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Commentaries

Predicting response to hepatitis C therapy

Thomas S. Oh and Charles M. Rice

Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, USA.

Current treatment for chronic hepatitis C is expensive, is often accompa-
nied by burdensome side effects, and, sadly, fails in almost half of cases. The
ability to predict such failures prior to treatment could save a great deal of
pain and expense for the patient with HCV. In this issue of the JCI, Aurora
and colleagues describe the development of genetic markers predictive of
treatment response based on a study of viral sequence variation (see the
related article beginning on page 225). Genome-wide covariation analyses
of pretreatment virus sequences from 94 patients showed distinct patterns
of mutations strongly associated with the ultimate success or failure of treat-
ment. Such analyses suggest markers predictive of response to therapy and
may lead to new insights into the underlying biology of hepatitis C.

An estimated 130 million people worldwide
(1) and nearly 4 million in the United States
are chronically infected with HCV, leading
to liver damage and increased risk of hepa-
tocellular carcinoma. In the United States,
10,000 deaths each year are attributed to
chronic HCV infection (2). The current
treatment regime, pegylated IFN-o. and riba-
virin, is long and difficult, requiring months
of weekly injections, with serious side effects
ranging from flu-like symptoms to depres-
sion and autoimmune disorders. Success of
treatment is far from guaranteed: in HCV
genotype 1 infections, which account for
the majority of cases in the US, only about
half of patients display the long-term sup-
pression of virus indicative of cure.

Numerous studies in recent years have
proposed markers for predicting HCV
patient response to therapy. Markers may
be based on viral factors, such as viral
sequence variation (3); host factors, such
as gene expression profiles (4) or poly-
morphisms in specific host genes (5); or
combinations thereof (6, 7). Interestingly,
very different types of biomarkers can give
similar results, indicative of the intimate
interactions between the manifold host
and viral players in virus replication and
disease progression.

In this issue of the JCI, Aurora et al.
define a set of biomarkers predictive of
the response to HCV therapy (8). These
markers are purely viral factors, com-
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posed of sets of varying residues in the
HCV amino acid sequence identified by
covariation analysis.

Covariation analysis reveals
functional relationships
A statistical measure, covariance quantifies
the degree of linkage between 2 variables;
variables that are completely independent
have a low covariance, whereas variables that
vary synchronously have a high covariance.
Covariance between residues in a protein
or set of proteins can be estimated from the
variation observed in a population. An align-
ment of multiple HCV sequences shows both
conserved and varying residues. The varying
positions are compared in pairwise fash-
ion; for each pair of positions, the linkage
between the 2 residues will affect the pattern
of variation observed. For a pair of positions
with a 10% mutation frequency at each site,
both mutations would be shared by 1% of
sequences if they are perfectly independent
and 10% if they are perfectly covariant.
Because covariation implies a relation
between 2 residues in a sequence, it has been
used to infer information about direct inter-
actions in the 3-dimensional structure of a
protein (9) and to identify protein-protein
interactions (10). However, covariance aris-
es from all functional interactions between
residues, both direct and indirect, as well as
from phylogenetic relationships (Figure 1).
Distinguishing between the many sources of
covariance is a continuing challenge for any-
one wishing to use this technique (11, 12).

Covariation patterns are highly
correlated with treatment outcome
The Viral Resistance to Antiviral Therapy
of Chronic Hepatitis C (Virahep-C) clinical
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study (13) evaluated the efficacy of treat-
ment in HCV genotype la and 1b patients.
The complete HCV coding sequence was
determined for pretreatment isolates from
each of 94 patients, who were followed dur-
ing and after treatment to determine the
final outcome of therapy.

In the present study, Aurora et al. analyzed
the 94 HCV sequences obtained during the
Virahep-C study for amino acid covariance
in each of the genotype 1 subtypes as well as
stratified within each subtype by treatment
response (8). From this analysis they made
an important, and perhaps surprising,
observation: the sets of covariant pairs were
markedly different between the responsive
and nonresponsive patient groups. In the
HCV genotype la sequences, about 2,000
covariant residue pairs were identified;
three-quarters of the covariant pairs found
in the responsive genomes did not appear
in the nonresponsive sequence set, and vice
versa. The results of the HCV genotype 1b
sequence analysis was even more striking:
90% of the residue pairs identified as being
covariant in one response group were inde-
pendent in the other group.

The strong correlation between covari-
ance sets and therapeutic outcome imme-
diately suggests the possibility of finding a
reliable predictor for response to therapy in
the pretreatment HCV sequence. However,
there is a still an additional step that must
be made; a patient coming in for treatment
generally harbors a range of closely related
viral sequences. Covariance, on the other
hand, is an aggregate property determined
from a sequence alignment of an entire
group of responders or nonresponders. The
covariance sets reported by Aurora et al.
showed a clear difference between groups
of sequences depending on response to
therapy (8), but a biomarker must be able
to place a single sequence of unknown
response into the correct group. In order to
bridge this gap, the authors looked to the
interconnected nature of the covariance
sets they had generated.

Covariance networks

Each covariation analysis performed by
Aurora et al. identified on the order of
2,000 pairs of correlated residues (8). How-
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Covariance
networks

ever, this set of 2,000 pairs is composed of
only about 200 unique residues. Clearly a
residue may appear multiple times; in fact,
each residue in the set was connected to
anywhere between 1 and 100 other resi-
dues. The resulting networks are shown in
detail in ref. 8.

