Mutations in contractile proteins in heart muscle can cause anatomical changes that result in cardiac arrhythmias and sudden cardiac death. However, a conundrum has existed because mutations in one such contractile protein, a so-called Ca2+ sensor troponin T (TnT), can promote ventricular rhythm disturbances even in the absence of hypertrophy or fibrosis. Thus, these mutations must enhance abnormal electrophysiological events via alternative means. In this issue of the JCI, Baudenbacher et al. report a novel mechanism to explain this puzzle (see the related article beginning on page 3893). They show that a selected TnT mutation in the adult mouse heart can markedly increase the sensitivity of cardiac muscle myofilaments to Ca2+ and enhance the susceptibility to arrhythmia, even in the absence of anatomical deformities. As these same mutations can cause some forms of arrhythmias in humans, these findings are of both basic and translational significance.


Céline Fiset, Wayne R. Giles


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.