The current inactivated influenza virus vaccines induce antibodies that protect against closely related virus strains. They do not, however, protect against antibody-escape variants of seasonal influenza A viruses or new pandemic influenza A viruses emerging from non-human reservoirs. Might boosting influenza A virus–specific CD8+ T cell memory diminish the danger posed by these variant viruses? Pre-existing CD8+ T cell–mediated immunity directed at peptides from conserved internal proteins of the influenza A virus does not prevent infection, but it can promote early virus clearance and decrease morbidity in mice. In this issue of the JCI, Lee et al. show that people who have not been exposed to avian influenza A (H5N1) viruses have cross-reactive CD8+ T cell memory to a wide range of H5N1 peptides (see the related article beginning on page 3478). These peptides could be used to add a CD8+ T cell component to current antibody-focused vaccine strategies with a view to reducing the impact of infection with novel influenza A viruses.

The recent spread of the extremely virulent avian influenza A subtype H5N1 viruses, herein referred to as H5N1, through Asia and to North Africa and Europe has raised serious concerns about the possibility of a novel human influenza pandemic (1, 2). Though the severe disease that can develop in humans exposed to H5N1-infected birds is rare and sustained human-to-human transmission of the virus has not yet been observed, the three influenza pandemics of the 20th century were all caused by influenza A viruses that originated from birds (3). Variant influenza A (H1N1), A (H3N2), and B viruses also cause regular seasonal epidemics that are associated with substantial morbidity and economic loss. It is bad enough that some 250,000–500,000 (particularly elderly) people die annually from influenza, but what if we should face an event like the 1918–1919 influenza pandemic? That pandemic killed in excess of 40 million people worldwide — before the era of rapid air travel and at a time when the global population was less than a third of that today.

Limitations of current influenza vaccines

Inactivated influenza vaccines elicit neutralizing antibody responses that provide reasonable protection against the homologous H1N1, H3N2, and B viruses (4). However, antibody-mediated selection drives changes (known as antigenic drift) in the viral HA (H) and neuraminidase (NA; N) surface glycoproteins, which in turn dictate the frequent production of a new vaccine, sometimes as often as annually, as has been the case in each of the last five years. The WHO recommends candidate vaccine virus strains that have been identified among the collections of emerging field isolates supplied by a global network of 124 WHO National Influenza Centers and other diagnostic laboratories and characterized by the four WHO Collaborating Centers for Influenza (in London, Atlanta, Melbourne, and Tokyo). The WHO’s recommendations also inform the composition of the live vaccines produced from “cold-adapted” viruses that

Nonstandard abbreviations used: M1, matrix protein 1; NA, neuraminidase; NP, nucleoprotein.
Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J. Clin. Investig. 118:3273–3275 (2008). doi:10.1172/JCI37232.

Toward a broadly protective influenza vaccine

Peter C. Doherty1,2 and Anne Kelso3

1Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia. 2Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 3WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia.
are selected to grow at the lower temperature of the human nose and upper respiratory tract. These vaccines have been used for many years in Russia and the former Soviet Union and are now available internationally, but are not approved for Western use in the very young or the elderly.

Apart from the lack of protection against variant viruses, the use of traditional inactivated vaccines in a future influenza pandemic will be constrained by the need for specialized egg-based production facilities and long production times required for the creation of a new vaccine. Most influenza vaccines are made from viruses grown in the allantoic cavity of embryonated hen’s eggs. The viruses are then inactivated, purified, and in most cases “split” to produce vaccines that consist largely of HA and NA subunits. Recent advances include the use of reverse genetics to express the HA and NA of extremely virulent viruses, such as H5N1, with the internal proteins of standard vaccine strains (5) in order to enable the virus to replicate without killing the chick embryo, as well as the development of cell culture systems for high-titer virus growth. Even with these advances, however, it is likely to be many months before a new vaccine based on a pandemic virus can be deployed globally.

Cross-protection by CTLs

While nobody is suggesting that we abandon the current antibody-based strategy, there is increasing interest in the possibility that it might be useful to add a CD8+ T cell–activating component to the trivalent seasonal influenza vaccines (6). The early finding (7, 8) that influenza A virus–specific CTLs remain reactive in mouse strains of different MHC class I types (13). This was a paradigm-shifting experiment that led to the creation of the field of research on protein/peptide processing in the cytoplasmic compartment. Subsequently, a number of other internal proteins in the virus, particularly the acidic and basic polymerases (PA and PB1, respectively) and the structural matrix protein 1 (M1), have been found to provide additional peptides that make up the peptide–MHC class I complexes recognized by influenza virus–specific CTLs in both mice and humans (13).

