was associated with normalization of pre-
mRNA level for insulin1, a key Pdx1 transcriptional target (Figure
3D). These data demonstrate that Pcif1 regulates the accumula-
tion of Pdx1 protein in the adult 3 cell and may thus modulate the
actions of Pdx1 as a critical regulator of glucose homeostasis.

Pcif1 heterozygosity normalizes 3 cell mass and improves 3 cell survival
in Pdx1"~ mice. Pdx1*/~ mice were previously reported to exhibit
an age-related decline in f cell mass due to impaired f§ cell sur-
vival (39). Examination of islet architecture in PdxI*~ pancreata
revealed the previously described “mixed islet” phenotype, with
glucagon-positive a cells scattered throughout the core of the
islet; this defect was not normalized in Pcifl*/#Pdx1*/~ mice (Fig-
ure 4A). We quantified  cell mass by determining the relative area
occupied by insulin staining of pancreatic sections and observed
a marked decrease in the cross-sectional area stained by insulin in
Pdx17- pancreas compared with all other genotypes. Upon quanti-
fication, Pcifl /% mice were found to have f§ cell mass similar to that
of wild-type littermates, whereas Pdx1*~ mice displayed a greater
than 50% decrease in P cell mass compared with wild-type and
Pcif1*/¢ mice (Figure 4B). Notably, Pcif] heterozygosity normalized
the reduced f cell mass of Pdx1*/~ mice. This was accompanied by
a reduction in the rate of apoptotic f cells in Pcif1*/#Pdx1"~ mice
as compared with PdxI*~ mice (Figure SA).

To determine whether the rescue of 3 cell area in Pcif1”/¢Pdx1"~
was associated with changes in islet size, we determined the dis-
tribution of islet size in all genotypes. Although average islet size
was not different among genotypes (data not shown), Pdx1*/~ mice
had a dramatic increase in the number of small (101-250 um?)
islets and a corresponding decrease in the percentage of medium-
sized (1,001-2,500 um?) and large (>25,000 um?) islets (Figure 4C).
Notably, each of these differences in islet size distribution was not-
malized in Pcif1*/#Pdx1*/~ mice (Figure 4C).

In Pcif17# mice, the finding of increased  cell apoptosis in
the setting of normal {3 cell mass (Figure 4B and Figure 5A) sug-
gested that 3 cell replication may also be influenced by Pcif1 gene
dosage. Indeed, Pcif1”¢ mice displayed an increase in the rate
3716
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Figure 3

Pcif1 regulates Pdx1 protein accumulation and Pdx1 tar-
get gene expression in primary mouse islets. (A) Western
blot of islets isolated from individual mice, probed for Pdx1.
(B) Quantification of Western blots of islet protein extracts,
normalized to loading control. n = 4, *P < 0.05. (C) Pdx1
and Pcif1 transcript levels in isolated mouse islets. n = 5-8,
*P < 0.05, **P < 0.01 compared with wild-type. (D) Insulin
transcript level in mouse islets. n = 5-8, **P < 0.01.
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of B cell replication compared with wild-type litctermates; how-
ever, the rates of BrdU incorporation were not different among
Pcif17¢, Pdx1*/~, and Pcif1"%Pdx1*/~ mice (Figure 5B). The finding
of increased f cell replication in Pcif1%¢ mice was confirmed by
quantification of Ki67 and phospho-histone H3-positive f cells
(Supplemental Figure 5, A and B). We also observed a modest
but significant decrease in average 3 cell size in PdxI*/~ mice that
was not altered in the context of Pcifl heterozygosity (Figure SC).
Taken together, these data indicate that the normalization of
P cell mass observed in Pcifl7#Pdx1"~ mice is due primarily to a
reduction in the rate of apoptosis.

To determine whether the effect of Pcifl heterozygosity on
B cell turnover was age dependent, we assessed the f§ cell replication
rate of each genotype in 5-week-old mice. Notably, we observed no
differences in BrdU incorporation among genotypes at this age
(Supplemental Figure 6). In these adolescent animals, pancreas
size and f3 cell apoptosis rates as assessed by TUNEL staining were
extremely low, precluding rigorous evaluation; preliminary analy-
sis did not reveal differences based on genotype (data not shown).
Taken together, these data suggest that the effect of Pcif] hetero-
zygosity on f cell replication rates is age dependent and that Pcifl
deficiency improves the age-related decline in 3 cell mass previ-
ously observed in Pdx1"~ mice (39).

Pcifl deficiency reduces ER stress—associated apoptosis in Pdx1-deficient
B cells. Pdx1 deficiency was recently shown to result in increased
susceptibility to ER stress-induced apoptosis in f§ cells (14). To
determine whether improved ER homeostasis contributed to the
improvement in {3 cell survival in Peif1”/¢Pdx1"~ mice, we measured
mRNA levels of the ER chaperone protein Bip in islets isolated
from each genotype. As recently described (14), we observed an
increase in Bip mRNA levels in Pdx1*~ islets compared with those
of wild-type littermates (Figure 6A). Bip mRNA levels were nor-
malized in Pcif1*/¢Pdx1*/~ compared with Pdx17~ islets, suggesting
that improved ER homeostasis may underlie the improved f cell
survival in transheterozygous animals. In support of this finding,
knockdown of endogenous Pdx1 protein in Min6 cells resulted in
increased cleavage of the ER-resident caspase-12, while simultane-
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ous knockdown of Pcif1 restored Pdx1 protein to control levels
and prevented caspase-12 cleavage (Figure 6B).

Pcif1 heterozygosity improves glucose homeostasis in Pdx1"/~ mice. To
determine whether the observed normalization of f§ cell mass in
Pcif1*/¢Pdx1*/~ mice is associated with improved f cell function,
we assessed glucose tolerance and insulin secretion. Male and
female Pcif1”7¢ mice displayed normal glucose tolerance upon
intraperitoneal glucose tolerance testing, and PdxI*/~ mice were
glucose intolerant as previously described (Figures 7, A and B). The
glucose intolerance phenotype of Pdx1”~ mice was significantly
improved in both male and female Pcifl/#Pdx1*/~ transheterozy-
gous mice. All genotypes displayed similar insulin sensitivity, deter-
mined by insulin tolerance testing (Figures 7, C and D), suggesting
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Figure 4
Pcif1 heterozygosity normalizes
B cell mass in Pdx1+- mice. (A)
Representative images of insulin-
and glucagon-stained adult pan-
creas sections. Original magnifica-
* tion x20. (B) Quantification of {3 cell
mass. n = 7-10 mice per group;
*P < 0.05 compared with wild-type.
(C) Islet size distribution. n = 7-9
mice per group;*P < 0.05, **P < 0.01
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that the observed alterations in glucose tolerance were due to dif-
ferences in insulin secretion; therefore, acute glucose-stimulated
insulin secretion was assessed in vivo. As expected, Pdx1*~ mice
displayed a blunted insulin secretory response to glucose. Notably,
the defect in PdxI*/~ mice was attenuated, though not fully rescued,
in Pcif1*/€Pdx1*~ mice (insulin AUC: PdxI*~ vs. Pcifl/¢Pdx1"~,
373 £ 44 vs. 595 + 58 pM min; P < 0.05) (Figure 7E).

To determine whether Pcifl heterozygosity directly influences
islet function, we further analyzed insulin secretion in isolated
islets. Wild-type and Pcif1# islets displayed a significant glucose
stimulation of insulin secretion in static incubations (Figure 7F).
Although PdxI"/ islets were previously reported to display nor-
mal insulin secretion ex vivo, we observed a blunted response
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Normalized B cell mass is mediated by improved survival in Pcif1+9tPdx1+- mice. (A) Apoptosis measured by quantifying insulin- and TUNEL-
copositive cells. (B) p Cell replication measured by quantifying insulin and BrdU double positive cells. (C) p Cell size calculated by dividing insu-
lin-positive islet area by the number of DAPI-stained nuclei counted within that area. All morphometric analyses performed on pancreas sections
from 16-week-old male mice. n = 5-8 per group; *P < 0.05, **P < 0.01 compared with wild-type.
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Pcif1 deficiency improves ER homeostasis in Pdx1-deficient § cells.
(A) Bip mRNA levels as a measure of ER stress in isolated islets, nor-
malized to Hprt. n = 7 per group; *P < 0.05 compared with wild-type.
(B) Western blot for Pdx1 and the ER-resident caspase-12 after Pcif1
or Pdx1 knockdown in Min6 cells.

after static incubation (1.76 = 0.26-fold over basal secretion;
P = NS). Glucose-stimulated insulin secretion was restored in
Pcif178Pdx1*/ islets (2.76 + 0.4-fold over basal secretion, P = 0.07)
(Figure 7F). These data suggest that Pcifl haploinsufficiency
improves glucose responsiveness in Pdx17- {3 cells.

Pcifl regulation of Pdx1 protein levels is vegulated by glucose. The
increase in Pdx1 protein level that followed shRNA-mediated Pcif1
silencing in Min6 cells (Figure 2B and Figure 8A) was observed
in cells cultured in low-glucose-containing medium (5.5 mM).
Although Min6 cells chronically maintained in high glucose exhib-
it levels of Pcifl similar to those maintained in low glucose (Sup-
plemental Figure 7), Pcif1 silencing in Min6 cells cultured in high-
glucose medium (25 mM) did not significantly alter endogenous
Pdx1 protein levels (Figure 8A), suggesting that Pcif1 modulation
of Pdx1 protein accumulation is regulated by glucose. In addi-
tion, the level of Pdx1 protein was increased in high-glucose- com-
pared with low-glucose-cultured cells, in agreement with recent
findings by Humphrey et al. demonstrating that Pdx1 protein is
stabilized in Min6 cells and primary islets cultured under high-
glucose conditions (25). Similarly, we found that in the HEK293T
overexpression system, the previously observed effect of Pcifl and
Cul3 on Pdx1 protein accumulation (Figure 1A) was amplified
in cells cultured in 5.5 mM glucose as compared with standard
(25 mM glucose) conditions (Figure 8B). In agreement with these
findings, overexpressed Pdx1 more readily coimmunoprecipitated
with Flag-tagged Pcifl in cells cultured in low glucose (Figure 8C),
suggesting that decreased interaction between Pcifl and Pdx1 in
high-glucose conditions may underlie the increase in Pdx1 protein
accumulation in those cells.

In primary mouse islets, overnight culture in high glucose (30
mM) resulted in an approximately 50% decrease in Pcifl mRNA,
which corresponded to a posttranscriptional increase in Pdx1
protein (Supplemental Figure 8, A and B). This increase in Pdx1
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protein was associated with a greater than 10-fold increase in insu-
lin mRNA level (Supplemental Figure 8C), suggesting that acute
glucose regulation of Pcifl transcription could contribute to the
posttranscriptional increase in Pdx1 protein levels and increased
expression of Pdx1 transcriptional targets. Taken together, these
data suggest that glucose modulation of Pdx1 protein accumula-
tion involves multiple mechanisms including regulation of levels
of and interaction with Pcif1.

Discussion
Here, we demonstrate that Pcif1, a BTB domain protein partner of
Pdx1, directly contributes to the accumulation of Pdx1 protein in
the adult f cell and thus to the actions of Pdx1 as a critical regula-
tor of glucose homeostasis. Our results demonstrate that Pcif1 and
Cul3 cooperatively target Pdx1 for ubiquitination and proteasomal
degradation and that Pcif1 deficiency increases Pdx1 protein levels
and stability in Min6 cells and in the developing pancreas and adult
islets in vivo. Normalization of Pdx1 protein levels in Pcif1"/8Pdx1*/~
transheterozygous mice was associated with improved  cell func-
tion and mass, leading to improved glucose tolerance and insulin
secretion in Pdx1"~ mice. The improvement in {3 cell mass was due to
an attenuation of the survival defect caused by Pdx1 deficiency and
associated with an improvement in ER homeostasis. These results
provide genetic evidence of posttranscriptional regulation of Pdx1
as a mediator of glucose homeostasis and of § cell survival in vivo.

Pcifl heterozygosity completely rescued 3 cell mass and islet
insulin transcript levels in Pdx1"/~ mice but mediated only a par-
tial rescue of insulin secretion and thus glucose tolerance. Further,
the defect in islet architecture observed in Pdx1”~ mice was not
normalized. These discrepancies may reflect different thresholds
of Pdx1 required for optimal activation of Pdx1 transcriptional
targets involved in islet development, insulin secretion, and 3 cell
growth and survival. Our analysis of Pcif1%/# embryos demonstrat-
ed that although Pcif1 is not required for pancreatic organogen-
esis, it does influence the formation of developing 3 cells; how-
ever, the spatial and temporal sequence of Pcifl expression in the
pancreas has not yet been fully elucidated, and thus the relative
importance of Pcif1 in regulation of the multiple roles of Pdx1 in
the developing pancreas merits further investigation.

Although our findings suggest that the improved glucose
homeostasis in Pcif17#Pdx1"~ mice is due to rescue of islet Pdx1
protein levels and thus improved f cell mass and function, the
data also suggest a complex role for Pcifl in the maintenance
of B cell mass. Pcif1”¢ mice displayed normal p cell mass, but
also balanced increases in both f cell replication and apoptosis
rates. Furthermore, Pcifl heterozygosity induced an increased
rate of f§ cell replication that was not affected in the setting of
Pdx1 heterozygosity, indicating roles of Pcif1 in 3 cell replication,
and perhaps apoptosis, that may be independent of its regulation
of Pdx1 protein accumulation. In addition, PcifI heterozygosity
had no effect on f cell replication in younger (5-week-old) mice,
pointing to a role in age-dependent replication rates. The human
ortholog of Pcif1, SPOP, has been implicated in the ubiquitina-
tion of multiple targets, including the polycomb group protein
Bmil (32), recently implicated in pancreatic f cell proliferation
via its control of the Ink4a/Arf locus (40, 41). SPOP has also
been described to ubiquitinate the proapoptotic protein Daxx
(42). Thus, the contribution of Pcif1 to the 8 cell-replicative and
apoptotic rates may be due to regulation of Bmil, Daxx, or other,
as-yet-undiscovered ubiquitination targets.
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Our findings indicate that in adult 3 cells, Pcif1 limits Pdx1 pro-
tein accumulation and thus the expression of insulin and other gene
targets critical to the maintenance of {3 cell mass and function. The
identification of this new Pdx1 regulatory mechanism and valida-
tion of its role in vivo suggest that the therapeutic targeting of Pcif1-
Cul3-mediated turnover of Pdx1 could raise Pdx1 protein levels to
improve 3 cell function and viability in the treatment of diabetes.

Methods
Animals and physiological experiments. Mouse ES cells containing a gene trap
insertion in the first intron of Pcifl were purchased from BayGenomics

Figure 8

Posttranscriptional regulation of Pdx1 protein level by glucose. (A)
Western blot of lysates from Min6 cells maintained in 5.5 or 25 mM
glucose, expressing nontargeting shRNA or shPCIF1. Blots are probed
for Pdx1 and Ran (loading control). (B) Western blot of lysates from
HEK293T cells maintained in 5.5 or 25 mM glucose, expressing Pdx1
in the presence or absence of overexpressed Pcif1 and Cul3. Blots
are probed for Pdx1 and Ran. (C) HEK293T cells maintained in 5.5 or
25 mM glucose, transfected with plasmids expressing Pdx1 and Flag-
Pcif1, and subjected to immunoprecipitation with IgG or Pdx1 antisera.
Western blots are probed for Pdx1 or Flag (Pcif1). Arrow indicates
migration of Flag-Pcif1; asterisk indicates heavy chain IgG signal.
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(clone Bgb118). Mice were derived by injection of ES cells into blastocysts
by the University of Pennsylvania Transgenic and Chimeric Mouse Facil-
ity. Animals were housed in the animal care facility at the University of
Pennsylvania and maintained on a 12-hour light/12-hour dark cycle with
ad libitum access to food and water. All experiments described were per-
formed on mice of a mixed 129/Sv x C57BL/6 background. For embryonic
studies, the date of vaginal plug was considered E0.5. For glucose tolerance
tests, animals were fasted for 16 hours before delivery of a 2-g/kg glucose
bolus. Blood glucose was measured by handheld glucometers (Freestyle/
One Touch). Serum was collected during the glucose tolerance test and
insulin assessed by ELISA (Chemicon). For insulin tolerance tests, animals

A B

Pcif1/Cul3

shPcif1
+ +
. ——— Dy {

C IP: Pdx1
IP: IgG

Pdx1

—> *Flag (Pcif1)

5.5mM 25 mM
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were fasted for 6 hours prior to an i.p. injection of 0.75 U/kg insulin. All
animal procedures were approved by the University of Pennsylvania Insti-
tutional Animal Care and Use Committee.

Pancreas morphometry. BrdU was administered in the drinking water (1 g/1)
for 1 week prior to sacrifice. Five- and 16-week-old male mice were anesthe-
tized and the pancreas dissected rapidly, weighed, and fixed overnight in 4%
paraformaldehyde. Paraffin sections were stained for insulin (Linco), BrdU
(US Biologicals), and TUNEL (Chemicon Apoptag Peroxidase In Situ Kit).
For  cell mass measurements, whole slide images of insulin-stained sections
were captured on an Aperio slide scanner and the stained area quantified
using Image-Pro software (Media Cybernetics). The percentage of insulin-
stained area was then multiplied by pancreas weight to obtain an estimate
of  cell mass. For replication measurements, an average of 1,119 and 1,463
f cells were counted per animal in the 5- and 16-week-old cohorts, respec-
tively. For apoptosis measurements, an average of 2,398 f cells were counted
per animal. For Ki67 and pHH3 confirmation of replication measurements,
an average of 2,381 and 2,715 cells were counted per animal, respectively.

Islet isolation. Islets were isolated from 8- to 12-week-old mice by col-
lagenase digestion followed by 3-4 rounds of hand picking. For RNA
and protein analysis, samples were matched for islet purity by measuring
amylase and insulin transcript levels. For static incubations, 5 islets were
analyzed in triplicate from each animal. Islets were incubated in glucose-
free KRBB buffer for 1 hour before the addition of 1.67 mM glucose.
Samples were taken after 1 hour of incubation, and glucose was added to
a final concentration of 16.7 mM. After 1 hour of stimulation, secretion
samples were collected and islets were harvested in islet lysis buffer and
analyzed for insulin content. Insulin secretion and content were mea-
sured by ELISA (Chemicon).

Cell culture and transfections. Min6 f cells were cultured in DMEM with
5.5 mM or 25 mM glucose (Invitrogen) supplemented with 10% FBS
and used between passages 25 and 35. For knockdown experiments,
cells were nucleofected by AMAXA with predesigned shRNA plasmids
directed against Pcif1 or a nontargeting control (Sigma-Aldrich shPcif1
TRCN0000124643: CCGGGTAAACCCGAAAGGGCTAGATCTCGA-
GATCTAGCCCTTTCGGGTTTACTTTTTG). After 72 hours, cells were
harvested for protein and RNA. HEK293T cells were cultured in high-
glucose DMEM under standard conditions. For expression assays, cells
were transfected with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions, and protein was harvested after 48 hours. For
proteasome inhibition, 10 uM MG-132 (Calbiochem) or vehicle (DMSO)
was added to the medium 4 hours before harvest. For proteasome inhibi-
tion in Min6 cells, 20 uM LLnL (Sigma-Aldrich) or vehicle (DMSO) was
added to medium 8 hours before harvest.

In vivo ubiquitination assay and coimmunoprecipitation. HEK293T cells were
transfected as described above. After 48 hours, cells were harvested in RIPA

buffer and subjected to immunoprecipitation with mouse a-Myc-coupled
agarose beads or mouse IgG-coupled control beads (Santa Cruz Biotechnol-
ogy Inc.). To assess Pcif1-Pdx1 interaction, HEK293T cells were transfected
as described above and subjected to immunoprecipitation with goat a-Pdx1
antibody or goat IgG (Santa Cruz Biotechnology Inc.) 48 hours later.

Western blots and antisera. Proteins were separated by SDS-PAGE and
immunoblotted with the following antibodies: rabbit anit-Pcif1 (26),
mouse anti-tubulin (Sigma-Aldrich), rabbit anti-Pdx1 (43), mouse anti-
Flag epitope (Sigma-Aldrich), rabbit anti-HA epitope (Santa Cruz Biotech-
nology Inc.), rabbit anti-ubiquitin (Dako), rat anti-caspase-12 (Sigma-
Aldrich), and mouse anti-Ran (BD Biosciences).

RNA isolation and transcript analysis. Embryonic tissues were harvested and
stored in RNAlater (Ambion), then homogenized in TRIzol (Invitrogen)
and processed according to the manufacturer’s instructions. Islet RNA was
extracted using the RNeasy Mini Kit (QIAGEN). All samples were reverse
transcribed using SuperScript (Invitrogen) and oligo(dT) for priming.
Transcript was analyzed by quantitative PCR and normalized to the Hprt
transcript as an internal control. For isolated islets, samples were purity
matched by comparing insulin and amylase transcripts.

Statistics. Data are presented as mean + SEM. Differences between groups
were compared by 2-tailed Student’s ¢ tests and considered significant
when P values were less than 0.05. Group measurements of glucose and
insulin tolerance were compared by factorial ANOVA.
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