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The clinical syndrome of acetaminophen-induced liver injury represents the combined result of drug toxicity and a potent
innate immune response that follows drug-induced cell death. In this issue of the JCI, Imaeda and colleagues report that
DNA released from dying hepatocytes is a key stimulus of innate immune activation in the acetaminophen-treated mouse
liver (see the related article beginning on page 305). They present evidence indicating that hepatocyte DNA promotes
immune activation by acting as a danger-associated molecular pattern (DAMP) that stimulates cytokine production in
neighboring sinusoidal endothelial cells via TIr9 and the Nalp3 inflammasome.
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The clinical syndrome of acetaminophen-induced liver injury represents
the combined result of drug toxicity and a potent innate immune response
that follows drug-induced cell death. In this issue of the JCI, Imaeda and
colleagues report that DNA released from dying hepatocytes is a key stim-
ulus of innate immune activation in the acetaminophen-treated mouse
liver (see the related article beginning on page 305). They present evidence
indicating that hepatocyte DNA promotes immune activation by acting as
a danger-associated molecular pattern (DAMP) that stimulates cytokine
production in neighboring sinusoidal endothelial cells via TIr9 and the

Nalp3 inflammasome.

The analgesic acetaminophen is widely
known for its potential to cause severe
and sometimes lethal liver injury. When
ingested in large amounts, acetaminophen
overwhelms the normal metabolic path-
ways of glucuronidation and sulfation and
undergoes oxidation to form the highly
reactive intermediate N-acetyl-p-benzoqui-
none-imine (NAPQI). NAPQI is not harm-
ful if it combines rapidly with glutathione;
however, when hepatic glutathione stores
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are depleted, NAPQI escapes detoxifica-
tion, resulting in liver cell death (1). An
important but underappreciated aspect
of acetaminophen toxicity is that direct,
drug-induced harm accounts for only part
of the overall syndrome of acetamino-
phen-induced liver injury. The reason for
this is that the initial wave of drug-induced
hepatocellular destruction is followed
by a robust innate immune response, in
which invading inflammatory cells release
toxic oxidants and cause a second wave of
destruction. The collateral damage inflicted
by inflammatory cells can be so severe as to
double the degree of tissue injury caused by
acetaminophen alone (2).

Innate immunity is the result

of danger signaling

Activation of the innate immune system
following a noninfectious insult such as
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drug toxicity arises when dying cells release
molecules that serve as “danger signals.”
Danger molecules trigger inflammation
by engaging pattern recognition receptors
such as TLRs (3) and nucleotide-binding
domain, leucine-rich repeat-containing
proteins (NLRs) (4) and are thus referred
to as danger-associated molecular patterns
(DAMPs) (5). Through TLRs, DAMPs sig-
nal cytokine and chemokine production
and upregulate the expression of cell-
adhesion molecules. When DAMPs inter-
act with NLRs, they stimulate NLRs to
complex with ASC (apoptosis-associated
speck-like protein containing a CARD) to
form macromolecular complexes called
inflammasomes, which activate caspase-1
and stimulate cleavage of the proinflam-
matory cytokines pro-IL-1f and pro-IL-18
to their mature forms, IL-1f3 and IL-18 (6).
Self molecules that act as DAMPs interact
primarily with TLR2, -4, and -9 and an NLR
with an N-terminal pyrin domain designat-
ed NACHT, LRR, and pyrin domain-con-
taining protein 3 (NALP3; also known as
NLRP3). The list of these molecules is rap-
idly growing (Table 1), emphasizing the
importance of endogenous danger signal-
ing to a broad array of medical disorders
ranging from gout to systemic lupus ery-
thematosus to Alzheimer disease (7-9). A
danger molecule that is believed to play a
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Table 1

Self molecules that interact with TLRs and NLRs

Self molecule

HMGB1

DNA

Heat shock proteins
Defensins

ATP

Monosodium urate crystals

TLRs

NLRs

Calcium pyrophosphate dihydrate crystals

Silica crystals
Alum particles
Amyloid-B particles
Asbestos particles

central role in inflammatory diseases of
the liver is the chromatin-binding protein
high-mobility group box 1 (HMGB1). Upon
cellular necrosis, HMGB1 is released into
the extracellular milieu, where it activates
TLR2 and TLR4 and, when complexed with
DNA, TLRY (10, 11). Studies to date indi-
cate that HMGB1 plays an important role
in liver injury due to hemorrhagic shock
and ischemia/reperfusion (12), but, inter-
estingly, it does not strongly influence acet-
aminophen toxicity (13).

Figure 1

DNA-mediated danger signaling in acetamino-
phen toxicity. Acetaminophen is directly cyto-
toxic to hepatocytes through its conversion to
the reactive intermediate NAPQI (1). In this
issue of the JCI/, Imaeda and colleagues pro-
vide evidence that DNA released from acet-
aminophen-damaged hepatocytes induces
an innate immune response in the liver that
augments the injury caused by the drug alone
(18). They show in a mouse model that acet-
aminophen, which damages hepatocytes, as
well as damaged DNA per se, activates TIr9
within SECs, thereby stimulating the produc-
tion of pro—IL-1$ and pro—IL-18. Acetamino-
phen treatment also promotes activation of
the Nalp3 inflammasome in SECs, whose
function is to activate caspase-1 and promote
the cleavage of pro—IL-1p and pro—IL-18 to
their mature, active forms (6). (The specific
stimulus to Nalp3 activation in the acetamino-
phen-treated liver is unknown, but potential
candidates include uric acid, ATP, and DNA.)
IL-18 and IL-18 in turn enhance acetamino-
phen-induced liver injury by promoting hepatic
inflammation and secondary tissue damage.
Imaeda et al. further demonstrate that this
immune-mediated amplification of acetamin-
ophen-induced liver injury can be blocked by
aspirin. Aspirin prevents hepatic induction of
pro—IL-1f and pro—IL-18 and may have an
independent inhibitory effect on the Nalp3
inflammasome.
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Danger signaling in acetaminophen
hepatotoxicity

Although the precise nature of the danger
signal that activates innate immunity in
the acetaminophen-exposed liver is uncer-
tain, there is no question that danger sig-
naling is involved in the process. This is
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evident from studies in a mouse strain with
a mutation in Tlr4, in which liver disease
is significantly attenuated following an
acetaminophen challenge (14). Recently,
acetaminophen toxicity was shown to be
reduced in mice that lack the ability to
respond to IL-1 (15). This observation is
of interest because IL-1 secretion typically
requires the combined activity of TLRs and
NLRs, the former to stimulate expression
of the IL-1 propeptide and the latter to pro-
cess the propeptide into a mature cytokine.
It also suggests a need for two, possibly
unique, danger signals in the liver: one to
activate a TLR and another to signal NLR
assembly into an inflammasome (6).

If the danger signal that augments acet-
aminophen-induced liver injury is not
HMGB], then another molecule that could
accomplish this task is DNA from dying
hepatocytes. DNA interacts specifically
with TLRY, which, like all nucleic acid-
sensing TLRs, is sequestered intracellularly
within endosomes. TLR9 was once con-
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sidered incapable of binding mammalian
DNA because of its affinity for unmethyl-
ated CpG motifs characteristic of microbial
DNA. DNA from injured mammalian cells,
however, has the capacity to activate TLR9
(8, 16), and recently even normal mamma-
lian DNA has been shown to engage this
receptor and stimulate an immune response
(17). In this issue of the JCI, Imaeda and
colleagues (18) demonstrate that DNA
is indeed a trigger of the innate immune
response that amplifies acetaminophen
toxicity. They showed, in a mouse model,
that acetaminophen-induced liver injury
is dependent upon not only IL-1p, but also
IL-18, the two cytokines classically processed
by caspase-1 (Figure 1). They determined
that acetaminophen-mediated induction of
pro-IL-1p and pro-IL-18 mRNA in the liver
is Tlr9 dependent; in addition, they showed
that cleavage of the IL-1p propeptide to the
mature cytokine in the acetaminophen-
treated liver requires the presence of the
Nalp3 inflammasome. Inhibition of either
Tlr9 signaling or Nalp3 activity by genetic
or pharmacologic means markedly attenu-
ated liver injury and improved survival in
acetaminophen-treated mice. These results
indicate that Tlr9 and Nalp3 must both be
functional to activate the innate immune
system following acetaminophen exposure,
and they underscore the degree to which
immune-mediated collateral damage inten-
sifies drug-induced liver injury.

Imaeda et al. (18) did not demonstrate
that DNA released specifically from dying
hepatocytes is the stimulus for T1r9 activa-
tion in the liver following acetaminophen
treatment. They did, however, demon-
strate that DNA from dead (UV-irradiated)
hepatocytes upregulates IL-1f in a TIr9-
dependent manner when infused into
a normal liver in vivo. They also made
the unique observation that much of the
innate immune response to acetamino-
phen poisoning is mediated by sinusoidal
endothelial cells (SECs), which are actively
endocytic cells. TLRY is expressed by several
resident liver cells, including hepatocytes,
SECs, Kupffer cells, and stellate cells, but
among these, SECs exhibit the greatest
potential for taking up extracellular DNA
(19). Purified SECs displayed DNA-medi-
ated activation of Tlr9 and acetamino-
phen-mediated activation of caspase-1 (18),
which pinpoints these cells as immune
effectors in acetaminophen toxicity and
places them in a category with bone mar-
row-derived cells as sites of the molecular
machinery of the inflammasome.
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Viewing immune amplification of ace-
taminophen-induced liver injury as a
therapeutic target, Imaeda and colleagues
subsequently investigated whether the
immune-mediated collateral damage in an
acetaminophen-treated liver was prevent-
able by administration of an antiinflamma-
tory agent (18). Aspirin, when given before
acetaminophen, significantly protected
mice against acetaminophen-induced liver
injury. Indeed, aspirin-pretreated mice
fared as well or better after acetaminophen
challenge than mice lacking TIr9 or com-
ponents of the Nalp3 inflammasome. The
protective effect of aspirin coincided with
reduced induction of hepatic pro-IL-1f
and pro-IL-18 mRNA after acetaminophen
administration. This suggests that aspirin
is exerting its protective effect on the T1r9
arm of the danger pathway during acet-
aminophen toxicity, perhaps by inhibiting
IxB kinase f (20). Aspirin also inhibited
experimental inflammation induced by
monosodium urate crystals, which activate
Nalp3, but it remains unclear whether this
is interpretable as an independent effect
of aspirin on caspase-1 activation by the
Nalp3 inflammasome (Figure 1).

Novel concepts and open questions

Overall, the work of Imaeda and colleagues
(18) sheds important light on the role of the
inflammasome in drug-induced liver injury.
It highlights potential differences between
innate immune responses to different
stimuli (e.g., drugs versus ischemia/reper-
fusion) and places SECs in a category with
bone marrow-derived cells as orchestrators
of innate immune responses to DNA. Still,
there remain some unanswered questions.
One is whether bone marrow-derived cells,
which also contribute to innate immune
activation in response to acetaminophen,
sense DNA as their danger signal in the
same fashion as SECs. Another is whether
DNA from hepatocytes treated with acet-
aminophen has any unique characteristics
with respect to Tlr9 activation. Third, one
wonders whether immune-mediated col-
lateral damage in acetaminophen toxic-
ity is due entirely to leukocyte invasion,
or whether inflammasome-mediated cell
death is also involved. Under certain cir-
cumstances, NALP3, ASC, and caspase-1
can interact to cause cell death (21). Such
a pathway could be operative in SECs dur-
ing acetaminophen toxicity. If so, this may
explain why innate immune activation in
the liver is so often accompanied by sinu-
soidal cell breakdown and parenchymal
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hemorrhage, which in many animal models
of acute liver injury is the fatal event.

Imaeda and coworkers (18) posited that
two separate danger signals are required
to activate IL-1f and IL-18 in the acet-
aminophen-treated liver: hepatocyte DNA
to induce cytokine gene expression via
TIr9 and another molecule, possibly uric
acid or ATP, to activate the Nalp3 inflam-
masome and promote cytokine cleavage.
This theory was logical, based on evidence
that few if any compounds stimulate both
TLRs and NLRs. Recent work by Muruve
et al. (22), however, indicates that mam-
malian DNA can promote inflammasome
formation, albeit in the absence of NALP3.
Further research in this area may ulti-
mately lead to a unified theory according
to which self DNA activates not only TLR9
but also the NALP3 inflammasome follow-
ing a cytotoxic insult in vivo, culminating
in immune-mediated collateral damage to
the affected organ.
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Hoofbeats, zebras, and insights
into insulin resistance
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In this issue of the JCI, Semple and colleagues report phenotypic evaluation
of patients with a germline mutation in the gene encoding serine/threonine
kinase AKT?2 (see the related article beginning on page 315). Their findings
support the idea that the postreceptor actions of insulin in the liver — sup-
pression of gluconeogenesis and stimulation of lipogenesis — are mediated
through divergent pathways that can be uncoupled. The results appear to
refine the arrangement of crucial steps along these pathways and show how
comprehensive study of the phenotype, “deep phenotyping,” of patients
who carry rare mutations might complement other types of experiments to
elucidate complex pathways and mechanisms.

“When you hear hoofbeats, think horses,
not zebras” is the quintessential maxim of
clinical medicine. But in clinical investiga-
tion, the “zebras” — rare conditions that
recapitulate, often to an extreme, the com-
ponents of a common disease — can help to
understand the “horse” or common com-
plex phenotype. Extending the metaphor,
the current pandemic of obesity and insu-
lin resistance is a veritable stampede that
threatens to flatten global medical care
infrastructures. A multifaceted approach
is required to understand the mechanisms
underlying this pandemic, ranging from
the strategic use of model systems to pop-
ulation studies and clinical trials. Within
this methodological spectrum is the evolv-
ing discipline of clinical phenomics, which
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uses objective and systematic acquisition of
phenotypic data (i.e., deep phenotyping) of
selected informative patients (1). Phenomic
evaluation of patients with rare genetic dis-
orders is a potential tool to help solve the
puzzle of insulin resistance and its down-
stream metabolic consequences, such as
hyperglycemia, hepatosteatosis and dys-
lipidemia, elevated triglyceride (TG) levels,
and depressed HDL cholesterol levels.

Insulin-resistant diabetes:

a disease of abnormal glucose

and lipid metabolism

The complex web of interactions between
glucose and lipid metabolism in diabetes
has long been appreciated, if incompletely
understood mechanistically (2-5). Induced-
mutant animal models have steadily
advanced our understanding of insulin
resistance. For instance, insulin-resistant
mice with a liver-specific deletion of the
insulin receptor (INSR) develop hypergly-
cemia but not dyslipidemia (6). This sug-
gests an uncoupling or divergence (see Fig-
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ure 1) between the post-INSR pathways,
with loss of insulin-mediated suppression
of gluconeogenesis normally driven by
phosphoenolpyruvate decarboxylase and
glucose-6-phosphatase, but retention of
insulin’s stimulatory effect on hepatic lipo-
genesis catalyzed by fatty acid synthases (7).
Signaling intermediates along the gluco-
neogenesis limb include serine/threonine
kinase AKT?2 (also called phosphokinase B)
and forkhead box O transcription factor 1
(FOXO1), while intermediates along the
de novo hepatic lipogenesis limb include
PKCA and SREBP-1c (8, 9). To clarify the
basis of such “asymmetric” or partial insu-
lin resistance, deep phenotyping of patients
carrying naturally occurring loss-of-func-
tion mutations in these intermediate sig-
naling molecules might be instructive.

In their current study in this issue of
the JCI, Semple and colleagues (10) have
attempted to probe these pathways by
studying patients with extremely rare
mutations in either INSR or AKT2 genes
together with subjects who had either idio-
pathic insulin resistance or inherited lipo-
dystrophies. The study took advantage of
a valuable archive of phenotypically and
molecularly characterized patients who
were carefully collected over many years.
Among patients with INSR mutations and
anti-INSR antibodies, Semple and col-
leagues first confirmed earlier work that
showed severe hyperglycemia and hyper-
insulinemia but normal plasma lipids in
these patients (11). These findings are
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