The case for CTL-mediated cross-protective vaccines

The article by Lee et al. in this issue of the JCI presents a detailed analysis, in individuals in the United Kingdom and Viet Nam, of the specificities of pre-existing CD8+ and CD4+ T cells for peptides encompassing all the proteins of an H5N1 and an H3N2 virus (14). Although citizens of the United Kingdom are not likely to have encountered an H5N1 virus, and the Vietnamese subjects were laboratory workers who were seronegative for H5, most subjects in both groups did possess memory T cells that were able to recognize cells displaying H5N1 peptides. A broad spectrum of peptides was recognized, predominantly from the viral NP and M1 proteins and, as subjects were not HLA typed, presumably reflecting a
range of MHC class I–restriction specificities. Some, but by no means all, of these peptides were conserved between the H3N2 and H5N1 strains used.

Would it be worthwhile to boost this T cell memory in order to strengthen cross-protective immunity (Figure 1)? Though CD8+ CTL immunotherapy can control Epstein-Barr virus–induced lymphomagenesis in humans (15), experience with vaccines that function exclusively by promoting CD8+ T cell–mediated immunity in higher primates and humans has largely been restricted to the HIV and SIV lentiviruses. The results have generally been disappointing. Experiments with SIV vaccines have shown, for example, that the virus is controlled for a time following vaccination but then mutates to avoid CD8+ T cell surveillance (16). However, the situation with influenza A viruses is different, as these viruses neither integrate cDNA into the host genome nor persist in the host in any form. Enhanced control of influenza viruses in the short term is thus likely to be sufficient to limit disease and reduce transmission. Although expansion of the population of pre-existing memory T cells may only serve to change the disease profile from mortality to morbidity, the impact could be substantial in the event of a pandemic or a severe seasonal epidemic.

What type of vaccine might be appropriate to induce cross-protective CTLs? Inactivated vaccines induce negligible CD8+ T cell responses, and live, cold-adapted vaccines can induce CD8+ T cell memory cells, but the numbers are low. For repeated responses, and live, cold-adapted vaccines have shown, for example, that the chemokines and cytokines involved are produced by elements of the innate response, especially monocytes and neutrophils (20). The first goal must therefore be to remove the virus from the equation as soon as possible after infection, an effect that can be mediated by a rapidly emerging recalled CD8+ T cell response. All in all, as suggested by Lee et al. in their current study (14), the possibility of developing a vaccination strategy for the regular boosting of influenza A virus–specific T cell–mediated immunity would seem eminently worthy of further consideration and experiment.

Acknowledgments

The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health and Ageing, P.C. Doherty is funded by the NIH, the Australian National Health and Medical Research Council, and The American Lebanese Syrian Associated Charities (ALSAC) at St. Jude Children’s Research Hospital.

Address correspondence to: Peter C. Doherty, Department of Immunology, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA. Phone: (901) 495-3470; Fax: (901) 495-3107; E-mail: peter.doherty@stjude.org or pcd@unimelb.edu.au.

Tracing the molecular pathogenesis of antiphospholipid syndrome

Hartmut Weiler
Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.

Fetal loss induced by antiphospholipid antibodies (aPLs) in mice is a complement-driven inflammatory condition. Engagement of the complement receptor C5aR on neutrophils induces expression of the principal initiator of the blood clotting mechanism, tissue factor (TF), and blocking this downstream event of complement activation prevents antibody-induced fetal loss. In this issue of the JCI, the study by Redecha et al. clarifies that in mice, the contribution of TF to this pathogenic mechanism is independent of its role in coagulation and thrombosis, but involves inflammatory signaling through the receptor PAR2 (see the related article beginning on page 3433). The study not only sheds light on a critical effector mechanism of aPL-induced fetal loss, but also suggests that treatment with statins, which decrease TF and PAR2 expression, may hold promise as a therapeutic approach to antiphospholipid syndrome–associated pregnancy complications.

Antiphospholipid syndrome (APS) is characterized by the presence of autoreactive antiphospholipid antibodies (aPLs), which recognize specific plasma proteins that possess an affinity for anionic phospholipids, combined with clinical evidence of thrombosis. In pregnant females, aPLs trigger severe pregnancy complications, such as miscarriage, intrauterine growth restriction, and fetal death, and also increase the likelihood of preeclampsia (1–3). Infusion of aPLs isolated from human patients into pregnant mice is sufficient to reproduce fetal loss and fetal growth restriction. A remarkable series of genetic and pharmacologic intervention studies in this mouse model has led to a detailed understanding of the pathogenesis underlying aPL-induced fetal loss (1, 4, 5).

Clinically, the most relevant antigen recognized by aPLs is β2-glycoprotein I (β2GPI), a plasma protein with poorly characterized functions. Binding of aPL induces the formation of β2GPI dimers with increased affinity for anionic phospholipids. Binding to negatively charged membrane surfaces is also essential for the function of key coagulation proteins, including prothrombin. Competition between aPL/β2GPI complexes and coagulation factors for binding to phosphatidylserine explains the anticoagulant effect exerted by aPLs in vitro coagulation assays. The affinity for negatively charged membranes directs the selective allocation of aPL/β2GPI complexes to the phosphatidylserine-rich surface of fetal trophoblast cells in the placenta.

A critical milestone in understanding aPL-induced fetal loss was the observation of massive accumulation of complement component C3 in the placenta and the finding that that genetic deficiency of maternal C3 or administration of the C3 inhibitor Cryy-IgG prevents fetal loss (6). It has since been shown that downstream of C3 in this signaling pathway, interactions between complement component C5a and the C5a receptor (C5aR), rather than the classic cell-destructive formation of the C5b-9 membrane attack complex, are responsible for fetal loss (7).

Thus far, 2 specific consequences of C5a-C5aR engagement are known to contribute to fetal loss: augmented release of TNF-α and induction of tissue factor (TF) expression by maternal neutrophils (8). TNF-α may exert direct cytotoxic effects on trophoblast cells that line maternal blood spaces in the placenta, or sustain the activation of immune cells in the placenta. Accordingly, genetic ablation or functional inhibition of TNF-α and its interactions with its receptors prevents aPL-induced fetal loss (8). More recent work shows that the aPL-induced expression of TF on neutrophils is a critical second link between C5aR engagement and fetal loss (9). C5aR-deficient neutrophils fail to increase TF expression in response to aPL, and pharmacologic or genetic suppression of TF in maternal neutrophils is sufficient to prevent the formation of reactive oxygen species and fetal loss.

TF mediates fetal loss independent of thrombosis

In the study by Redecha et al. in this issue of the JCI (10), the authors distinguish the relative role of the 2 known functions of TF. TF is a transmembrane receptor for the circulating coagulation Factor VII (FVII) (11). Upon formation of the TF/FVII complex, TF gains affinity for plasma coagulation Factor X (FX) and converts it — via partial proteolysis—from an inactive zymogen to the active protease form (FXa). After release from the ternary TF/FVIIa/FXa complex, FXa converts proteins C and FVa to the enzyme thrombin. Thrombin catalyzes the assembly of aPLs into autoantibody complexes that activate the blood clotting mechanism, tissue factor (TF), and block the inhibition of TNF-α and its interactions with its receptors prevents aPL-induced fetal loss (8). More recent work shows that the aPL-induced expression of TF on neutrophils is a critical second link between C5aR engagement and fetal loss (9). C5aR-deficient neutrophils fail to increase TF expression in response to aPL, and pharmacologic or genetic suppression of TF in maternal neutrophils is sufficient to prevent the formation of reactive oxygen species and fetal loss.

TF mediates fetal loss independent of thrombosis

In the study by Redecha et al. in this issue of the JCI (10), the authors distinguish the relative role of the 2 known functions of TF. TF is a transmembrane receptor for the circulating coagulation Factor VII (FVII) (11). Upon formation of the TF/FVII complex, TF gains affinity for plasma coagulation Factor X (FX) and converts it — via partial proteolysis—from an inactive zymogen to the active protease form (FXa). After release from the ternary TF/FVIIa/FXa complex, FXa converts to the enzyme thrombin. Thrombin catalyzes the assembly of aPLs into autoantibody complexes that activate the blood clotting mechanism, tissue factor (TF), and block the inhibition of TNF-α and its interactions with its receptors prevents aPL-induced fetal loss (8). More recent work shows that the aPL-induced expression of TF on neutrophils is a critical second link between C5aR engagement and fetal loss (9). C5aR-deficient neutrophils fail to increase TF expression in response to aPL, and pharmacologic or genetic suppression of TF in maternal neutrophils is sufficient to prevent the formation of reactive oxygen species and fetal loss.

Nonstandard abbreviations used: -α, activated; aPL, antiphospholipid antibody; APS, antiphospholipid syndrome; β2GPI, β2-glycoprotein I; C5aR, C5a receptor; FVII, Factor VII; PAR, protease-activated receptor; TF, tissue factor.

Conflict of interest: The author has declared that no conflict of interest exists.