Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Published May 17, 2010
Citation Information: J Clin Invest. 2010;120(6):2040-2048. https://doi.org/10.1172/JCI40253.
View: Text | PDF
Research Article Development

A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium

  • Text
  • PDF
Abstract

The developmental abnormalities associated with disruption of signaling by retinoic acid (RA), the biologically active form of vitamin A, have been known for decades from studies in animal models and humans. These include defects in the respiratory system, such as lung hypoplasia and agenesis. However, the molecular events controlled by RA that lead to formation of the lung primordium from the primitive foregut remain unclear. Here, we present evidence that endogenous RA acts as a major regulatory signal integrating Wnt and Tgfβ pathways in the control of Fgf10 expression during induction of the mouse primordial lung. We demonstrated that activation of Wnt signaling required for lung formation was dependent on local repression of its antagonist, Dickkopf homolog 1 (Dkk1), by endogenous RA. Moreover, we showed that simultaneously activating Wnt and repressing Tgfβ allowed induction of both lung buds in RA-deficient foreguts. The data in this study suggest that disruption of Wnt/Tgfβ/Fgf10 interactions represents the molecular basis for the classically reported failure to form lung buds in vitamin A deficiency.

Authors

Felicia Chen, Yuxia Cao, Jun Qian, Fengzhi Shao, Karen Niederreither, Wellington V. Cardoso

×

Figure 5

Wnt rescues lung agenesis in Dkk1-treated and RA-deficient foreguts.

Options: View larger image (or click on image) Download as PowerPoint
Wnt rescues lung agenesis in Dkk1-treated and RA-deficient foreguts.
(A–...
(A–D) Engraftment of beads soaked in Wnt3a, but not PBS, rescued lung buds bilaterally in Dkk1-treated foreguts (A–C), as confirmed by strong Nkx2-1 expression (arrowheads). Bilateral rescue was also observed when Gsk3b inhibitor was added to Dkk1-treated foreguts (D). (E and F) Exogenous FGF10 (F10) beads induced buds expressing Nkx2-1 (arrows) in Dkk1-treated foreguts (E), a response similarly elicited in BMS-treated foreguts (F). (G–P) Engraftment of Wnt3a beads onto BMS-treated foreguts induced only 1 lung bud, labeled by Nkx2-1 (G and H, arrowheads), although BATgal activity (I) and Fgf10 expression (J) were clearly present on both sides of the lung endoderm (arrows). Similar phenotypes were seen in foreguts treated simultaneously with BMS and Gsk3b inhibitor (K–N) and in Raldh2–/– foreguts treated with Wnt3a beads (O–P). Red asterisks indicate sites of unilateral bud agenesis. Original magnification, ×10 (A, B, D–G, I–K, and M–P); ×20 (C, H, and L).

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts