Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Published May 17, 2010
Citation Information: J Clin Invest. 2010;120(6):2040-2048. https://doi.org/10.1172/JCI40253.
View: Text | PDF
Research Article Development

A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium

  • Text
  • PDF
Abstract

The developmental abnormalities associated with disruption of signaling by retinoic acid (RA), the biologically active form of vitamin A, have been known for decades from studies in animal models and humans. These include defects in the respiratory system, such as lung hypoplasia and agenesis. However, the molecular events controlled by RA that lead to formation of the lung primordium from the primitive foregut remain unclear. Here, we present evidence that endogenous RA acts as a major regulatory signal integrating Wnt and Tgfβ pathways in the control of Fgf10 expression during induction of the mouse primordial lung. We demonstrated that activation of Wnt signaling required for lung formation was dependent on local repression of its antagonist, Dickkopf homolog 1 (Dkk1), by endogenous RA. Moreover, we showed that simultaneously activating Wnt and repressing Tgfβ allowed induction of both lung buds in RA-deficient foreguts. The data in this study suggest that disruption of Wnt/Tgfβ/Fgf10 interactions represents the molecular basis for the classically reported failure to form lung buds in vitamin A deficiency.

Authors

Felicia Chen, Yuxia Cao, Jun Qian, Fengzhi Shao, Karen Niederreither, Wellington V. Cardoso

×

Figure 3

Wnt disruption leads to lung bud agenesis in RA-sufficient foreguts.

Options: View larger image (or click on image) Download as PowerPoint
Wnt disruption leads to lung bud agenesis in RA-sufficient foreguts.
(A–...
(A–F) Nkx2-1 WMISH (A, C, and E) and corresponding H&E (B, D, and F) of cultured foreguts. Control foreguts showed 2 emerging lung buds labeled by Nkx2-1 (A and B). In Dkk1-treated WT foreguts, Nkx2-1 still marked the lung field, but no buds were present (C and D), reminiscent of BMS-treated WT foreguts (E and F). (G–I) X-gal staining demonstrated strong RARElacZ signals in both control and Dkk1-treated foreguts (G and H), in contrast to the lack of signals in the BMS-treated foreguts (I). (J–L) BATgal activity was abolished with Dkk1 (K) or quercetin (Que; L) treatment compared with the control (J). Red asterisks in C–F, H, I, K, and L mark the prospective lung field. Original magnification, ×10 (A, C, E, and G–L). Scale bar: 250 μm (B, D, and F). (M) Real-time PCR revealed downregulation of Axin2 and Lef1 in 24-hour cultured foreguts treated with Dkk1 or quercetin. *P < 0.05 versus control.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts