Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure
Maria D’Apolito, … , Michael Brownlee, Ida Giardino
Maria D’Apolito, … , Michael Brownlee, Ida Giardino
Published December 1, 2009
Citation Information: J Clin Invest. 2010;120(1):203-213. https://doi.org/10.1172/JCI37672.
View: Text | PDF | Erratum | Addendum
Research Article

Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

  • Text
  • PDF
Abstract

Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease.

Authors

Maria D’Apolito, Xueliang Du, Haihong Zong, Alessandra Catucci, Luigi Maiuri, Tiziana Trivisano, Massimo Pettoello-Mantovani, Angelo Campanozzi, Valeria Raia, Jeffrey E. Pessin, Michael Brownlee, Ida Giardino

×

Figure 11

Urea infusion induces insulin resistance and elevated insulin resistance–associated adipokines in normal rats.

Options: View larger image (or click on image) Download as PowerPoint
Urea infusion induces insulin resistance and elevated insulin resistance...
(A) GIR necessary to maintain euglycemia at 120 minutes of EU clamps of rats infused with PBS or urea with or without MnTBAP treatment. (B) Plasma glucose levels at 120 minutes of EU clamps of rats infused with PBS or urea with or without MnTBAP treatment. (C) Plasma levels of RBP4 at 120 minutes of euglycemic-hyperglycemic clamps in rats infused with PBS or urea with or without MnTBAP treatment. (D) Plasma levels of resistin at 120 minutes of euglycemic-hyperglycemic clamps in rats infused with PBS or urea with or without MnTBAP treatment. All results represent mean ± SEM of 5 animals per group. *P < 0.01 compared with controls.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts