

Real-time PCR validation of genes identified by affymetrix microarray Α.

Β. Real-time PCR validation of genes identified by affymetrix microarray after treatment with TGF- β for 1 hour

Supplementary Figure S1. Cluster analyses for genes that were validated by real-time PCR. Genes that demonstrated a significant difference in expression with a two-tailed unpaired t-test value of 0.05 or less were used for clustering. Each row represents the heatmap interpretation of 1/ Δ Ct values associated with a specific gene. A. TβRII^(WKO;PY) and TβRII^(f/f);PY) carcinoma cell lines cultured in complete medium. B. TβRII^(WKO;PY) cells cultured in complete medium compared with TBRII(fl/fl;PY) carcinoma cells in the presence of complete medium with TGF- β at 10ng/ml one hour after stimulation. No differences in gene expression were observed when TβRII^(WKO;PY) cells cultured in complete medium were compared with TβRII^(WKO;PY) cells cultured in complete medium containing TGF-β ligand at 10ng/ml one hour after stimulation. FL1, FL2 and FL3, TβRII^(fl/fl;PY); KO1, KO2 and KO3, TβRII^(WKO;PY). Values were normalized to *Gusb*, *Hprt1*, *Hsp90ab1*, *Actb* and *PPIA*.

Supplementary Figure S2. TGF- β and OSM effect on HC11 cell growth. Both TGF- β and OSM stimulation at varying concentrations resulted in decreased tritiated thymidine incorporation 24 hours after treatment. TGF- β stimulation resulted in a significant decrease in tritiated thymidine uptake at 0.1, 1.0 and 10.0 ng/ml. OSM significantly decreased thymidine uptake at 10ng/ml and 100ng/ml. Results represent normalized mean counts per minute (CPM) +/- standard error of the mean. Significance was implied if the two-tailed unpaired t-test p-values were less than 0.05. The results for TGF- β and OSM appeared to be additive when both ligands were present in comparison with the values obtained from individual ligand stimulation.

Cluster analysis of the Ivshina dataset using the T_{\beta}RII (WKO; PY) gene expression signature

Supplementary Figure S3. Cluster analysis of the T β RII^(WKO;PY) gene expression signature in the lvshina dataset. The results indicated that there may be an association between the TGF- β signaling deficient T β RII^(WKO;PY) mammary carcinoma cell signature and subtype classification in human breast cancer.

Supplementary Figure S4. Increased risk of relapse when TGF- β signaling deficient T β RII^(WKO;PY) mammary carcinoma cell gene expression signature was correlated with samples within the lvshina dataset. A. The T β RII^(WKO;PY) mammary carcinoma cell signature significantly correlated with reduced relapse-free survival in the lvshina dataset (Continuous r p-value was 0.04 and the Log Rank p-value was 0.0364). B-D. Although similar trends were present, no significant correlation was noted between the T β RII^(WKO;PY) mammary carcinoma cell signature and relapse-free survival in the van de Vijver, Loi or UNC datasets respectively. Red, high correlation (r>0); Black, low correlation (r<0).

Supplementary Figure S5. Correlation between the TβRII^(WKO;PY) and TGF-β treatment signatures with metastasis-free survival (MFS) in the van de Vijver and Loi human breast cancer datasests. A significant correlation was observed between the TGF-β treatment signature and reduced MFS in the van de Vijver dataset, however no significant difference was observed in correlation with the Loi breast cancer MFS. Red, high correlation (r>0); Black, low correlation (r<0).

Supplementary Figure S6. Correlation between the T β RII^(WKO; PY) and TGF- β treatment signatures with relapse-free survival in association with tumor size. A. No significant difference in relapse-free survival related to either signature when tumors were less than 2cm. B. In tumors that were larger than 2cm at the time of collection, no significant difference was observed. Red, high correlation (r>0); Black, low correlation (r<0).

Supplementary Figure S7. Correlation between the T β RII^(WKO; PY) and TGF- β treatment signatures with relapse-free survival in Luminal B, ER- or no adjuvant treated human breast cancer. No significant differences were observed in correlation with either signature in Luminal B (A) and ER- (B) breast cancer or in association with the patients that had not been treated with a systemic adjuvant (C). Red, high correlation (r>0); Black, low correlation (r<0).

A. Correlation with Basal subtype breast cancer survival

Supplementary Figure S8. Correlation between the TβRII^(WKO;PY) and TGF-β treatment signatures with relapse-free survival in Basal or Her2 subtype human breast cancer. **A.** No significant differences were observed in correlation with either signature and Basal subtype tumor patient prognosis **B.** The Her2 subtype patient population also failed to demonstrate a significant correlation with RFS probability for either signature. Red, high correlation (r>0); Black, low correlation (r<0).

Supplementary Figure S9. Consolidation of our relapse-free survival data and the results recently reported by Padua, et al. regarding TGF- β dependent homing of metastatic breast cancer cells to lung tissue.

Supplementary Figure S10. Graphical representation of results obtained using a Cox model for multivariate analysis (MVA). The T β RII KO gene expression signature had a statistically significant non-linear correlation with overall survival in the combined 1,319 patient dataset.

T ^β RII ^(WNO,FT) Gene Expression Signatur	Τβ <mark>RII ^(WKO;PY)</mark>	Gene	Expression	Signatur
---	---	------	------------	----------

Downregulated								
Adamts3	Crlf1	Megf10	Serpine1					
Adcy7	Cxcl12	Megf9	Slc35f1					
Aldoc	Dpysl5	Mtap9	Sox5					
Alg13	Elavl2	Myo7a	Ssr1					
Alox5ap	Enpp3	Pcdh21	St8sia2					
Ankrd29	F2r	Pde2a	Tbx15					
Apex2	Gja7	Pdgfb	Tmeff1					
Car2	Gm22	Plagl1	Tmem29					
Car9	Gna14	Rgs10	Tspan7					
Chst11	lgf1	Rspo3	Tyms					
Cnr1	ll17b	Satb1	Vim					
Col9a3	ltgb3	Sbk1	Wisp1					
	Upregu	lated						
Adar	Gbp6	Lgals9	Rsad2					
Angptl2	Gjb4	Lgr6	Rtp4					
Ankrd1	Gprc5c	Mlstd2	S100a6					
Anxa1	Gvin1	Mt1	Saa3					
B2m	H2-K1	Mt2	Scara5					
B3gnt3	H2-Q1	Mx1	Sdc4					
Brd4	H2-Q8	Mx2	Sectm1b					
Btg2	H2-T10	Nmi	Sftpd					
C1qdc2	H2-T23	Nr4a1	Slfn2					
C1r	Hist1h1c	Nradd	Slpi					
C79267	Hist1h2bc	Nuak2	Sp100					
Ccl20	Ccl20 Hist3h2a		Stambpl1					
Ccl5	Hspb8	Oas2	Stat1					
Clec2d	ld3	Oas3	Stat2					
Col4a6	lds	Oasl1	Syce2					
Csprs	lfi203	Parp12	Tanc2					
Ctsa	lfi35	Parp14	Tap2					
Cxcl1	lfih1	Parp3	Tmem140					
Cxcl16	lfit3	Parp8	Tnfrsf1b					
Cyp1b1	Irf1	Parp9	Tns4					
D11Lgp2e	Irgm	Phf11	Tor3a					
Dleu2	lsgf3g	Pim3	Tpm2					
Drbp1	Khdrbs3	Pla2g7	Trex1					
Egr1	Krt17	Plk2	Tyki					
Ehbp1I1	Lamc2	Plk3	Ube1I					
Eif2ak2	Lgals3	Psmb2	Ube2l6					
Gbp2	Lgals3bp	Psmb9	Zbp1					

TGF- β Treatment Gene Expression Signature

Downregulated									
Adamts1 Adamts15	Cdc42ep3 Cebpd	Cxcl1 Cxcl5	Epgn Gdap10						
Alcam	Chka	Cyp1b1	Ppp1r3c						
Ccl20	Csn3	Dusp6	Tslp						
	Upregulated								
Adora1	Edn2	Lmcd1	Sh3bp2						
Bcl11a	Egr2	Lrig3	Slc20a1						
Bcl2l11	Egr3	Lrp4	Smad6						
Bhlhb2	Fos	Map3k14	Spsb1						
Camk2n1	Fosb	Mfsd2	Tmem98						
Ctgf	Foxq1	Myo1d	Wisp1						
Ctla2a	Gadd45a	Pdgfb	Wnt9a						
Ctla2b	Gadd45g	Plekhh1	Zfp750						
Cxcl12	Gja3	Rasl11b							
Cxcr4	Gse1	Serpine1							
Ddit4	Junb	Sfn							

Supplementary Table S1. Differentially expressed genes identified when T β RII^(WKO;PY) and T β RII^(fl/fl;PY) mammary carcinoma cells were compared. Genes that had a higher level of expression in the T β RII^(WKO;PY) samples were considered upregulated and those that were lower in the T β RII^(WKO;PY) model were considered downregulated. Genes were selected if they met all of the following criteria: signal was consistently up- or downregulated at least 1.5 fold in all T β RII^(WKO;PY) samples when compared to the T β RII^(fl/fl;PY) controls, at least two of the three experimental samples represented a 2.0 fold or higher change in expression when compared to the T β RII^(fl/fl;PY) controls, and the CV value for the T β RII^(fl/fl;PY) group was less than 2.0.

Pos	Pos	Neg	Neg	Blank	Axl	Blc	Cd30 L	Cd30 T	Cd40	Cxcl10	Ccl27b	Cxcl16	Ccl11
Pos	Pos	Neg	Neg	Blank	Axl	Blc	Cd30 L	Cd30 T	Cd40	Cxcl10	Ccl27b	Cxcl16	Ccl11
Ccl24	Fasl	Cx3cl1	Gcsf	Gm-csf	Ifng	lgfbp-3	lgfbp-5	lgfbp-6	ll-1a	ll-1b	II-2	II-3	II-3 Rb
Ccl24	Fasl	Cx3cl1	Gcsf	Gm-csf	Ifng	lgfbp-3	lgfbp-5	lgfbp-6	ll-1a	II-1b	II-2	II-3	II-3 Rb
II-4	II-5	II-6	II-9	II-10	ll-12 p40/70	II-12 p70	II-13	II-17	Cxcl1	Leptin R	Leptin	Cxcl5	L-Selectin
II-4	II-5	II-6	II-9	II-10	ll-12 p40/70	ll-12 p70	II-13	II-17	Cxcl1	Leptin R	Leptin	Cxcl5	L-Selectin
Lymphotactin	Ccl2	Ccl12	M-csf	Cxcl9	Ccl3	Ccl9	Cxcl2	Ccl19	Ccl20	Cxcl4	P-Selectin	Ccl5	Scf
Lymphotactin	Ccl2	Ccl12	M-csf	Cxcl9	Ccl3	Ccl9	Cxcl2	Ccl19	Ccl20	Cxcl4	P-Selectin	Ccl5	Scf
Ccl12	Ccl17	Ccl1	Ccl25	Timp-1	TNFa	sTNFRI	sTNFRII	Тро	Vcam-1	Vegf	Blank	Blank	Pos
Ccl12	Ccl17	Ccl1	Ccl25	Timp-1	TNFa	sTNFRI	sTNFRII	Тро	Vcam-1	Vegf	Blank	Blank	Pos

Annotated legend for the Raybiotech Cytokine Antibody Array

Supplementary Table S2. Annotated legend for the Raybiotech Antibody Array. The antibody array description was analyzed to determine alias designations for the included antibody antigens. Chemokine ligands were listed with their respective Ccl and Cxcl designations.

Author	GEO Accession Numbers	Samples	Node+	Node- No Systemic Adjuvant Therapy	ER+ (%)	Endocrine Therapy Only
UNC	GSE10886	361	143/251 (57%)	15/178 (8.4%)	137/244 (56%)	27/228 (12%)
Ivshina, et al.	GSE4922	249	81/240 (34%)	134/203 (66%)	211/245 (86%)	66/203 (33%)
Loi, et al.	GSE6532	414	143/393 (36%)	134/393 (34.4%)	349/394 (89%)	277/414 (67%)
van de Vijver, et al.	GSE2845	295	144/295 (49%)	141/295 (47.8%)	225/295 (76%)	20/295 (7%)
	Total	1319				

Supplementary Table S3. Patient samples used for correlate analysis. A total of 1319 patient samples were included from the four annotated datasets. GEO ID, gene omnibus expression database identifier.

Varia	bles	HR	95 CI	p-value
TβRII	КО			0.015
	1st tertile	1.00		
	2nd tertile	1.29	1.07-1.56	
	3rd tertile	1.16	0.89-1.52	
TGF-	β stim			0.161
	1st tertile	1.00		
	2nd tertile	1.09	0.92-1.30	
	3rd tertile	1.22	0.98-1.50	
-				0.004
	•			<0.001
	0	1.00		
	1	2.21	1./3-2.82	
				0.004
	0	1 00		0.004
	1	1.00	1 1 4 2 0 2	
	1	1.52	1.14-2.02	
ER St	atus			<0.001
	Negative	1.00		
	Positive	0.60	0.45-0.79	
Treat	ment			0.236
	No Adjuvant	1.00		
	Chemo	0.68	0.45-1.03	
	Hormone	0.76	0.54-1.06	
	Chemo + Hormone	0.69	0.40-1.18	
Data	set			0 178
	lyshina	1 00		0.170
1	l oi	0.88	0.65-1.20	
1		1 4 2	0.89-7.26	
1	van de Viiver	1.00	0.72-1.41	

TGF- β Signaling Signature: Multivariate Cox Model with Spline

Supplementary Table S5

Interaction between ER and the T βRII KO signature

Factor	Chi-Square	d.f.	Р
TS	41.81	1	<.0001
Ν	9.83	1	0.0017
tx	5.96	3	0.1136
Dataset	4.12	3	0.2486
ER (Factor + Higher Order Factors)	17.74	4	0.0014
All Interactions	4.79	3	0.1875
TβRII KO Corr. (Factor + Higher Order Factors)	15.65	6	0.0158
All Interactions	4.79	3	0.1875
Nonlinear (Factor + Higher Order Factors)	10.59	4	0.0316
ER * TβRII KO Corr. (Factor + Higher Order Factors)	4.79	3	0.1875
Nonlinear	2.58	2	0.2751
Nonlinear Interaction : f(A,B) vs. AB	2.58	2	0.2751
TOTAL NONLINEAR	10.59	4	0.0316
TOTAL NONLINEAR + INTERACTION	12.55	5	0.0280
TOTAL	108.15	15	<.0001

Supplementary Table S6