Because covariant pairs by definition
vary, any one pair will appear in only a frac-
tion of sequences. Similarly, a combination
of residues correlated with one outcome
can appear in a sequence of the opposite
outcome, not because the residues are
functionally linked, but simply by chance.
For this reason, the authors searched for
small collections of interconnected pairs,
or subnetworks, which were correlated with
outcome. By means of exhaustive search,
they identified several hundred such sub-
networks, which appeared in greater than
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95% of sequences of one therapeutic out-
come and never appeared in sequences of
the opposite outcome (8).

The attentive reader will note — and the
authors are quick to point out — that the
sequences for which the markers are evalu-
ated are the same sequences used to gen-
erate the markers. This is attributed to the
unavailability of other sequence sets for
which the treatment outcome is known.
Nevertheless, the authors provide evidence
that the differences observed in the cova-
riance networks are real and will translate
into markers that will hold up outside
the initial data set. First, the difference in
the covariance sets between the 2 possible
outcomes is quite large, as much as 90%.
Second, the subnetwork analysis yielded
not a handful of potential markers, but
hundreds of subnetworks with 100% corre-
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Figure 1

Covariation in HCV. (A) In the study reported
in this issue of the JC/ by Aurora et al. (8),
patients were grouped according to their
treatment response. The sequences of the
complete HCV open reading frame obtained
from each group of patients prior to treatment
were aligned and analyzed for covariance.
An example covariant pair is shown in each
alignment (red arrows). The set of all covari-
ant pairs forms a network in which each node
is an amino acid position and each connect-
ing line represents covariance between 2
positions. The networks differ by treatment
response class and may be used to generate
markers indicative of HCV treatment outcome.
(B) Various causes of covariance in HCV (red
arrows). (i) Phylogenetic covariance is an arti-
fact of a shared ancestry, but does not reflect
any functional relationship. (ii) RNA second-
ary structure gives rise to nucleotide-level
covariance. (iii) Protein-protein interaction
residues covary. (iv) Intraprotein covariance
may indicate direct residue contact or indirect
interaction through the protein. (v) Variation
in a shared interaction partner (host or viral)
may result in coordinated variation in a pair of
residues. (vi) MHC epitopes will covary across
hosts with different HLA alleles.

lation to treatment outcome. Finally, and
most interestingly, the chemical makeup
of the covariant pairs is significantly differ-
ent; the nonresponsive sequences contain
3 times as many hydrophobic covariant
amino acid pairs as the responsive sequenc-
es. This unexpected result implies that the
differences in the covariance networks are
directly reflective of an underlying physical
phenomenon. The authors suggest that the
higher fraction of correlated hydrophobic
residues is evidence for more stable protein-
protein complexes in the nonresponsive
strains. This could be envisioned to result
in viral replication complexes that are more
resistant to antiviral effectors, or even to
alter interactions of immunomodulatory
HCV proteins with their target host fac-
tors. Analysis of covariance networks may
therefore not only reveal biomarkers for
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therapeutic outcome, but also shed light
on the mechanistic bases for resistance to
treatment and even identify novel targets
for antiviral drugs.

Conclusions

Although it still remains for these markers
to be validated, the early results presented
in this study are promising (8). It is inter-
esting to speculate on the relationship
between these markers and other markers,
particularly those based on host character-
istics. The circulating virus is not an inde-
pendent entity, but is continually shaped
by host selective pressures even as it in
turn modulates its host environment. Viral
sequences observed prior to treatment may
very well represent the success or failure of
the host in selecting against the most treat-
ment-resistant variants. Covariance net-
works may serve as an exciting new tool in
further studies along this avenue; networks
generated from viral sequences obtained
during acute viral infection should be par-
ticularly informative.

With the sustained and rapid growth of
both computational power and sequencing
capabilities, we expect covariation analyses
to become increasingly common as a tool
to study different aspects of HCV biology
(14). The high mutation rate of RNA virus-
es and the intense competition within the

quasispecies makes them particularly ame-
nable to this technique. We look forward
to seeing further application of covariance
networks to questions ranging from pro-
tein structure and protein-protein inter-
actions to drug resistance, host selection
pressures, and viral evolution.
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Role for a3 integrin in EMT and pulmonary fibrosis

Zea Borok
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Idiopathic pulmonary fibrosis (IPF) is characterized by progressive
(myo)fibroblast accumulation and collagen deposition. One possible source
of (myo)fibroblasts is epithelial cells that undergo epithelial-mesenchymal
transition (EMT), a process frequently mediated by TGF-f. In this issue of
the JCI, Kim et al. report that epithelial cell-specific deletion of 0.3 integrin
prevents EMT in mice, thereby protecting against bleomycin-induced fibro-
sis (see the related article beginning on page 213). The authors propose a
novel mechanism linking TGF-f3 and f-catenin signaling in EMT through
integrin-dependent association of tyrosine-phosphorylated 3-catenin and
pSmad2 and suggest targeted disruption of this interaction as a potential

therapeutic approach.
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Idiopathic pulmonary fibrosis (IPF) is a
progressive disorder of unknown etiology
characterized by fibroblast accumulation,
collagen deposition, and ECM remodel-
ing leading to parenchymal destruction
(1). Historically, inflammation has been
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viewed as central to the pathogenesis of
IPF. A recent paradigm shift proposes a
model in which injury to the epithelium
initiates a proinflammatory and profi-
brotic cascade, resulting in fibroblast
expansion and progressive fibrosis remi-
niscent of abnormal wound healing (2).
Myofibroblasts (activated fibroblasts) are
key effector cells in pulmonary fibrosis,
being responsible for matrix deposition
and structural remodeling. The source
of myofibroblasts in IPF remains the
subject of debate: in addition to arising
from circulating progenitors and resident
fibroblasts, myofibroblasts have recently
been shown to be derived from alveolar
epithelial cells (AECs) through epithelial-
mesenchymal transition (EMT) (3, 4).
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