Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice
David H. Volle, … , Kristina Schoonjans, Mohamed Benahmed
David H. Volle, … , Kristina Schoonjans, Mohamed Benahmed
Published November 2, 2009
Citation Information: J Clin Invest. 2009;119(12):3752-3764. https://doi.org/10.1172/JCI38521.
View: Text | PDF
Research Article Endocrinology

The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

  • Text
  • PDF
Abstract

Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis.

Authors

David H. Volle, Mélanie Decourteix, Erwan Garo, Judy McNeilly, Patrick Fenichel, Johan Auwerx, Alan S. McNeilly, Kristina Schoonjans, Mohamed Benahmed

×

Figure 3

Nr0b2 controls DES-induced adult germ cell apoptosis through regulation of testosterone synthesis.

Options: View larger image (or click on image) Download as PowerPoint
Nr0b2 controls DES-induced adult germ cell apoptosis through regulation ...
(A) Apoptosis in 10-week-old Nr0b2+/+ and Nr0b2L–/L– mice exposed to vehicle or 5 μg DES (n = 6 per group), as analyzed by TUNEL staining. Arrowheads denote TUNEL-positive cells. Representative micrographs are shown. Original magnification, ×100. (B) Quantification of TUNEL analyses. Shown is the number of positive cells per 100 seminiferous tubules (n = 4–6). (C) Immunoblot of activate caspase-3 performed on testicular protein extracts of Nr0b2+/+ and Nr0b2L–/L– mice exposed to 0 or 5 μg DES (n = 6 per group). Quantification of activated caspase-3 protein accumulation relative to total caspase-3 is shown below; vehicle-treated mice were arbitrarily fixed at 100%. *P < 0.05 versus vehicle; #P < 0.05 versus Nr0b2+/+ given the same DES dose.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts