Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice
Hans D. Brightbill, … , Mercedesz Balazs, Lawren C. Wu
Hans D. Brightbill, … , Mercedesz Balazs, Lawren C. Wu
Published May 10, 2010
Citation Information: J Clin Invest. 2010;120(6):2218-2229. https://doi.org/10.1172/JCI40141.
View: Text | PDF
Research Article Immunology

Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice

  • Text
  • PDF
Abstract

IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE. This segment is known as the M1′ domain, and using genetically modified mice that contain the human M1′ domain inserted into the mouse IgE locus, we demonstrated that M1′-specific antibodies reduced serum IgE and IgE-producing plasma cells in vivo, without affecting other immunoglobulin isotypes. M1′-specific antibodies were effective when delivered prophylactically and therapeutically in mouse models of immunization, allergic asthma, and Nippostrongylus brasiliensis infection, likely by inducing apoptosis of IgE-producing B cells. In addition, we generated a humanized M1′-specific antibody that was active on primary human cells in vivo, as determined by its reduction of serum IgE levels and IgE plasma cell numbers in a human PBMC-SCID mouse model. Thus, targeting of human IgE-producing B cells with apoptosis-inducing M1′-specific antibodies may be a novel treatment for asthma and allergy.

Authors

Hans D. Brightbill, Surinder Jeet, Zhonghua Lin, Donghong Yan, Meijuan Zhou, Martha Tan, Allen Nguyen, Sherry Yeh, Donnie Delarosa, Steven R. Leong, Terence Wong, Yvonne Chen, Mark Ultsch, Elizabeth Luis, Sree Ranjani Ramani, Janet Jackman, Lino Gonzalez, Mark S. Dennis, Anan Chuntharapai, Laura DeForge, Y. Gloria Meng, Min Xu, Charles Eigenbrot, Wyne P. Lee, Canio J. Refino, Mercedesz Balazs, Lawren C. Wu

×

Figure 6

Efficacy of M1′-specific antibody is mediated by apoptosis.

Options: View larger image (or click on image) Download as PowerPoint
Efficacy of M1′-specific antibody is mediated by apoptosis.
(A) M1′-spec...
(A) M1′-specific antibody 47H4 antibody induced apoptosis of human membrane IgE-transfected Daudi cells. (B) Caspase inhibitor z-VAD inhibited M1′-specific antibody 47H4 antibody–induced apoptosis. Apoptosis is measured by flow cytometry using anti-Annexin V antibody. The control antibody is mIgG1. (C) M1′-specific antibody 47H4 antibody reduced the percentage of GFP+ IgE-switched B cells on day 4 in human M1′ knockin mouse splenocyte cultures stimulated with anti-CD40 antibody and recombinant IL-4. (D) M1′-specific antibody 47H4 antibody reduced the generation of soluble IgE on day 4 in human M1′ knockin mouse splenocyte cultures stimulated with anti-CD40 antibody and recombinant IL-4. (E) Experimental design for M1′-specific antibody treatment of N. brasiliensis infection. Human M1′ knockin mice (n = 9–10 per group) were infected with 500 N. brasiliensis L3 larvae on day 0. Mice were treated with 10 mg/kg M1′-specific antibody 47H4 wild-type, 47H4-DANA, or mIgG1 control antibody 3 times a week from day 0 to 21. (F) Treatment with 47H4 wild-type and 47H4-DANA antibody resulted in equivalent inhibition of N. brasiliensis–induced serum IgE. Results are mean ± SD. *P < 0.05 (Bonferroni correction for pairwise comparisons). (G) Representative flow cytometry plots of IgE-switched GFP+ B cells in the spleens of N. brasiliensis–infected mice treated with M1′-specific antibody 47H4 wild-type or mIgG1 control antibody on day 21. Numbers indicate the percentage of CD19+ GFP+ cells and are representative of at least 3 experiments. (H) M1′-specific antibody 47H4 antibody reduced the percentage of IgE-switched GFP+ B cells in the spleens of N. brasiliensis–infected mice on day 21. (A–D and H) Results are mean ± SD. (C, D, and H) *P < 0.05 (Dunnett’s test).

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts